mrvlimit.tex 2.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. \chapter[MRVLIMIT: Limits of ``exp-log'' functions]%
  2. {MRVLIMIT: Package for Computing Limits of "Exp-Log" Functions}
  3. \label{MRVLIMIT}
  4. \typeout{{MRVLIMIT: Package for Computing Limits of "Exp-Log" Functions}}
  5. {\footnotesize
  6. \begin{center}
  7. Neil Langmead \\
  8. Konrad-Zuse-Zentrum f\"ur Informationstechnik Berlin (ZIB) \\
  9. Takustra\"se 7 \\
  10. D - 14195 Berlin-Dahlem, Germany \\
  11. \end{center}
  12. }
  13. \ttindex{MRVLIMIT}
  14. %\markboth{CHAPTER \ref{MRVLIMIT}. MRVLIMIT: LIMITS OF ``EXP-LOG'' FUNCTIONS}{}
  15. %\thispagestyle{myheadings}
  16. Using the LIMITS package to compute the limits of functions containing
  17. exponential and logarithmic expressions may raise a problem. For the computation
  18. of indefinite forms (such as $0/0$,or $\frac{\infty}{\infty}$) L'Hospital's
  19. rule may only be applied a finite number of times in a CAS. In REDUCE it is
  20. applied 3 times. This algorithm of Dominik Gruntz of the ETH Z\"urich
  21. solves this particular problem, and enables the computation of many more
  22. limit calculations in REDUCE.
  23. \begin{verbatim}
  24. 1: load limits;
  25. 2: limit(x^7/e^x,x,infinity);
  26. 7
  27. x
  28. limit(----,x,infinity)
  29. x
  30. e
  31. 3: load mrvlimit;
  32. 4: mrv_limit(x^7/e^x,x,infinity);
  33. 0
  34. \end{verbatim}
  35. For this example, the MRVLIMIT package is able to compute the correct limit. \\
  36. \ttindex{MRV\_LIMIT}
  37. \vspace{.1in}
  38. \noindent {\tt MRV\_LIMIT}(EXPRN:{\em algebraic}, VAR:{\em kernel},
  39. LIMPOINT:{\em algebraic}):{\em algebraic} \ttindex{MRV\_LIMIT} \par
  40. The result is the limit of EXPRN as VAR approaches LIMPOINT.
  41. \vspace{.1in}
  42. A switch {\tt TRACELIMIT} is available to inform the user about the computed
  43. Taylor expansion, all recursive calls and the return value of the
  44. internally called function {\tt MRV}. \\
  45. \\
  46. {\bf Examples}:
  47. \\
  48. \begin{verbatim}
  49. 5: b:=e^x*(e^(1/x-e^-x)-e^(1/x));
  50. -1 - x
  51. x + x - e
  52. b:= e *(e - 1)
  53. 6: mrv_limit(b,x,infinity);
  54. -1
  55. -1
  56. 7: ex:= - log(log(log(log(x))) + log(x)) *log(x)
  57. *(log(log(x)) - log(log(log(x)) + log(x)));
  58. - log(x)*(log(log(x)) - log(log(log(x)) + log(x)))
  59. ex:= -----------------------------------------------------
  60. log(log(log(log(x))) + log(x))
  61. 8: off mcd;
  62. 9: mrv_limit(ex,x,infinity);
  63. 1
  64. \end{verbatim}