1234567891011121314151617181920212223242526272829303132 |
- \chapter{MODSR: Modular solve and roots}
- \label{MODSR}
- \typeout{{MODSR: Modular solve and roots}}
- {\footnotesize
- \begin{center}
- Herbert Melenk \\
- Konrad--Zuse--Zentrum f\"ur Informationstechnik Berlin \\
- Takustra\"se 7 \\
- D--14195 Berlin--Dahlem, Germany \\[0.05in]
- e--mail: melenk@zib.de
- \end{center}
- }
- \ttindex{MODSR}
- This package supports solve (\f{M\_SOLVE}\ttindex{M\_SOLVE}) and roots
- (\f{M\_ROOTS}\ttindex{M\_ROOTS}) operators for modular polynomials and
- modular polynomial systems. The moduli need not be primes. {\tt
- M\_SOLVE} requires a modulus to be set. {\tt M\_ROOTS} takes the
- modulus as a second argument. For example:
- \begin{verbatim}
- on modular; setmod 8;
- m_solve(2x=4); -> {{X=2},{X=6}}
- m_solve({x^2-y^3=3});
- -> {{X=0,Y=5}, {X=2,Y=1}, {X=4,Y=5}, {X=6,Y=1}}
- m_solve({x=2,x^2-y^3=3}); -> {{X=2,Y=1}}
- off modular;
- m_roots(x^2-1,8); -> {1,3,5,7}
- m_roots(x^3-x,7); -> {0,1,6}
- \end{verbatim}
|