123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- module modular; % *** Tables for modular integers ***.
- % Author: Anthony C. Hearn and Herbert Melenk.
- % Copyright (c) 1995 The RAND Corporation. All rights reserved.
- global '(domainlist!*);
- fluid '(!*balanced_mod !*modular !*precise current!-modulus alglist!*
- dmode!*);
- switch modular,balanced_mod;
- domainlist!* := union('(!:mod!:),domainlist!*);
- put('modular,'tag,'!:mod!:);
- put('!:mod!:,'dname,'modular);
- flag('(!:mod!:),'field);
- flag('(!:mod!:),'convert);
- put('!:mod!:,'i2d,'!*i2mod);
- put('!:mod!:,'!:ft!:,'modcnv);
- put('!:mod!:,'!:rn!:,'modcnv);
- put('!:mod!:,'minusp,'modminusp!:);
- put('!:mod!:,'plus,'modplus!:);
- put('!:mod!:,'times,'modtimes!:);
- put('!:mod!:,'difference,'moddifference!:);
- put('!:mod!:,'quotient,'modquotient!:);
- put('!:mod!:,'divide,'moddivide!:);
- put('!:mod!:,'gcd,'modgcd!:);
- put('!:mod!:,'zerop,'modzerop!:);
- put('!:mod!:,'onep,'modonep!:);
- put('!:mod!:,'factorfn,'factormod!:);
- put('!:mod!:,'sqfrfactorfn,'factormod!:);
- put('!:mod!:,'expt,'exptmod!:);
- put('!:mod!:,'prepfn,'modprep!:);
- put('!:mod!:,'prifn,'(lambda(x) (prin2!* (prepf x))));
- put('!:mod!:,'unitsfn,'!:mod!:unitconv);
- symbolic procedure !*modular2f u;
- % Convert u to a modular number. Treat 0 as special case, but not 1.
- % Also allow for !*balanced_mod.
- if u=0 then nil
- % else if u=1 then 1
- else if !*balanced_mod
- then if u+u>current!-modulus
- then '!:mod!: . (u - current!-modulus)
- else if u+u <= - current!-modulus
- then !*modular2f(u + current!-modulus)
- else '!:mod!: . u
- else '!:mod!: . u;
- symbolic procedure exptmod!:(u,n);
- % This procedure will check for cdr u > n-1 if n prime.
- % This used to treat 1 as a special case.
- !*modular2f general!-modular!-expt(cdr u,n);
- symbolic procedure !:mod!:unitconv(u,v);
- if v=1 then u else
- (if x then multd(x,numr u) ./ multd(x,denr u)
- else mod!-error {'quotient,1,cdr v})
- where x = !*modular2f !:mod!:units(current!-modulus,y,0,1)
- where y = if cdr v>0 or null !*balanced_mod then cdr v
- else current!-modulus+cdr v;
- symbolic procedure !:mod!:units(a,b,x,y);
- % Same procedure as in genmod without error call.
- if b=0 then 0
- else if b=1 then if y < 0 then y+current!-modulus else y
- else begin scalar w;
- w := a/b;
- return !:mod!:units(b,a-b*w,y,x-y*w)
- end;
- symbolic procedure !*i2mod u;
- % Converts integer U to modular form.
- % if (u := general!-modular!-number u)=0 then nil else '!:mod!: . u;
- !*modular2f general!-modular!-number u;
- symbolic procedure modcnv u;
- rerror(poly,13,list("Conversion between modular integers and",
- get(car u,'dname),"not defined"));
- symbolic procedure modminusp!: u;
- if !*balanced_mod then 2*cdr u > current!-modulus else nil;
- symbolic procedure modplus!:(u,v);
- !*modular2f general!-modular!-plus(cdr u,cdr v);
- symbolic procedure modtimes!:(u,v);
- !*modular2f general!-modular!-times(cdr u,cdr v);
- symbolic procedure moddifference!:(u,v);
- !*modular2f general!-modular!-difference(cdr u,cdr v);
- symbolic procedure moddivide!:(u,v); !*i2mod 0 . u;
- symbolic procedure modgcd!:(u,v); !*i2mod 1;
- symbolic procedure modquotient!:(u,v);
- !*modular2f general!-modular!-times(cdr u,
- general!-modular!-reciprocal cdr v);
- symbolic procedure modzerop!: u; cdr u=0;
- symbolic procedure modonep!: u; cdr u=1;
- symbolic procedure factormod!: u;
- begin scalar alglist!*,dmode!*;
- % 1 is needed since factorize expects first factor to be a number.
- return pfactor(!*q2f resimp(u ./ 1),current!-modulus)
- end;
- symbolic procedure modprep!: u;
- cdr u;
- initdmode 'modular;
- % Modular routines are defined in the GENMOD module with the exception
- % of the following:
- symbolic procedure setmod u;
- % Returns value of CURRENT!-MODULUS on entry unless an error
- % occurs. It crudely distinguishes between prime moduli, for which
- % division is possible, and others, for which it possibly is not.
- % The code should really distinguish prime powers and composites as
- % well.
- begin scalar dmode!*;
- if not atom u then u := car u; % Since setmod is a psopfn.
- u := reval u; % dmode* is NIL, so this won't be reduced wrt
- % current modulus.
- if fixp u and u>0
- then <<if primep u then flag('(!:mod!:),'field)
- else remflag('(!:mod!:),'field);
- return set!-general!-modulus u>>
- else if u=0 or null u then return current!-modulus
- else typerr(u,"modulus")
- end;
- put('setmod, 'psopfn, 'setmod);
- % A more general definition of general-modular-number.
- %symbolic procedure general!-modular!-number m;
- % Returns normalized M.
- % (lambda n; %if n<0 then n+current!-modulus else n)
- % if atom m then remainder(m,current!-modulus)
- % else begin scalar x;
- % x := dcombine(m,current!-modulus,'divide);
- % return cdr x
- % end;
- % Support for "mod" as an infix operator.
- infix mod;
- precedence mod,over;
- put('mod,'psopfn,'evalmod);
- symbolic procedure evalmod u;
- begin scalar dm,cp,m,mm,w,!*rounded,!*modular;
- if !*complex then
- <<cp:=t; setdmode('complex,nil); !*complex:=nil>>;
- if (dm:=get(dmode!*,'dname)) then setdmode(dm,nil);
- m:=ieval cadr u;
- setdmode('modular,t); !*modular:=t;
- mm:=apply1('setmod,{m});
- w:=aeval!* car u;
- apply1('setmod,{mm});
- if dm neq 'modular then
- <<setdmode('modular,nil); if dm then setdmode(dm,t)>>;
- if cp then <<setdmode('complex,t); !*complex :=t>>;
- return w;
- end;
- % Support for function evaluation in the modular domain.
- % At present only rational exponentiation, including surds.
- put('!:mod!:,'domainvalchk,'mod!-domainvalchk);
- symbolic procedure mod!-domainvalchk(fn,u);
- begin scalar w;
- w:=if fn='expt then mod!-expt!-fract(car u,cadr u)
- else nil;
- return if w='failed then nil else w ./1;
- end;
- symbolic procedure mod!-expt!-fract(u,x);
- % Modular u**x where x is a rational number n/m. Compute a solution of
- % q^n=u^m. If *precise on, expressions with non-unique are not
- % simplified. Non existing surds are mapped to an error message.
- begin scalar n,m,w;
- if denr u =1 then u:=numr u else go to done;
- if eqcar(u,'!:mod!:) then t
- else if fixp u then u:= '!:mod!: . u else go to done;
- if u='(!:mod!: . 1) then return 1;
- n:=numr x; m:=denr x;
- if not fixp n or not fixp m then go to done;
- if m=1 then return exptmod!:(u,n);
- load!-package 'modsr;
- w:=cdr msolve {{'equal,{'expt,'x,m},{'expt,cdr u,n}}};
- if null w then mod!-error({'expt,u,{'quotient,n,m}});
- if null cdr w or null !*precise then return caddr cadr car w;
- % value is not unique - prevent the default integer
- % handling that would compute an incorrect value.
- % e.g. sqrt(4) mod 9 is not 2 but {2,7}.
- return !*k2f car fkern {'expt,cdr u,{'quotient,n,m}};
- done:
- return if null w or cdr w then 'failed else caddr car w;
- end;
- symbolic procedure mod!-error u;
- typerr(u, {"expression mod", current!-modulus});
- endmodule;
- end;
|