limits.tex 2.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. \chapter{LIMITS: A package for finding limits}
  2. \label{LIMITS}
  3. \typeout{{LIMITS: A package for finding limits}}
  4. {\footnotesize
  5. \begin{center}
  6. Stanley L. Kameny \\
  7. Los Angeles, U.S.A.
  8. \end{center}
  9. }
  10. \ttindex{LIMITS}
  11. LIMITS is a fast limit package for \REDUCE\ for functions which are
  12. continuous except for computable poles and singularities, based on some
  13. earlier work by Ian Cohen and John P. Fitch.
  14. The Truncated Power Series
  15. package is used for non-critical points, at which the value of the
  16. function is the constant term in the expansion around that point.
  17. \index{l'H\^opital's rule}
  18. l'H\^opital's rule is used in critical cases, with preprocessing of
  19. $\infty - \infty$ forms and reformatting of product forms in order
  20. to apply l'H\^opital's rule. A limited amount of bounded arithmetic
  21. is also employed where applicable.
  22. \section{Normal entry points}
  23. \ttindex{LIMIT}
  24. \vspace{.1in}
  25. \noindent {\tt LIMIT}(EXPRN:{\em algebraic}, VAR:{\em kernel},
  26. LIMPOINT:{\em algebraic}):{\em algebraic}
  27. \vspace{.1in}
  28. This is the standard way of calling limit, applying all of the
  29. methods. The result is the limit of EXPRN as VAR approaches LIMPOINT.
  30. \section{Direction-dependent limits}
  31. \ttindex{LIMIT+}\ttindex{LIMIT-}
  32. \vspace{.1in}
  33. \noindent {\tt LIMIT!+}(EXPRN:{\em algebraic}, VAR:{\em kernel},
  34. LIMPOINT:{\em algebraic}):{\em algebraic} \\
  35. \noindent {\tt LIMIT!-}(EXPRN:{\em algebraic}, VAR:{\em kernel},
  36. LIMPOINT:{\em algebraic}):{\em algebraic}
  37. \vspace{.1in}
  38. If the limit depends upon the direction of approach to the {\tt
  39. LIMPOINT}, the functions {\tt LIMIT!+} and {\tt LIMIT!-} may be used.
  40. They are defined by:
  41. \vspace{.1in}
  42. \noindent{\tt LIMIT!+} (EXP,VAR,LIMPOINT) $\rightarrow$
  43. \hspace*{2em}{\tt LIMIT}(EXP*,$\epsilon$,0) \\
  44. where EXP* = sub(VAR=VAR+$\epsilon^2$,EXP)
  45. and
  46. \noindent{\tt LIMIT!-} (EXP,VAR,LIMPOINT) $\rightarrow$
  47. \hspace*{2em}{\tt LIMIT}(EXP*,$\epsilon$,0) \\
  48. where EXP* = sub(VAR=VAR-$\epsilon^2$,EXP)
  49. Examples:
  50. \begin{verbatim}
  51. load_package misc;
  52. limit(sin(x)/x,x,0);
  53. 1
  54. limit((a^x-b^x)/x,x,0);
  55. log(a) - log(b)
  56. limit(x/(e**x-1), x, 0);
  57. 1
  58. limit!-(sin x/cos x,x,pi/2);
  59. infinity
  60. limit!+(sin x/cos x,x,pi/2);
  61. - infinity
  62. limit(x^log(1/x),x,infinity);
  63. 0
  64. limit((x^(1/5) + 3*x^(1/4))^2/(7*(sqrt(x + 9) - 3 - x/6))^(1/5),x,0);
  65. 3/5
  66. - 6
  67. ---------
  68. 1/5
  69. 7
  70. \end{verbatim}