1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- \chapter[LIE: Classification of Lie algebras]%
- {LIE: Functions for the classification of real n-dimensional Lie algebras}
- \label{LIE}
- \typeout{{LIE: Functions for the classification of real n-dimensional
- Lie algebras}}
- {\footnotesize
- \begin{center}
- Carsten and Franziska Sch\"obel\\
- The Leipzig University, Computer Science Department \\
- Augustusplatz 10/11, \\
- O-7010 Leipzig, Germany \\[0.05in]
- e--mail: cschoeb@aix550.informatik.uni-leipzig.de
- \end{center}
- }
- \ttindex{LIE}
- {\bf LIE} is a package of functions for the classification of real
- n-dimensional Lie algebras. It consists of two modules: {\bf liendmc1}
- and {\bf lie1234}.
- \section{liendmc1}
- With the help of the functions in this module real n-dimensional Lie
- algebras $L$ with a derived algebra $L^{(1)}$ of dimension 1 can be
- classified. $L$ has to be defined by its structure constants
- $c_{ij}^k$ in the basis $\{X_1,\ldots,X_n\}$ with
- $[X_i,X_j]=c_{ij}^k X_k$. The user must define an ARRAY
- LIENSTRUCIN($n,n,n$) with n being
- the dimension of the Lie algebra $L$. The structure constants
- LIENSTRUCIN($i,j,k$):=$c_{ij}^k$ for $i<j$ should be given. Then the
- procedure LIENDIMCOM1 can be called. Its syntax is:\ttindex{LIENDIMCOM1}
- \begin{verbatim}
- LIENDIMCOM1(<number>).
- \end{verbatim}
- {\tt <number>} corresponds to the dimension $n$. The procedure simplifies
- the structure of $L$ performing real linear transformations. The returned
- value is a list of the form
- \begin{verbatim}
- (i) {LIE_ALGEBRA(2),COMMUTATIVE(n-2)} or
- (ii) {HEISENBERG(k),COMMUTATIVE(n-k)}
- \end{verbatim}
- with $3\leq k\leq n$, $k$ odd.
- The returned list is also stored as\ttindex{LIE\_LIST}{\tt
- LIE\_LIST}. The matrix LIENTRANS gives the transformation from the
- given basis $\{X_1,\ldots ,X_n\}$ into the standard basis
- $\{Y_1,\ldots ,Y_n\}$: $Y_j=($LIENTRANS$)_j^k X_k$.
- \section{lie1234}
- This part of the package classifies real low-dimensional Lie algebras $L$
- of the dimension $n:={\rm dim}\,L=1,2,3,4$. $L$ is also given by its
- structure constants $c_{ij}^k$ in the basis $\{X_1,\ldots,X_n\}$ with
- $[X_i,X_j]=c_{ij}^k X_k$. An ARRAY
- LIESTRIN($n,n,n$) has to be defined and LIESTRIN($i,j,k$):=$c_{ij}^k$ for
- $i<j$ should be given. Then the procedure LIECLASS can be performed
- whose syntax is:\ttindex{LIECLASS}
- \begin{verbatim}
- LIECLASS(<number>).
- \end{verbatim}
- {\tt <number>} should be the dimension of the Lie algebra $L$. The
- procedure stepwise simplifies the commutator relations of $L$ using
- properties of invariance like the dimension of the centre, of the
- derived algebra, unimodularity {\em etc.} The returned value has the form:
- \begin{verbatim}
- {LIEALG(n),COMTAB(m)},
- \end{verbatim}
- where the value $m$ corresponds to the number of the standard form (basis:
- $\{Y_1, \ldots ,Y_n\}$) in an enumeration scheme.
- This returned value is also stored as LIE\_CLASS. The linear
- transformation from the basis $\{X_1,\ldots,X_n\}$ into the basis of
- the standard form $\{Y_1,\ldots,Y_n\}$ is given by the matrix LIEMAT:
- $Y_j=($LIEMAT$)_j^k X_k$.
|