residue.tex 1.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. \chapter{RESIDUE: A residue package}
  2. \label{RESIDUE}
  3. \typeout{{RESIDUE: A residue package}}
  4. {\footnotesize
  5. \begin{center}
  6. Wolfram Koepf\\
  7. Konrad--Zuse--Zentrum f\"ur Informationstechnik Berlin \\
  8. Takustra\"se 7 \\
  9. D--14195 Berlin--Dahlem, Germany \\[0.05in]
  10. e--mail: Koepf@zib.de
  11. \end{center}
  12. }
  13. \ttindex{RESIDUE}
  14. \def\Res{\mathop{\rm Res}\limits}
  15. \newcommand{\C}{{\rm {\mbox{C{\llap{{\vrule height1.52ex}\kern.4em}}}}}}
  16. This package supports the calculation of residues. The residue
  17. $\Res_{z=a} f(z)$ of a function $f(z)$ at the point $a\in\C$ is defined
  18. as
  19. \[
  20. \Res_{z=a} f(z)=
  21. \frac{1}{2 \pi i}\oint f(z)\,dz
  22. \;,
  23. \]
  24. with integration along a closed curve around $z=a$ with winding number 1.
  25. It contains two \REDUCE\ operators:
  26. \begin{itemize}
  27. \item
  28. {\tt residue(f,z,a)}\ttindex{residue} determines the residue of $f$ at
  29. the point $z=a$ if $f$ is meromorphic at $z=a$. The calculation of
  30. residues at essential singularities of $f$ is not supported.
  31. \item
  32. {\tt poleorder(f,z,a)}\ttindex{poleorder} determines the pole order
  33. of $f$ at the point $z=a$ if $f$ is meromorphic at $z=a$.
  34. \end{itemize}
  35. Note that both functions use the {\tt TAYLOR} package (chapter~\ref{TAYLOR}).
  36. \begin{verbatim}
  37. load_package residue;
  38. residue(x/(x^2-2),x,sqrt(2));
  39. 1
  40. ---
  41. 2
  42. poleorder(x/(x^2-2),x,sqrt(2));
  43. 1
  44. residue(sin(x)/(x^2-2),x,sqrt(2));
  45. sqrt(2)*sin(sqrt(2))
  46. ----------------------
  47. 4
  48. poleorder(sin(x)/(x^2-2),x,sqrt(2));
  49. 1
  50. residue((x^n-y^n)/(x-y)^2,x,y);
  51. n
  52. y *n
  53. ------
  54. y
  55. poleorder((x^n-y^n)/(x-y)^2,x,y);
  56. 1
  57. \end{verbatim}