123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- \chapter[APPLYSYM: Infinitesimal symmetries]{APPLYSYM: Infinitesimal symmetries of differential equations}
- \label{APPLYSYM}
- \typeout{[APPLYSYM: Infinitesimal symmetries]}
- {\footnotesize
- \begin{center}
- Thomas Wolf \\
- School of Mathematical Sciences, Queen Mary and Westfield College \\
- University of London \\
- London E1 4NS, England \\[0.05in]
- e--mail: T.Wolf@maths.qmw.ac.uk
- \end{center}
- }
- The investigation of infinitesimal symmetries of differential equations
- (DEs) with computer algebra programs attracted considerable attention
- over the last years. The package {\tt APPLYSYM} concentrates on the
- implementation of applying symmetries for calculating similarity
- variables to perform a point transformation which lowers the order of
- an ODE or effectively reduces the number of explicitly occuring
- independent variables of a PDE(-system) and for generalising given
- special solutions of ODEs/PDEs with new constant parameters.
- A prerequisite for applying symmetries is the solution of first order
- quasilinear PDEs. The corresponding program
- {\tt QUASILINPDE}\ttindex{QUASILINPDE} can as well be used without
- {\tt APPLYSYM}\ttindex{APPLYSYM} for solving first order PDEs which are
- linear in their first order derivative and otherwise at most rationally
- non-linear. The following two PDEs are equations (2.40) and (3.12)
- taken from E. Kamke, "Loesungsmethoden und Loesungen von Differential-
- gleichungen, Partielle Differentialgleichungen erster Ordnung",
- B.G. Teubner, Stuttgart (1979).
- \newpage
- {\small
- \begin{verbatim}
- ------------------------ Equation 2.40 ------------------------
- 2 3 4
- The quasilinear PDE: 0 = df(z,x)*x*y + 2*df(z,y)*y - 2*x
- 2 2 2
- + 4*x *y*z - 2*y *z .
- The equivalent characteristic system:
- 3 4 2 2 2
- 0=2*(df(z,y)*y - x + 2*x *y*z - y *z )
- 2
- 0=y *(2*df(x,y)*y - x)
- for the functions: x(y) z(y) .
- The general solution of the PDE is given through
- 4 2 2
- log(y)*x - log(y)*x *y*z - y *z sqrt(y)*x
- 0 = ff(----------------------------------,-----------)
- 4 2 y
- x - x *y*z
- with arbitrary function ff(..).
- ------------------------ Equation 3.12 ------------------------
- The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*a*x + df(w,y)*b*y
- + df(w,z)*c*x + df(w,z)*d*y + df(w,z)*f*z.
- The equivalent characteristic system:
- 0=df(w,x)*x
- 0=df(z,x)*x - c*x - d*y - f*z
- 0=df(y,x)*x - a*x - b*y
- for the functions: z(x) y(x) w(x) .
- The general solution of the PDE is given through
- a*x + b*y - y
- 0 = ff(---------------,( - a*d*x + b*c*x + b*f*z - b*z - c*f*x
- b b
- x *b - x
- 2 f f f 2 f
- - d*f*y + d*y - f *z + f*z)/(x *b*f - x *b - x *f + x *f)
- ,w)
- with arbitrary function ff(..).
- \end{verbatim}
- }
- The program {\tt DETRAFO}\ttindex{DETRAFO} can be used to perform
- point transformations of ODEs/PDEs (and -systems).
- For detailed explanations the user is
- referred to the paper {\em Programs for Applying Symmetries of PDEs}
- by Thomas Wolf, supplied as part of the Reduce documentation as {\tt
- applysym.tex} and published in the Proceedings of ISSAC'95 - 7/95
- Montreal, Canada, ACM Press (1995).
|