wu.tex 2.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475
  1. \chapter{WU: Wu algorithm for poly systems}
  2. \label{WU}
  3. \typeout{{WU: Wu algorithm for polynomial systems}}
  4. {\footnotesize
  5. \begin{center}
  6. Russell Bradford \\
  7. School of Mathematical Sciences, University of Bath,\\
  8. Bath, BA2 7AY, England \\[0.05in]
  9. e--mail: rjb@maths.bath.ac.uk
  10. \end{center}
  11. }
  12. \ttindex{WU}
  13. The interface:
  14. \begin{verbatim}
  15. wu( {x^2+y^2+z^2-r^2, x*y+z^2-1, x*y*z-x^2-y^2-z+1}, {x,y,z});
  16. \end{verbatim}
  17. calls {\tt wu}\ttindex{WU} with the named polynomials, and with the
  18. variable ordering ${\tt x} > {\tt y} > {\tt z}$. In this example, {\tt
  19. r} is a parameter.
  20. The result is
  21. \begin{verbatim}
  22. 2 3 2
  23. {{{r + z - z - 1,
  24. 2 2 2 2 4 2 2 2
  25. r *y + r *z + r - y - y *z + z - z - 2,
  26. 2
  27. x*y + z - 1},
  28. y},
  29. 6 4 6 2 6 4 7 4 6 4 5 4 4
  30. {{r *z - 2*r *z + r + 3*r *z - 3*r *z - 6*r *z + 3*r *z + 3*
  31. 4 3 4 2 4 2 10 2 9 2 8 2 7
  32. r *z + 3*r *z - 3*r + 3*r *z - 6*r *z - 3*r *z + 6*r *z +
  33. 2 6 2 5 2 4 2 3 2 13 12 11
  34. 3*r *z + 6*r *z - 6*r *z - 6*r *z + 3*r + z - 3*z + z
  35. 10 9 8 7 6 4 3 2
  36. + 2*z + z + 2*z - 6*z - z + 2*z + 3*z - z - 1,
  37. 2 2 3 2
  38. y *(r + z - z - 1),
  39. 2
  40. x*y + z - 1},
  41. 2 3 2
  42. y*(r + z - z - 1)}}
  43. \end{verbatim}
  44. namely, a list of pairs of characteristic sets and initials for the
  45. characteristic sets.
  46. Thus, the first pair above has the characteristic set
  47. $$ r^2 + z^3 - z^2 - 1,
  48. r^2 y^2 + r^2 z + r^2 - y^4 - y^2 z^2 + z^2 - z - 2,
  49. x y + z^2 - 1$$
  50. and initial $y$.
  51. According to Wu's theorem, the set of roots of the original polynomials
  52. is the union of the sets of roots of the characteristic sets,
  53. with the additional constraints that the corresponding initial is
  54. non-zero. Thus, for the first pair above, we find the roots of
  55. $\{r^2 + z^3 - z^2 - 1, \ldots~\}$ under the constraint that $y \neq 0$.
  56. These roots, together with the roots of the other characteristic set
  57. (under the constraint of $y(r^2+z^3-z^2-1) \neq 0$), comprise all the
  58. roots of the original set.