123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576 |
- % ----------------------------------------------------------------------
- % $Id: acfsfgs.red,v 1.6 1999/04/13 13:05:33 sturm Exp $
- % ----------------------------------------------------------------------
- % Copyright (c) 1995-1999 Andreas Dolzmann and Thomas Sturm
- % ----------------------------------------------------------------------
- % $Log: acfsfgs.red,v $
- % Revision 1.6 1999/04/13 13:05:33 sturm
- % Minor corrections in comments.
- %
- % Revision 1.5 1999/04/12 09:25:58 sturm
- % Updated comments for exported procedures.
- %
- % Revision 1.4 1999/03/23 08:14:18 dolzmann
- % Changed copyright information.
- % Added fluids for the rcsid of the file and for the copyright information.
- %
- % Revision 1.3 1997/10/02 13:49:49 dolzmann
- % In procedure acfsf_qe1: Remove atomic formulas containing bound variables
- % from the theory.
- %
- % Revision 1.2 1997/08/24 16:17:41 sturm
- % Call cl_sitheo instead of acfsf_gssimpltheo.
- % Added service rl_surep with black box rl_multsurep.
- % Added service rl_siaddatl.
- %
- % Revision 1.1 1997/08/22 17:30:39 sturm
- % Created an acfsf context based on ofsf.
- %
- % ----------------------------------------------------------------------
- lisp <<
- fluid '(acfsf_gs_rcsid!* acfsf_gs_copyright!*);
- acfsf_gs_rcsid!* :=
- "$Id: acfsfgs.red,v 1.6 1999/04/13 13:05:33 sturm Exp $";
- acfsf_gs_copyright!* := "Copyright (c) 1995-1999 A. Dolzmann and T. Sturm"
- >>;
- module acfsfgs;
- % Algebraically closed field standard form Groebner simplifier.
- % Submodule of [acfsf].
- %DS
- % <CIMPL> ::= (<GP>, <PROD1>, <PROD2>, <OTHER>)
- % <GP> ::= ((<GB> . <PROD>) . <OTHER>)
- % <GB> ::= (<SF>,...)
- % <PROD> ::= <SF>
- % <PROD1> ::= <SF>
- % <PROD2> ::= <SF>
- % <OTHER> ::= (<ATOMIC_FORMULA>,...)
- procedure acfsf_gsc(f,atl);
- % Algebraically closed field Groebner simplification via
- % conjunctive normal form. [f] is a formula; [atl] is a theory.
- % Returns [inconsistent] or a formula equivalent to [f]. The
- % returned formula is somehow simpler than [f]. This procedure
- % temporarily turns off the switches [groebopt] and [rlsiexpla].
- % Temporarily changes the [torder] to [{{},revgradlex}] unless
- % [rlgsutord] is on. Accesses the switches [rlverbose], [rlgsvb],
- % [rlgsbnf], [rlgsrad], [rlgssub], [rlgsred], [rlgsprod],
- % [rlgserf], [rlgsutord], and the fluid [rlradmemv!*].
- begin scalar w,svrlgsvb;
- svrlgsvb := !*rlgsvb;
- if !*rlverbose and !*rlgsvb then on1 'rlgsvb else off1 'rlgsvb;
- w := acfsf_gsc1(f,atl);
- onoff('rlgsvb,svrlgsvb);
- return w
- end;
- procedure acfsf_gsc1(f,atl);
- % Algebraically closed field Groebner simplification via
- % conjunctive normal form subroutine. [f] is a formula; [atl] is a
- % theory. Returns [inconsistent] or a formula equivalent to [f].
- % The returned formula is somehow simpler than [f]. This procedure
- % temporarily turns off the switches [groebopt] and [rlsiexpla].
- % Temporarily changes the [torder] to [{{},revgradlex}] unless
- % [rlgsutord] is on. Accesses the switches [rlgsvb], [rlgsbnf],
- % [rlgsrad], [rlgssub], [rlgsred], [rlgsprod], [rlgserf],
- % [rlgsutord], and the fluid [rlradmemv!*].
- begin scalar phi,!*rlsiexpla; % Hack, but otherwise phi is not a bnf!
- if !*rlgsbnf then <<
- if !*rlgsvb then ioto_prin2 "[CNF";
- phi := cl_simpl(cl_cnf cl_nnf f,atl,-1);
- if !*rlgsvb then ioto_prin2 "] "
- >> else
- phi := cl_simpl(f,atl,-1);
- if phi eq 'inctheo then return 'inctheo;
- if rl_tvalp phi then
- return phi;
- phi := acfsf_gssimplify0(phi,atl);
- if phi eq 'inctheo then return 'inctheo;
- return cl_simpl(phi,atl,-1)
- end;
- procedure acfsf_gsd(f,atl);
- % Algebraically closed field Groebner simplification via
- % disjunctive normal form. [f] is a formula; [atl] is a theory.
- % Returns [inconsistent] or a formula equivalent to [f]. The
- % returned formula is somehow simpler than [f]. This procedure
- % temporarily turns off the switches [groebopt] and [rlsiexpla].
- % Temporarily changes the [torder] to [{{},revgradlex}] unless
- % [rlgsutord] is on. Accesses the switches [rlverbose], [rlgsvb],
- % [rlgsbnf], [rlgsrad], [rlgssub], [rlgsred], [rlgsprod],
- % [rlgserf], [rlgsutord], and the fluid [rlradmemv!*].
- begin scalar w,svrlgsvb;
- svrlgsvb := !*rlgsvb;
- if !*rlverbose and !*rlgsvb then on1 'rlgsvb else off1 'rlgsvb;
- w := acfsf_gsd1(f,atl);
- onoff('rlgsvb,svrlgsvb);
- return w
- end;
- procedure acfsf_gsd1(f,atl);
- % Algebraically closed field Groebner simplification via
- % disjunctive normal form subroutine. [f] is a formula; [atl] is a
- % theory. Returns [inconsistent] or a formula equivalent to [f].
- % The returned formula is somehow simpler than [f]. This procedure
- % temporarily turns off the switches [groebopt] and [rlsiexpla].
- % Temporarily changes the [torder] to [{{},revgradlex}] unless
- % [rlgsutord] is on. Accesses the switches [rlgsvb], [rlgsbnf],
- % [rlgsrad], [rlgssub], [rlgsred], [rlgsprod], [rlgserf],
- % [rlgsutord], and the fluid [rlradmemv!*].
- begin scalar phi,!*rlsiexpla; % Hack, but otherwise phi is not a bnf!
- if !*rlgsbnf then <<
- if !*rlgsvb then ioto_prin2 "[DNF";
- phi := cl_simpl(cl_nnfnot cl_dnf f,atl,-1);
- if !*rlgsvb then ioto_prin2 "] ";
- >> else
- phi := cl_simpl(cl_nnfnot f,atl,-1);
- if phi eq 'inctheo then return 'inctheo;
- if rl_tvalp phi then
- return cl_nnfnot phi;
- phi := acfsf_gssimplify0(phi,atl);
- if phi eq 'inctheo then return 'inctheo;
- return cl_simpl(cl_nnfnot phi,atl,-1)
- end;
- procedure acfsf_gsn(f,atl);
- % Algebraically closed field Groebner simplification via normal
- % form. [f] is a formula; [atl] is a theory. Returns [inconsistent]
- % or a formula equivalent to [f]. The returned formula is somehow
- % simpler than [f]. The normal form used depends on the toplevel
- % operator of [f]. This procedure temporarily turns off the
- % switches [groebopt] and [rlsiexpla]. Temporarily changes the
- % [torder] to [{{},revgradlex}] unless [rlgsutord] is on. Accesses
- % the switches [rlverbose], [rlgsvb], [rlgsbnf], [rlgsrad],
- % [rlgssub], [rlgsred], [rlgsprod], [rlgserf], [rlgsutord], and the
- % fluid [rlradmemv!*].
- if rl_tvalp f then
- f
- else if cl_atflp(rl_argn f) then
- if rl_op(f) eq 'and then acfsf_gsd(f,atl) else acfsf_gsc(f,atl)
- else
- if rl_op(f) eq 'and then acfsf_gsc(f,atl) else acfsf_gsd(f,atl);
- procedure acfsf_gssimplify0(f,atl);
- % Algebraically closed field Groebner simplify. [f] is a
- % conjunction of disjunctions of atomic formulas, a disjunction of
- % atomic formulas, or an atomic formula; [atl] is a theory. Returns
- % [inctheo] or a formula. This procedure temporarily turns off the
- % switch [groebopt]. Temporarily changes the [torder] to
- % [{{},revgradlex}] unless [rlgsutord] is on. Accesses the switches
- % [rlgsvb], [rlgsrad], [rlgssub], [rlgsred], [rlgsprod], [rlgserf],
- % [rlgsutord], and the fluid [rlradmemv!*].
- begin scalar res,oldtorder,!*groebopt,svkord;
- svkord := kord!*;
- oldtorder := cdr torder('((list) revgradlex));
- if !*rlgsutord then
- torder(oldtorder);
- res := acfsf_gssimplify(f,atl);
- torder oldtorder;
- kord!* := svkord;
- return res;
- end;
- procedure acfsf_gssimplify(f,atl);
- % Algebraically closed field Groebner simplify. [f] is a
- % conjunction of disjunctions of atomic formulas, a disjunction of
- % atomic formulas, or an atomic formula; [atl] is a theory. Returns
- % [inctheo] or a formula. Accesses the switches [rlgsvb],
- % [rlgsrad], [rlgssub], [rlgsred], [rlgsprod], [rlgserf], and the
- % fluid [rlradmemv!*].
- begin scalar al,gp,ipart,npart,w,gprem,gprodal,gatl;
- atl := cl_sitheo atl;
- if atl eq 'inctheo or acfsf_gsinctheop(atl) then
- return 'inctheo;
- if (cl_atfp f) or (rl_op f eq 'or) then % degenerated cnf
- al := acfsf_gssplit!-cnf {f}
- else
- al := acfsf_gssplit!-cnf rl_argn f;
- if w := lto_catsoc('gprem,al) then <<
- gp := acfsf_gsextract!-gp atl;
- gprem := acfsf_gsgprem(w,gp);
- if gprem eq 'false then return 'false;
- >>;
- gatl := append(atl,lto_catsoc('gprem,al));
- gp := acfsf_gsextract!-gp(gatl);
- caar gp := sfto_groebnerf(caar gp);
- ipart := lto_catsoc('impl,al);
- npart := lto_catsoc('noneq,al);
- if ipart then
- ipart := acfsf_gspart(ipart,gp);
- if npart and gatl then
- npart := acfsf_gspart(npart,gp);
- if gprem then <<
- if null !*rlgsprod then <<
- gprodal := lto_catsoc('gprodal,al);
- gprem := acfsf_gssimulateprod(gprem,gprodal)
- >>;
- return rl_smkn('and,gprem . nconc(ipart,npart))
- >>;
- return rl_smkn('and,nconc(ipart,npart))
- end;
- procedure acfsf_gsinctheop(atl);
- % Algebraically closed field standard form Groebner simplifier
- % inconsistent theory predicate. [atl] is a list of atomic
- % formulas. [T] or [nil] is returned.
- begin scalar w;
- if null atl then
- return nil;
- if !*rlgsvb then ioto_prin2 "Inctheop... ";
- w := cl_nnfnot acfsf_gsimplication(
- cl_nnfnot rl_smkn('and,atl),'((nil . 1) . nil));
- if !*rlgsvb then ioto_prin2t "done.";
- return w eq 'false
- end;
- procedure acfsf_gssplit!-cnf(f);
- % Algebraically closed field standard form Groebner simplifier
- % split conjunctive normal form. [f] is an list of disjunctions of
- % atomic formulas. An assoc list is returned. The returned assoc
- % list have the following items. [('impl . imp)] where [imp] is the
- % list off all disjunctions containing at least one inequation,
- % [('gprem . gprem)] where [gprem] is the list of all atomic
- % formulas occuring in [f] and atomic formulas equivalent to
- % disjunctions of inequalities occuring in [f], [('noneq . noneq)]
- % where [noneq] is a list of disjunctions of atomic formulas
- % containing no inequations, and [('gprodal . gprodal)]. The value
- % [gprodal] is a assoc list containing to each equation the product
- % representation, if the equation was extracted from a disjunction.
- begin scalar noneq,imp,prod,gprodal,gprem,w,x;
- for each phi in f do
- if rl_op phi memq '(and or) then % [phi] is not an atomic formula
- if (w := acfsf_gsdis!-type rl_argn phi) eq 'impl then
- imp := phi . imp
- else if w eq 'noneq then
- noneq := phi . noneq
- else << % [if w eq 'equal then]
- prod := 1;
- for each atf in rl_argn phi do
- prod := multf(prod,acfsf_arg2l atf);
- x := acfsf_0mk2('equal,prod);
- gprem := x . gprem;
- gprodal := (x . phi) . gprodal
- >>
- else
- gprem := phi . gprem;
- if !*rlgsvb then <<
- ioto_tprin2t {"global: ",length gprem,"; impl: ",length imp,
- "; no neq: ",length noneq, "; glob-prod-al: ",length gprodal,"."}
- >>;
- return { 'impl . imp, 'noneq . noneq, 'gprem . gprem, 'gprodal . gprodal}
- end;
- procedure acfsf_gsdis!-type(atl);
- % Algebraically closed field standard form Groebner simplifier
- % disjunction type. [atl] is a non null list of atomic formulas.
- % ['equal], ['impl], or ['noneq] is returned. ['equal] is returned
- % if and only if all atomic formulas have the relation [equal];
- % [impl] is returned, if and only if one of the atomic formula is
- % an equality, otherwise [noneq] is returned.
- begin scalar op,w;
- if null atl then return 'equal;
- op := acfsf_op car atl;
- if op eq 'neq then return 'impl;
- w := acfsf_gsdis!-type cdr atl;
- if w eq 'impl then return 'impl;
- if op eq 'equal and w eq 'equal then return 'equal;
- return 'noneq
- end;
- procedure acfsf_gsextract!-gp(atl);
- % Algebraically closed field standard form extract global premise.
- % [atl] is a list of atomic formulas. A GP is returned.
- begin scalar w;
- w := acfsf_gsdis2impl(for each at in atl collect acfsf_negateat(at));
- return ( (car w . multf(cadr w, caddr w)) . cadddr w)
- end;
- procedure acfsf_gsgprem(atl,gp);
- % Algebraically closed field standard form Groebner simplifier
- % simplify global premise. [atl] is a list of atomic formulas; [gp]
- % is a GP. A formula is returned.
- begin scalar w;
- if !*rlgsvb then ioto_prin2 "[GP";
- w := cl_nnfnot acfsf_gsimplication(cl_nnfnot rl_smkn('and,atl),gp);
- if !*rlgsvb then ioto_prin2 "] ";
- return w
- end;
- procedure acfsf_gspart(part,gp);
- % Algebraically closed field standard form Groebner simplify
- % simplify part. [part] is a list of disjunctions of atomic
- % formulas and atomic formulas. [gp] is a GP. A list [l] of
- % disjunctions of atomic formulas and atomic formulas is returned.
- % The formula on position $i$ in [l] is somehow simpler than the
- % formula on the position $i$ in part. Supposed that the formula
- % $\bigwedge(g_i=0)$ is true where $g_i$ are the terms in [gp] then
- % the positional corresponding fomulas in the two lists [part] and
- % [l] are equivalent.
- begin scalar w,curlen,res;
- if !*rlgsvb then curlen := length part;
- res := for each phi in part collect <<
- if !*rlgsvb then ioto_prin2 {"[",curlen};
- w := acfsf_gsimplication(phi,gp);
- if !*rlgsvb then << curlen := curlen - 1; ioto_prin2 {"] "} >>;
- w
- >>;
- if !*rlgsvb then ioto_cterpri();
- return res
- end;
- procedure acfsf_gsimplication(f,gp);
- % Algebraically closed field standard form Groebner simplification
- % implication. [f] is a disjunction of atomic formulas or an atomic
- % formula. [gp] is a GP. Returns a formula. It is a truth value, an
- % atomic formula or a disjunction of atomic formulas, unless the
- % simplification of an atomic formula yields a complex formula.
- begin scalar prem,prod1,prod2,gprod,rprod,iprem,w,z,atl,natl;
- if cl_cxfp f then atl := rl_argn f else atl := {f};
- w := acfsf_gsdis2impl atl;
- iprem := car w;
- prod1 := cadr w;
- prod2 := caddr w;
- gprod := cdar gp;
- prem := append(iprem,caar gp);
- if null prem then return f;
- prem := sfto_groebnerf prem;
- z := numr simp acfsf_gsmkradvar();
- rprod := acfsf_gseqprod(prod1,prod2,gprod,prem,z);
- if rprod eq 'true then <<
- if !*rlgsvb then ioto_prin2 "!";
- return 'true
- >>;
- w := acfsf_gsusepremise(cdr gp,prem,z);
- if w eq 'true then <<
- if !*rlgsvb then ioto_prin2 "!";
- return 'true
- >>;
- natl := acfsf_gsredatl(atl,prem,z,rprod);
- if natl eq 'true then <<
- if !*rlgsvb then ioto_prin2 "!";
- return 'true
- >>;
- if rprod and rprod neq 'false then natl := rprod . natl;
- natl := nconc(natl,acfsf_gspremise(iprem,caar gp));
- return rl_smkn('or,natl)
- end;
- procedure acfsf_gsredatl(atl,prem,z,rprod);
- % Algebraically closed field standard form reduce atomic formula
- % list. [atl] is a list of SF's; [prem] is a Groebner basis; [z] is
- % a kernel; [rprod] is a flag. Returns ['true] or a list of atomic
- % formulas.
- begin scalar a,w,natl;
- while atl do <<
- a := car atl;
- atl := cdr atl;
- w := acfsf_gsredat(a,prem,z,rprod);
- if w eq 'true then
- atl := nil
- else if w and w neq 'false then
- natl := w . natl
- >>;
- if w eq 'true then return 'true;
- return natl
- end;
- procedure acfsf_gsusepremise(atl,prem,z);
- % Algebraically closed field standard form use premise. [atl] is a
- % list of atomic formulas; [prem] is a Groebner basis; [z] is a
- % kernel. returns [nil] or ['true].
- begin scalar w;
- while atl do <<
- w := acfsf_gsredat(car atl,prem,z,nil);
- if w eq 'true then
- atl := nil
- else
- atl := cdr atl;
- >>;
- if w eq 'true then return 'true;
- end;
- procedure acfsf_gseqprod(iprod1,iprod2,gprod,prem,z);
- % Algebraically closed field standard form equation product.
- % [iprod1], [iprod2], and [prem] are SF's; [prem] is a list of
- % SF's; [z] is a kernel. Returns [nil] or a formula.
- begin scalar p,w;
- p := multf(iprod1,multf(iprod2,gprod));
- % Comment the test on [!*rlgsrad] out if the radical membership
- % test should always be performed for the equation product.
- if !*rlgsrad and
- (null sfto_greducef(1,addf(1,negf multf(p,z)) . prem))
- then
- return 'true;
- w := acfsf_gstryeval('equal,sfto_preducef(p,prem));
- if rl_tvalp w then return w;
- if null !*rlgsprod then return nil;
- if !*rlgsred then
- return acfsf_0mk2('equal,sfto_preducef(iprod1,prem));
- return acfsf_0mk2('equal,iprod1);
- end;
- procedure acfsf_gsmkradvar();
- % Algebraically closed field standard form Groebner simplifier make
- % radical memebership test variable. Returns an identifier that is
- % not used as an algebraic mode variable.
- begin scalar w; integer n;
- w := 'rlgsradmemv!*;
- while get(w,'avalue) do
- w := mkid(w,n := n+1);
- if !*rlgsutord then
- acfsf_gsupdtorder w;
- return w;
- end;
- procedure acfsf_gsupdtorder(v);
- % Algebraically closed field standard form Groebner simplifier
- % update term order. [v] is a kernel. Inserts the main variable [v]
- % into the variable list of the global fixed term order of the
- % [groebner] package. Not all torders are supported, if a variable
- % list is present. To get over this problem one can insert the tag
- % variable [v] in the variable list before calling the Groebner
- % simplifier.
- begin scalar curtorder,vl,remain,mode;
- curtorder := cdr torder('((list) revgradlex));
- vl := cdar curtorder;
- if null vl or (v memq vl) then <<
- torder curtorder;
- return nil
- >>;
- mode := cadr curtorder;
- if not(mode memq '(lex gradlex revgradlex gradlexgradlex
- gradlexrevgradlex lexgradlex lexrevgradlex weighted))
- then
- rederr {"term order", mode, "not supported"};
- remain := cddr curtorder;
- vl := append(vl,{v});
- torder (('list . vl) . mode . remain)
- end;
- procedure acfsf_gstryeval(rel,lhs);
- % Algebraically closed field standard form try evaluation. [rel] is
- % an acfsf-relation; [lhs] a SF. returns [nil], a truth value or an
- % atomic formula. In the first case the atomic formula $([lhs]
- % [rel] 0)$ cannot be evaluated or should be ignored. In the other
- % case the returned value is equivalent to the the atomic formula.
- begin scalar w,!*rlsiexpla;
- if !*rlgserf then <<
- w := cl_simplat(acfsf_0mk2(rel,lhs),nil);
- return if rl_tvalp w then w
- >>;
- if domainp lhs then
- return cl_simplat(acfsf_0mk2(rel,lhs),nil)
- end;
- procedure acfsf_gsdis2impl(atl);
- % Algebraically closed field standard form Groebner simplifier
- % disjunction to implication. [atl] is a list of atomic formulas. A
- % CIMPL is returned. The classification of the atomic formulas in
- % [atl] is done by [acfsf_attype].
- begin scalar prem,prod1,prod2,other,w,a;
- prod1 := prod2 := 1;
- for each at in atl do <<
- w := acfsf_gsattype at;
- if w then <<
- a := car w;
- if a eq 'equal then
- prod1 := multf(cdr w,prod1)
- else if a eq 'cequal then
- prod2 := multf(cdr w,prod2)
- else if a eq 'neq then
- prem := cdr w . prem
- else
- rederr {"BUG IN ACFSF_GSDIS2IMPL",car w}
- >>;
- if not (w memq '(equal neq)) then
- other := at . other
- >>;
- return {prem, prod1, prod2, other};
- end;
- procedure acfsf_gsattype(at);
- % Algebraically closed field standard form Groebner simplifier
- % atomic formula type. [at] is an atomic formula. [nil] or a pair
- % $(\rho,p)$ is returned. $\rho$ is either ['equal], ['neq], or
- % ['cequal]; $p$ is a SF.
- (if w eq 'equal then
- ('equal . acfsf_arg2l at)
- else if w memq '(geq leq) then
- ('cequal . acfsf_arg2l at)
- else if w eq 'neq then
- ('neq . acfsf_arg2l at)) where w=acfsf_op at;
- procedure acfsf_gsredat(at,gb,z,flag);
- % Algebraically closed field standard form Groebner simplifier
- % reduce atomic formula. [at] is an atomic formula; [gb] is a
- % Groebner basis; [z] is a variable; [flag] is a flag. [nil], a
- % truth value or an atomic formula is returned. The behavior of
- % this procedure depends on the switches [rl_gsred] and [rl_gsrad].
- % [nil] is returned if the atomic formula belongs to the premise or
- % [flag] is [T] and [at] is an equation. Is [flag] is non [nil]
- % then equations can be ignored. In the other cases the returned
- % value is equivalent to [at]. The intention of this procedure is
- % the reduction of [at] wrt. the radical generated by [gb].
- begin scalar w,x,op,arg,nat;
- op := acfsf_op at;
- if (op eq 'neq) or (flag and op eq 'equal) then return nil;
- arg := acfsf_arg2l at;
- w := sfto_preducef(arg,gb);
- if !*rlgsred then
- nat := cl_simplat(acfsf_0mk2(op,w),nil)
- else
- if x := acfsf_gstryeval(op,w) then
- nat := x
- else
- nat := at;
- if (rl_tvalp nat) or (op eq 'equal) or (null !*rlgsrad) then
- return nat;
- if null sfto_greducef(1,addf(1,negf multf(w,z)) . gb) then
- return cl_simplat(acfsf_0mk2(op,nil),nil);
- return nat;
- end;
- procedure acfsf_gspremise(tl,gp);
- % Algebraically closed field standard form Groebner simplify
- % premise. [tl] and [gp] are lists of SF's. A list of atomic
- % formulas is returned. The behavior of this procedure depends on
- % the switches [rl_gsred] and [rl_gssub]. The conjunction over the
- % returned formulas is equivalent to the formula $\bigvee(t_i \neq
- % 0)$ supposed that $\bigwedge(g_j = 0)$, where $t_i$ are the terms
- % in [tl] and $g_j$ are the terms in [gp]. If the switch [rl_gsred]
- % is on then all terms $t_i$ are reduced modulo Id([gp]). If the
- % switch [!*rl_gssub] is on, the term list is substituted by the
- % reduced Groebner base of the term list.
- begin scalar gb,rtl,w;
- if !*rlgsred then <<
- gb := sfto_groebnerf gp;
- for each sf in tl do
- if w := sfto_preducef(sf,gb) then
- rtl := lto_insert(w,rtl);
- >> else
- rtl := tl;
- if !*rlgssub then
- return for each sf in sfto_groebnerf rtl collect
- acfsf_0mk2('neq,sf);
- return for each sf in rtl collect
- acfsf_0mk2('neq,sf)
- end;
- procedure acfsf_gssimulateprod(prem,prodal);
- % Algebraically closed field standard form simulate rlprod switch.
- % [prem] is a quantifier free formula. [prodal] is an assoc list
- % containing to some equations its product representation.
- begin scalar w,res;
- if rl_tvalp prem then return prem;
- if cl_atfp prem and (w := lto_cassoc(prem,prodal)) then
- return w;
- res := for each f in rl_argn prem collect
- if cl_atfp f and (w := lto_cassoc(f,prodal)) then w else f;
- return rl_mkn(rl_op prem,res)
- end;
- endmodule; % [acfsfgs]
- end; % of file
|