123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- \chapter{WU: Wu algorithm for poly systems}
- \label{WU}
- \typeout{{WU: Wu algorithm for polynomial systems}}
- {\footnotesize
- \begin{center}
- Russell Bradford \\
- School of Mathematical Sciences, University of Bath,\\
- Bath, BA2 7AY, England \\[0.05in]
- e--mail: rjb@maths.bath.ac.uk
- \end{center}
- }
- \ttindex{WU}
- The interface:
- \begin{verbatim}
- wu( {x^2+y^2+z^2-r^2, x*y+z^2-1, x*y*z-x^2-y^2-z+1}, {x,y,z});
- \end{verbatim}
- calls {\tt wu}\ttindex{WU} with the named polynomials, and with the
- variable ordering ${\tt x} > {\tt y} > {\tt z}$. In this example, {\tt
- r} is a parameter.
- The result is
- \begin{verbatim}
- 2 3 2
- {{{r + z - z - 1,
- 2 2 2 2 4 2 2 2
- r *y + r *z + r - y - y *z + z - z - 2,
- 2
- x*y + z - 1},
- y},
- 6 4 6 2 6 4 7 4 6 4 5 4 4
- {{r *z - 2*r *z + r + 3*r *z - 3*r *z - 6*r *z + 3*r *z + 3*
- 4 3 4 2 4 2 10 2 9 2 8 2 7
- r *z + 3*r *z - 3*r + 3*r *z - 6*r *z - 3*r *z + 6*r *z +
- 2 6 2 5 2 4 2 3 2 13 12 11
- 3*r *z + 6*r *z - 6*r *z - 6*r *z + 3*r + z - 3*z + z
- 10 9 8 7 6 4 3 2
- + 2*z + z + 2*z - 6*z - z + 2*z + 3*z - z - 1,
- 2 2 3 2
- y *(r + z - z - 1),
- 2
- x*y + z - 1},
- 2 3 2
- y*(r + z - z - 1)}}
- \end{verbatim}
- namely, a list of pairs of characteristic sets and initials for the
- characteristic sets.
- Thus, the first pair above has the characteristic set
- $$ r^2 + z^3 - z^2 - 1,
- r^2 y^2 + r^2 z + r^2 - y^4 - y^2 z^2 + z^2 - z - 2,
- x y + z^2 - 1$$
- and initial $y$.
- According to Wu's theorem, the set of roots of the original polynomials
- is the union of the sets of roots of the characteristic sets,
- with the additional constraints that the corresponding initial is
- non-zero. Thus, for the first pair above, we find the roots of
- $\{r^2 + z^3 - z^2 - 1, \ldots~\}$ under the constraint that $y \neq 0$.
- These roots, together with the roots of the other characteristic set
- (under the constraint of $y(r^2+z^3-z^2-1) \neq 0$), comprise all the
- roots of the original set.
|