lie.tex 3.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. \chapter[LIE: Classification of Lie algebras]%
  2. {LIE: Functions for the classification of real n-dimensional Lie algebras}
  3. \label{LIE}
  4. \typeout{{LIE: Functions for the classification of real n-dimensional
  5. Lie algebras}}
  6. {\footnotesize
  7. \begin{center}
  8. Carsten and Franziska Sch\"obel\\
  9. The Leipzig University, Computer Science Department \\
  10. Augustusplatz 10/11, \\
  11. O-7010 Leipzig, Germany \\[0.05in]
  12. e--mail: cschoeb@aix550.informatik.uni-leipzig.de
  13. \end{center}
  14. }
  15. \ttindex{LIE}
  16. {\bf LIE} is a package of functions for the classification of real
  17. n-dimensional Lie algebras. It consists of two modules: {\bf liendmc1}
  18. and {\bf lie1234}.
  19. \section{liendmc1}
  20. With the help of the functions in this module real n-dimensional Lie
  21. algebras $L$ with a derived algebra $L^{(1)}$ of dimension 1 can be
  22. classified. $L$ has to be defined by its structure constants
  23. $c_{ij}^k$ in the basis $\{X_1,\ldots,X_n\}$ with
  24. $[X_i,X_j]=c_{ij}^k X_k$. The user must define an ARRAY
  25. LIENSTRUCIN($n,n,n$) with n being
  26. the dimension of the Lie algebra $L$. The structure constants
  27. LIENSTRUCIN($i,j,k$):=$c_{ij}^k$ for $i<j$ should be given. Then the
  28. procedure LIENDIMCOM1 can be called. Its syntax is:\ttindex{LIENDIMCOM1}
  29. \begin{verbatim}
  30. LIENDIMCOM1(<number>).
  31. \end{verbatim}
  32. {\tt <number>} corresponds to the dimension $n$. The procedure simplifies
  33. the structure of $L$ performing real linear transformations. The returned
  34. value is a list of the form
  35. \begin{verbatim}
  36. (i) {LIE_ALGEBRA(2),COMMUTATIVE(n-2)} or
  37. (ii) {HEISENBERG(k),COMMUTATIVE(n-k)}
  38. \end{verbatim}
  39. with $3\leq k\leq n$, $k$ odd.
  40. The returned list is also stored as\ttindex{LIE\_LIST}{\tt
  41. LIE\_LIST}. The matrix LIENTRANS gives the transformation from the
  42. given basis $\{X_1,\ldots ,X_n\}$ into the standard basis
  43. $\{Y_1,\ldots ,Y_n\}$: $Y_j=($LIENTRANS$)_j^k X_k$.
  44. \section{lie1234}
  45. This part of the package classifies real low-dimensional Lie algebras $L$
  46. of the dimension $n:={\rm dim}\,L=1,2,3,4$. $L$ is also given by its
  47. structure constants $c_{ij}^k$ in the basis $\{X_1,\ldots,X_n\}$ with
  48. $[X_i,X_j]=c_{ij}^k X_k$. An ARRAY
  49. LIESTRIN($n,n,n$) has to be defined and LIESTRIN($i,j,k$):=$c_{ij}^k$ for
  50. $i<j$ should be given. Then the procedure LIECLASS can be performed
  51. whose syntax is:\ttindex{LIECLASS}
  52. \begin{verbatim}
  53. LIECLASS(<number>).
  54. \end{verbatim}
  55. {\tt <number>} should be the dimension of the Lie algebra $L$. The
  56. procedure stepwise simplifies the commutator relations of $L$ using
  57. properties of invariance like the dimension of the centre, of the
  58. derived algebra, unimodularity {\em etc.} The returned value has the form:
  59. \begin{verbatim}
  60. {LIEALG(n),COMTAB(m)},
  61. \end{verbatim}
  62. where the value $m$ corresponds to the number of the standard form (basis:
  63. $\{Y_1, \ldots ,Y_n\}$) in an enumeration scheme.
  64. This returned value is also stored as LIE\_CLASS. The linear
  65. transformation from the basis $\{X_1,\ldots,X_n\}$ into the basis of
  66. the standard form $\{Y_1,\ldots,Y_n\}$ is given by the matrix LIEMAT:
  67. $Y_j=($LIEMAT$)_j^k X_k$.