123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- \chapter{LIMITS: A package for finding limits}
- \label{LIMITS}
- \typeout{{LIMITS: A package for finding limits}}
- {\footnotesize
- \begin{center}
- Stanley L. Kameny \\
- Los Angeles, U.S.A.
- \end{center}
- }
- \ttindex{LIMITS}
- LIMITS is a fast limit package for \REDUCE\ for functions which are
- continuous except for computable poles and singularities, based on some
- earlier work by Ian Cohen and John P. Fitch.
- The Truncated Power Series
- package is used for non-critical points, at which the value of the
- function is the constant term in the expansion around that point.
- \index{l'H\^opital's rule}
- l'H\^opital's rule is used in critical cases, with preprocessing of
- $\infty - \infty$ forms and reformatting of product forms in order
- to apply l'H\^opital's rule. A limited amount of bounded arithmetic
- is also employed where applicable.
- \section{Normal entry points}
- \ttindex{LIMIT}
- \vspace{.1in}
- \noindent {\tt LIMIT}(EXPRN:{\em algebraic}, VAR:{\em kernel},
- LIMPOINT:{\em algebraic}):{\em algebraic}
- \vspace{.1in}
- This is the standard way of calling limit, applying all of the
- methods. The result is the limit of EXPRN as VAR approaches LIMPOINT.
- \section{Direction-dependent limits}
- \ttindex{LIMIT+}\ttindex{LIMIT-}
- \vspace{.1in}
- \noindent {\tt LIMIT!+}(EXPRN:{\em algebraic}, VAR:{\em kernel},
- LIMPOINT:{\em algebraic}):{\em algebraic} \\
- \noindent {\tt LIMIT!-}(EXPRN:{\em algebraic}, VAR:{\em kernel},
- LIMPOINT:{\em algebraic}):{\em algebraic}
- \vspace{.1in}
- If the limit depends upon the direction of approach to the {\tt
- LIMPOINT}, the functions {\tt LIMIT!+} and {\tt LIMIT!-} may be used.
- They are defined by:
- \vspace{.1in}
- \noindent{\tt LIMIT!+} (EXP,VAR,LIMPOINT) $\rightarrow$
- \hspace*{2em}{\tt LIMIT}(EXP*,$\epsilon$,0) \\
- where EXP* = sub(VAR=VAR+$\epsilon^2$,EXP)
- and
- \noindent{\tt LIMIT!-} (EXP,VAR,LIMPOINT) $\rightarrow$
- \hspace*{2em}{\tt LIMIT}(EXP*,$\epsilon$,0) \\
- where EXP* = sub(VAR=VAR-$\epsilon^2$,EXP)
- Examples:
- \begin{verbatim}
- load_package misc;
- limit(sin(x)/x,x,0);
- 1
- limit((a^x-b^x)/x,x,0);
- log(a) - log(b)
- limit(x/(e**x-1), x, 0);
- 1
- limit!-(sin x/cos x,x,pi/2);
- infinity
- limit!+(sin x/cos x,x,pi/2);
- - infinity
- limit(x^log(1/x),x,infinity);
- 0
- limit((x^(1/5) + 3*x^(1/4))^2/(7*(sqrt(x + 9) - 3 - x/6))^(1/5),x,0);
- 3/5
- - 6
- ---------
- 1/5
- 7
- \end{verbatim}
|