1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- \chapter{RESIDUE: A residue package}
- \label{RESIDUE}
- \typeout{{RESIDUE: A residue package}}
- {\footnotesize
- \begin{center}
- Wolfram Koepf\\
- Konrad--Zuse--Zentrum f\"ur Informationstechnik Berlin \\
- Takustra\"se 7 \\
- D--14195 Berlin--Dahlem, Germany \\[0.05in]
- e--mail: Koepf@zib.de
- \end{center}
- }
- \ttindex{RESIDUE}
- \def\Res{\mathop{\rm Res}\limits}
- \newcommand{\C}{{\rm {\mbox{C{\llap{{\vrule height1.52ex}\kern.4em}}}}}}
- This package supports the calculation of residues. The residue
- $\Res_{z=a} f(z)$ of a function $f(z)$ at the point $a\in\C$ is defined
- as
- \[
- \Res_{z=a} f(z)=
- \frac{1}{2 \pi i}\oint f(z)\,dz
- \;,
- \]
- with integration along a closed curve around $z=a$ with winding number 1.
- It contains two \REDUCE\ operators:
- \begin{itemize}
- \item
- {\tt residue(f,z,a)}\ttindex{residue} determines the residue of $f$ at
- the point $z=a$ if $f$ is meromorphic at $z=a$. The calculation of
- residues at essential singularities of $f$ is not supported.
- \item
- {\tt poleorder(f,z,a)}\ttindex{poleorder} determines the pole order
- of $f$ at the point $z=a$ if $f$ is meromorphic at $z=a$.
- \end{itemize}
- Note that both functions use the {\tt TAYLOR} package (chapter~\ref{TAYLOR}).
- \begin{verbatim}
- load_package residue;
- residue(x/(x^2-2),x,sqrt(2));
- 1
- ---
- 2
- poleorder(x/(x^2-2),x,sqrt(2));
- 1
- residue(sin(x)/(x^2-2),x,sqrt(2));
- sqrt(2)*sin(sqrt(2))
- ----------------------
- 4
- poleorder(sin(x)/(x^2-2),x,sqrt(2));
- 1
- residue((x^n-y^n)/(x-y)^2,x,y);
- n
- y *n
- ------
- y
- poleorder((x^n-y^n)/(x-y)^2,x,y);
- 1
- \end{verbatim}
|