123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- % ----------------------------------------------------------------------
- % $Id: redlog.tst,v 1.5 1999/04/13 21:53:26 sturm Exp $
- % ----------------------------------------------------------------------
- % Copyright (c) 1995-1997
- % Andreas Dolzmann and Thomas Sturm, Universitaet Passau
- % ----------------------------------------------------------------------
- % $Log: redlog.tst,v $
- % Revision 1.5 1999/04/13 21:53:26 sturm
- % Removed "on echo".
- %
- % Revision 1.4 1999/04/05 12:25:29 dolzmann
- % Fixed a bug.
- %
- % Revision 1.3 1999/04/05 12:15:43 dolzmann
- % Added code for testing the contexts acfsf and dvfsf.
- %
- % Revision 1.2 1997/08/20 16:22:07 sturm
- % Do not use "on time".
- %
- % Revision 1.1 1997/08/18 15:59:01 sturm
- % Renamed "rl.red" to "redlog.red", and thus "rl.tst" to this file
- % "redlog.tst."
- %
- % ----------------------------------------------------------------------
- % Revision 1.3 1996/10/14 16:18:39 sturm
- % Added sc50b for testing the optimizer.
- %
- % Revision 1.2 1996/10/03 16:09:39 sturm
- % Added new QE example for testing rlatl, ..., rlifacml, rlstruct,
- % rlifstruct.
- %
- % Revision 1.1 1996/09/30 17:07:52 sturm
- % Initial check-in.
- %
- % ----------------------------------------------------------------------
- on rlverbose;
- % Ordered fields standard form:
- rlset ofsf;
- rlset();
- % Chains
- -3/5<x>y>z<=a<>b>c<5/3;
- % For loop actions.
- g := for i:=1:6 mkor
- for j := 1:6 mkand
- mkid(a,i) <= mkid(a,j);
- % Quantifier elimination and variants
- h := rlsimpl rlall g;
- rlmatrix h;
- on rlrealtime;
- rlqe h;
- off rlrealtime;
- h := rlsimpl rlall(g,{a2});
- rlqe h;
- off rlqeheu,rlqedfs;
- rlqe ex(x,a*x**2+b*x+c>0);
- on rlqedfs;
- rlqe ex(x,a*x**2+b*x+c>0);
- on rlqeheu;
- rlqe(ex(x,a*x**2+b*x+c>0),{a<0});
- rlgqe ex(x,a*x**2+b*x+c>0);
- rlthsimpl ({a*b*c=0,b<>0});
- rlqe ex({x,y},(for i:=1:5 product mkid(a,i)*x**10-mkid(b,i)*y**2)<=0);
- sol := rlqe ex(x,a*x**2+b*x+c>0);
- rlatnum sol;
- rlatl sol;
- rlatml sol;
- rlterml sol;
- rltermml sol;
- rlifacl sol;
- rlifacml sol;
- rlstruct(sol,v);
- rlifstruct(sol,v);
- rlitab sol;
- rlatnum ws;
- rlgsn sol;
- rlatnum ws;
- off rlverbose;
- rlqea ex(x,m*x+b=0);
- % from Marc van Dongen. Finding the first feasible solution for the
- % solution of systems of linear diophantine inequalities.
- dong := {
- 3*X259+4*X261+3*X262+2*X263+X269+2*X270+3*X271+4*X272+5*X273+X229=2,
- 7*X259+11*X261+8*X262+5*X263+3*X269+6*X270+9*X271+12*X272+15*X273+X229=4,
- 2*X259+5*X261+4*X262+3*X263+3*X268+4*X269+5*X270+6*X271+7*X272+8*X273=1,
- X262+2*X263+5*X268+4*X269+3*X270+2*X271+X272+2*X229=1,
- X259+X262+2*X263+4*X268+3*X269+2*X270+X271-X273+3*X229=2,
- X259+2*X261+2*X262+2*X263+3*X268+3*X269+3*X270+3*X271+3*X272+3*X273+X229=1,
- X259+X261+X262+X263+X268+X269+X270+X271+X272+X273+X229=1};
- sol := rlopt(dong,0);
- % Substitution
- sub(first second sol,for each atf in dong mkand atf);
- rlsimpl ws;
- sub(x=a,x=0 and a=0 and ex(x,x=y) and ex(a,x>a));
- f1 := x=0 and b>=0;
- f2 := a=0;
- f := f1 or f2;
- % Boolean normal forms.
- rlcnf f;
- rldnf ws;
- rlcnf f;
- % Negation normal form and prenex normal form
- hugo := a=0 and b=0 and y<0 equiv ex(y,y>=a) or a>0;
- rlnnf hugo;
- rlpnf hugo;
- % Length and Part
- part(hugo,0);
- part(hugo,2,1,2);
- length ws;
- length hugo;
- length part(hugo,1);
- % Tableau
- mats := all(t,ex({l,u},(
- (t>=0 and t<=1) impl
- (l>0 and u<=1 and
- -t*x1+t*x2+2*t*x1*u+u=l*x1 and
- -2*t*x2+t*x2*u=l*x2))));
- sol := rlgsn rlqe mats;
- rltab(sol,{x1>0,x1<0,x1=0});
- % Part on psopfn / cleanupfn
- part(rlqe ex(x,m*x+b=0),1);
- walter := (x>0 and y>0);
- rlsimpl(true,rlatl walter);
- part(rlatl walter,1,1);
- % Optimizer
- sc50b!-t := -1*vCOL00004$
- sc50b!-c := {
- vCOL00001 >= 0,vCOL00002 >= 0,vCOL00003 >= 0,vCOL00004 >= 0,vCOL00005 >= 0,
- vCOL00006 >= 0,vCOL00007 >= 0,vCOL00008 >= 0,vCOL00009 >= 0,vCOL00010 >= 0,
- vCOL00011 >= 0,vCOL00012 >= 0,vCOL00013 >= 0,vCOL00014 >= 0,vCOL00015 >= 0,
- vCOL00016 >= 0,vCOL00017 >= 0,vCOL00018 >= 0,vCOL00019 >= 0,vCOL00020 >= 0,
- vCOL00021 >= 0,vCOL00022 >= 0,vCOL00023 >= 0,vCOL00024 >= 0,vCOL00025 >= 0,
- vCOL00026 >= 0,vCOL00027 >= 0,vCOL00028 >= 0,vCOL00029 >= 0,vCOL00030 >= 0,
- vCOL00031 >= 0,vCOL00032 >= 0,vCOL00033 >= 0,vCOL00034 >= 0,vCOL00035 >= 0,
- vCOL00036 >= 0,vCOL00037 >= 0,vCOL00038 >= 0,vCOL00039 >= 0,vCOL00040 >= 0,
- vCOL00041 >= 0,vCOL00042 >= 0,vCOL00043 >= 0,vCOL00044 >= 0,vCOL00045 >= 0,
- vCOL00046 >= 0,vCOL00047 >= 0,vCOL00048 >= 0,
- 3*vCOL00001+(3*vCOL00002)+(3*vCOL00003) <= 300,
- 1*vCOL00004+(-1*vCOL00005) = 0,
- -1*vCOL00001+(1*vCOL00006) = 0,
- -1*vCOL00002+(1*vCOL00007) = 0,
- -1*vCOL00003+(1*vCOL00008) = 0,
- -1*vCOL00006+(1*vCOL00009) <= 0,
- -1*vCOL00007+(1*vCOL00010) <= 0,
- -1*vCOL00008+(1*vCOL00011) <= 0,
- -1*vCOL00009+(3*vCOL00012)+(3*vCOL00013)+(3*vCOL00014) <= 300,
- 0.400000*vCOL00005+(-1*vCOL00010) <= 0,
- 0.600000*vCOL00005+(-1*vCOL00011) <= 0,
- 1.100000*vCOL00004+(-1*vCOL00015) = 0,
- 1*vCOL00005+(1*vCOL00015)+(-1*vCOL00016) = 0,
- -1*vCOL00006+(-1*vCOL00012)+(1*vCOL00017) = 0,
- -1*vCOL00007+(-1*vCOL00013)+(1*vCOL00018) = 0,
- -1*vCOL00008+(-1*vCOL00014)+(1*vCOL00019) = 0,
- -1*vCOL00017+(1*vCOL00020) <= 0,
- -1*vCOL00018+(1*vCOL00021) <= 0,
- -1*vCOL00019+(1*vCOL00022) <= 0,
- -1*vCOL00020+(3*vCOL00023)+(3*vCOL00024)+(3*vCOL00025) <= 300,
- 0.400000*vCOL00016+(-1*vCOL00021) <= 0,
- 0.600000*vCOL00016+(-1*vCOL00022) <= 0,
- 1.100000*vCOL00015+(-1*vCOL00026) = 0,
- 1*vCOL00016+(1*vCOL00026)+(-1*vCOL00027) = 0,
- -1*vCOL00017+(-1*vCOL00023)+(1*vCOL00028) = 0,
- -1*vCOL00018+(-1*vCOL00024)+(1*vCOL00029) = 0,
- -1*vCOL00019+(-1*vCOL00025)+(1*vCOL00030) = 0,
- -1*vCOL00028+(1*vCOL00031) <= 0,
- -1*vCOL00029+(1*vCOL00032) <= 0,
- -1*vCOL00030+(1*vCOL00033) <= 0,
- -1*vCOL00031+(3*vCOL00034)+(3*vCOL00035)+(3*vCOL00036) <= 300,
- 0.400000*vCOL00027+(-1*vCOL00032) <= 0,
- 0.600000*vCOL00027+(-1*vCOL00033) <= 0,
- 1.100000*vCOL00026+(-1*vCOL00037) = 0,
- 1*vCOL00027+(1*vCOL00037)+(-1*vCOL00038) = 0,
- -1*vCOL00028+(-1*vCOL00034)+(1*vCOL00039) = 0,
- -1*vCOL00029+(-1*vCOL00035)+(1*vCOL00040) = 0,
- -1*vCOL00030+(-1*vCOL00036)+(1*vCOL00041) = 0,
- -1*vCOL00039+(1*vCOL00042) <= 0,
- -1*vCOL00040+(1*vCOL00043) <= 0,
- -1*vCOL00041+(1*vCOL00044) <= 0,
- -1*vCOL00042+(3*vCOL00045)+(3*vCOL00046)+(3*vCOL00047) <= 300,
- 0.400000*vCOL00038+(-1*vCOL00043) <= 0,
- 0.600000*vCOL00038+(-1*vCOL00044) <= 0,
- 1.100000*vCOL00037+(-1*vCOL00048) = 0,
- -0.700000*vCOL00045+(0.300000*vCOL00046)+(0.300000*vCOL00047) <= 0,
- -1*vCOL00046+(0.400000*vCOL00048) <= 0,
- -1*vCOL00047+(0.600000*vCOL00048) <= 0}$
- rlopt(sc50b!-c,sc50b!-t);
- % Algebraically closed fields standard form:
- sub(x=a,x=0 and a=0 and ex(x,x=y) and ex(a,x<>a));
- rlset acfsf;
- rlsimpl(x^2+y^2+1<>0);
- rlqe ex(x,x^2=y);
- clear f;
- h := rlqe ex(x,x^3+a*x^2+b*x+c=0 and x^3+d*x^2+e*x+f=0);
- rlstruct h;
- rlqe rlall (h equiv resultant(x^3+a*x^2+b*x+c,x^3+d*x^2+e*x+f,x)=0);
- clear h;
- % Discretely valued fields standard form:
- rlset dvfsf;
- sub(x=a,x=0 and a=0 and ex(x,x=y) and ex(a,x~a));
- % P-adic Balls, taken from Andreas Dolzmann, Thomas Sturm. P-adic
- % Constraint Solving, Proceedings of the ISSAC '99.
- rlset dvfsf;
- rlqe all(r_1,all(r_2,all(a,all(b,
- ex(x,r_1||x-a and r_2||x-b and r_1|r_2) impl
- all(y,r_2||y-b impl r_1||y-a)))));
- rlmkcanonic ws;
- rlset(dvfsf,100003);
- rlqe all(r_1,all(r_2,all(a,all(b,
- ex(x,r_1||x-a and r_2||x-b and r_1|r_2) impl
- all(y,r_2||y-b impl r_1||y-a)))));
- % Size of the Residue Field, taken from Andreas Dolzmann, Thomas
- % Sturm. P-adic Constraint Solving. Proceedings of the ISSAC '99.
- rlset(dvfsf);
- rlqe ex(x,x~1 and x-1~1 and x-2~1 and x-3~1 and 2~1 and 3~1);
- rlexplats ws;
- rldnf ws;
- % Selecting contexts:
- rlset ofsf;
- f:= ex(x,m*x+b=0);
- rlqe f;
- rlset dvfsf;
- rlqe f;
- rlset acfsf;
- rlqe f;
- end; % of file
|