applysym.tex 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. \chapter[APPLYSYM: Infinitesimal symmetries]{APPLYSYM: Infinitesimal symmetries of differential equations}
  2. \label{APPLYSYM}
  3. \typeout{[APPLYSYM: Infinitesimal symmetries]}
  4. {\footnotesize
  5. \begin{center}
  6. Thomas Wolf \\
  7. School of Mathematical Sciences, Queen Mary and Westfield College \\
  8. University of London \\
  9. London E1 4NS, England \\[0.05in]
  10. e--mail: T.Wolf@maths.qmw.ac.uk
  11. \end{center}
  12. }
  13. The investigation of infinitesimal symmetries of differential equations
  14. (DEs) with computer algebra programs attracted considerable attention
  15. over the last years. The package {\tt APPLYSYM} concentrates on the
  16. implementation of applying symmetries for calculating similarity
  17. variables to perform a point transformation which lowers the order of
  18. an ODE or effectively reduces the number of explicitly occuring
  19. independent variables of a PDE(-system) and for generalising given
  20. special solutions of ODEs/PDEs with new constant parameters.
  21. A prerequisite for applying symmetries is the solution of first order
  22. quasilinear PDEs. The corresponding program
  23. {\tt QUASILINPDE}\ttindex{QUASILINPDE} can as well be used without
  24. {\tt APPLYSYM}\ttindex{APPLYSYM} for solving first order PDEs which are
  25. linear in their first order derivative and otherwise at most rationally
  26. non-linear. The following two PDEs are equations (2.40) and (3.12)
  27. taken from E. Kamke, "Loesungsmethoden und Loesungen von Differential-
  28. gleichungen, Partielle Differentialgleichungen erster Ordnung",
  29. B.G. Teubner, Stuttgart (1979).
  30. \newpage
  31. {\small
  32. \begin{verbatim}
  33. ------------------------ Equation 2.40 ------------------------
  34. 2 3 4
  35. The quasilinear PDE: 0 = df(z,x)*x*y + 2*df(z,y)*y - 2*x
  36. 2 2 2
  37. + 4*x *y*z - 2*y *z .
  38. The equivalent characteristic system:
  39. 3 4 2 2 2
  40. 0=2*(df(z,y)*y - x + 2*x *y*z - y *z )
  41. 2
  42. 0=y *(2*df(x,y)*y - x)
  43. for the functions: x(y) z(y) .
  44. The general solution of the PDE is given through
  45. 4 2 2
  46. log(y)*x - log(y)*x *y*z - y *z sqrt(y)*x
  47. 0 = ff(----------------------------------,-----------)
  48. 4 2 y
  49. x - x *y*z
  50. with arbitrary function ff(..).
  51. ------------------------ Equation 3.12 ------------------------
  52. The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*a*x + df(w,y)*b*y
  53. + df(w,z)*c*x + df(w,z)*d*y + df(w,z)*f*z.
  54. The equivalent characteristic system:
  55. 0=df(w,x)*x
  56. 0=df(z,x)*x - c*x - d*y - f*z
  57. 0=df(y,x)*x - a*x - b*y
  58. for the functions: z(x) y(x) w(x) .
  59. The general solution of the PDE is given through
  60. a*x + b*y - y
  61. 0 = ff(---------------,( - a*d*x + b*c*x + b*f*z - b*z - c*f*x
  62. b b
  63. x *b - x
  64. 2 f f f 2 f
  65. - d*f*y + d*y - f *z + f*z)/(x *b*f - x *b - x *f + x *f)
  66. ,w)
  67. with arbitrary function ff(..).
  68. \end{verbatim}
  69. }
  70. The program {\tt DETRAFO}\ttindex{DETRAFO} can be used to perform
  71. point transformations of ODEs/PDEs (and -systems).
  72. For detailed explanations the user is
  73. referred to the paper {\em Programs for Applying Symmetries of PDEs}
  74. by Thomas Wolf, supplied as part of the Reduce documentation as {\tt
  75. applysym.tex} and published in the Proceedings of ISSAC'95 - 7/95
  76. Montreal, Canada, ACM Press (1995).