12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128 |
- Sun Jan 3 23:45:56 MET 1999
- REDUCE 3.7, 15-Jan-99 ...
- 1: 1:
- 2: 2: 2: 2: 2: 2: 2: 2: 2:
- 3: 3: COMMENT
- THE REDUCE INTEGRATION TEST PACKAGE
- Edited By
- Anthony C. Hearn
- The RAND Corporation
- This file is designed to provide a set of representative tests of the
- Reduce integration package. Not all examples go through, even when an
- integral exists, since some of the arguments are outside the domain of
- applicability of the current package. However, future improvements to
- the package will result in more closed-form evaluations in later
- releases. We would appreciate any additional contributions to this test
- file either because they illustrate some feature (good or bad) of the
- current package, or suggest domains which future versions should handle.
- Any suggestions for improved organization of this test file (e.g., in a
- way which corresponds more directly to the organization of a standard
- integration table book such as Gradshteyn and Ryznik) are welcome.
- Acknowledgments:
- The examples in this file have been contributed by the following.
- Any omissions to this list should be reported to the Editor.
- David M. Dahm
- James H. Davenport
- John P. Fitch
- Steven Harrington
- Anthony C. Hearn
- K. Siegfried Koelbig
- Ernst Krupnikov
- Arthur C. Norman
- Herbert Stoyan
- ;
- Comment we first set up a suitable testing functions;
- fluid '(gcknt!*);
- global '(faillist!* gcnumber!* inittime number!-of!-integrals
- unintlist!*);
- symbolic operator time;
- symbolic procedure initialize!-integral!-test;
- begin
- faillist!* := unintlist!* := nil;
- number!-of!-integrals := 0;
- gcnumber!* := gcknt!*;
- inittime := time()
- end;
- initialize!-integral!-test
-
- symbolic procedure summarize!-integral!-test;
- begin scalar totaltime;
- totaltime := time()-inittime;
- prin2t
- " ***** SUMMARY OF INTEGRAL TESTS *****";
- terpri();
- prin2 "Number of integrals tested: ";
- prin2t number!-of!-integrals;
- terpri();
- prin2 "Total time taken: ";
- prin2 totaltime;
- prin2t " ms";
- terpri();
- if gcnumber!*
- then <<prin2 "Number of garbage collections: ";
- prin2t (gcknt!* - gcnumber!*);
- terpri()>>;
- prin2 "Number of incorrect integrals: ";
- prin2t length faillist!*;
- terpri();
- prin2 "Number of unevaluated integrals: ";
- prin2t length unintlist!*;
- terpri();
- if faillist!*
- then <<prin2t "Integrands of incorrect integrals are:";
- for each x in reverse faillist!* do mathprint car x>>;
- if unintlist!*
- then <<prin2t "Integrands of unevaluated integrals are:";
- terpri();
- for each x in reverse unintlist!* do mathprint car x>>
- end;
- summarize!-integral!-test
- procedure testint(a,b);
- begin scalar der,diffce,res,tt;
- tt:=time();
- symbolic (number!-of!-integrals := number!-of!-integrals + 1);
- res:=int(a,b);
- % write "time for integral: ",time()-tt," ms";
- off precise;
- der := df(res,b);
- diffce := der-a;
- if diffce neq 0
- then begin for all x let cot x=cos x/sin x,
- sec x=1/cos x,
- sin x**2=1-cos x**2,
- tan(x/2)=sin x/(1+cos x),
- tan x=sin x/cos x,
- tanh x=
- (e**(x)-e**(-x))/(e**x+e**(-x)),
- coth x= 1/tanh x;
- diffce := diffce;
- for all x clear cot x,sec x,sin x**2,tan x,tan(x/2),
- tanh x,coth x
- end;
- %hopefully, difference appeared non-zero due to absence of
- %above transformations;
- if diffce neq 0
- then <<on combineexpt; diffce := diffce; off combineexpt>>;
- if diffce neq 0
- then begin scalar !*reduced;
- symbolic(!*reduced := t);
- for all x let cos(2x)= 1-2sin x**2, sin x**2=1-cos x**2;
- diffce := diffce;
- for all x clear cos(2x),sin x**2
- end;
- if diffce neq 0
- then <<write
- " ***** DERIVATIVE OF INTEGRAL NOT EQUAL TO INTEGRAND *****";
- symbolic(faillist!* := list(a,b,res,der) . faillist!*)>>;
- symbolic if smemq('int,res)
- then unintlist!* := list(a,b,res) . unintlist!*;
- on precise;
- return res
- end;
- testint
- symbolic initialize!-integral!-test();
- % References are to Gradshteyn and Ryznik.
- testint(1+x+x**2,x);
- 2
- x*(2*x + 3*x + 6)
- --------------------
- 6
- testint(x**2*(2*x**2+x)**2,x);
- 5 2
- x *(60*x + 70*x + 21)
- ------------------------
- 105
- testint(x*(x**2+2*x+1),x);
- 2 2
- x *(3*x + 8*x + 6)
- ---------------------
- 12
- testint(1/x,x);
- log(x)
- % 2.01 #2;
- testint((x+1)**3/(x-1)**4,x);
- 3 2 3
- 3*log(x - 1)*x - 9*log(x - 1)*x + 9*log(x - 1)*x - 3*log(x - 1) - 6*x - 2
- ------------------------------------------------------------------------------
- 3 2
- 3*(x - 3*x + 3*x - 1)
- testint(1/(x*(x-1)*(x+1)**2),x);
- (log(x - 1)*x + log(x - 1) + 3*log(x + 1)*x + 3*log(x + 1) - 4*log(x)*x
- - 4*log(x) + 2*x)/(4*(x + 1))
- testint((a*x+b)/((x-p)*(x-q)),x);
- log(p - x)*a*p + log(p - x)*b - log(q - x)*a*q - log(q - x)*b
- ---------------------------------------------------------------
- p - q
- testint(1/(a*x**2+b*x+c),x);
- 2 2*a*x + b
- 2*sqrt(4*a*c - b )*atan(------------------)
- 2
- sqrt(4*a*c - b )
- ---------------------------------------------
- 2
- 4*a*c - b
- testint((a*x+b)/(1+x**2),x);
- 2
- 2*atan(x)*b + log(x + 1)*a
- -----------------------------
- 2
- testint(1/(x**2-2*x+3),x);
- x - 1
- sqrt(2)*atan(---------)
- sqrt(2)
- -------------------------
- 2
- % Rational function examples from Hardy, Pure Mathematics, p 253 et seq.
- testint(1/((x-1)*(x**2+1))**2,x);
- 3 2 2 3 2 2
- (atan(x)*x - atan(x)*x + atan(x)*x - atan(x) + log(x + 1)*x - log(x + 1)*x
- 2 2 3 2
- + log(x + 1)*x - log(x + 1) - 2*log(x - 1)*x + 2*log(x - 1)*x
- 3 3 2
- - 2*log(x - 1)*x + 2*log(x - 1) - x - 2*x + 1)/(4*(x - x + x - 1))
- testint(x/((x-a)*(x-b)*(x-c)),x);
- (log(a - x)*a*b - log(a - x)*a*c - log(b - x)*a*b + log(b - x)*b*c
- 2 2 2 2 2 2
- + log(c - x)*a*c - log(c - x)*b*c)/(a *b - a *c - a*b + a*c + b *c - b*c )
- testint(x/((x**2+a**2)*(x**2+b**2)),x);
- 2 2 2 2
- - log(a + x ) + log(b + x )
- --------------------------------
- 2 2
- 2*(a - b )
- testint(x**2/((x**2+a**2)*(x**2+b**2)),x);
- x x
- atan(---)*a - atan(---)*b
- a b
- ---------------------------
- 2 2
- a - b
- testint(x/((x-1)*(x**2+1)),x);
- 2
- 2*atan(x) - log(x + 1) + 2*log(x - 1)
- ----------------------------------------
- 4
- testint(x/(1+x**3),x);
- 2*x - 1 2
- 2*sqrt(3)*atan(---------) + log(x - x + 1) - 2*log(x + 1)
- sqrt(3)
- ------------------------------------------------------------
- 6
- testint(x**3/((x-1)**2*(x**3+1)),x);
- 2 2
- ( - 4*log(x - x + 1)*x + 4*log(x - x + 1) + 9*log(x - 1)*x - 9*log(x - 1)
- - log(x + 1)*x + log(x + 1) - 6*x)/(12*(x - 1))
- testint(1/(1+x**4),x);
- sqrt(2) - 2*x sqrt(2) + 2*x
- (sqrt(2)*( - 2*atan(---------------) + 2*atan(---------------)
- sqrt(2) sqrt(2)
- 2 2
- - log( - sqrt(2)*x + x + 1) + log(sqrt(2)*x + x + 1)))/8
- testint(x**2/(1+x**4),x);
- sqrt(2) - 2*x sqrt(2) + 2*x
- (sqrt(2)*( - 2*atan(---------------) + 2*atan(---------------)
- sqrt(2) sqrt(2)
- 2 2
- + log( - sqrt(2)*x + x + 1) - log(sqrt(2)*x + x + 1)))/8
- testint(1/(1+x**2+x**4),x);
- 2*x - 1 2*x + 1 2
- (2*sqrt(3)*atan(---------) + 2*sqrt(3)*atan(---------) - 3*log(x - x + 1)
- sqrt(3) sqrt(3)
- 2
- + 3*log(x + x + 1))/12
- % Examples involving a+b*x.
- z := a+b*x;
- z := a + b*x
- testint(z**p,x);
- p
- (a + b*x) *(a + b*x)
- ----------------------
- b*(p + 1)
- testint(x*z**p,x);
- p 2 2 2 2 2
- (a + b*x) *( - a + a*b*p*x + b *p*x + b *x )
- ------------------------------------------------
- 2 2
- b *(p + 3*p + 2)
- testint(x**2*z**p,x);
- p
- ((a + b*x)
- 3 2 2 2 2 2 2 3 2 3 3 3 3 3
- *(2*a - 2*a *b*p*x + a*b *p *x + a*b *p*x + b *p *x + 3*b *p*x + 2*b *x ))
- 3 3 2
- /(b *(p + 6*p + 11*p + 6))
- testint(1/z,x);
- log(a + b*x)
- --------------
- b
- testint(1/z**2,x);
- x
- -------------
- a*(a + b*x)
- testint(x/z,x);
- - log(a + b*x)*a + b*x
- -------------------------
- 2
- b
- testint(x**2/z,x);
- 2 2 2
- 2*log(a + b*x)*a - 2*a*b*x + b *x
- -------------------------------------
- 3
- 2*b
- testint(1/(x*z),x);
- - log(a + b*x) + log(x)
- --------------------------
- a
- testint(1/(x**2*z),x);
- log(a + b*x)*b*x - log(x)*b*x - a
- -----------------------------------
- 2
- a *x
- testint(1/(x*z)**2,x);
- 2 2 2 2
- (2*log(a + b*x)*a*b*x + 2*log(a + b*x)*b *x - 2*log(x)*a*b*x - 2*log(x)*b *x
- 2 2 2 3
- - a + 2*b *x )/(a *x*(a + b*x))
- testint(1/(c**2+x**2),x);
- x
- atan(---)
- c
- -----------
- c
- testint(1/(c**2-x**2),x);
- log( - c - x) - log(c - x)
- ----------------------------
- 2*c
- % More complicated rational function examples, mostly contributed
- % by David M. Dahm, who also developed the code to integrate them.
- testint(1/(2*x**3-1),x);
- 1/3
- 2/3 2*2 *x + 1 2/3 2 1/3
- (2 *( - 2*sqrt(3)*atan(--------------) - log(2 *x + 2 *x + 1)
- sqrt(3)
- 1/3
- + 2*log(2 *x - 1)))/12
- testint(1/(x**3-2),x);
- 1/3
- 1/3 2 + 2*x 2/3 1/3 2
- (2 *( - 2*sqrt(3)*atan(--------------) - log(2 + 2 *x + x )
- 1/3
- 2 *sqrt(3)
- 1/3
- + 2*log( - 2 + x)))/12
- testint(1/(a*x**3-b),x);
- 1/3 1/3
- 1/3 2/3 2*a *x + b
- (b *a *( - 2*sqrt(3)*atan(-----------------)
- 1/3
- b *sqrt(3)
- 2/3 2 1/3 1/3 2/3 1/3 1/3
- - log(a *x + b *a *x + b ) + 2*log(a *x - b )))/(6*a*b
- )
- testint(1/(x**4-2),x);
- 1/4 x 1/4 1/4
- 2 *( - 2*atan(------) - log(2 + x) + log( - 2 + x))
- 1/4
- 2
- -------------------------------------------------------------
- 8
- testint(1/(5*x**4-1),x);
- 3/4 sqrt(5)*x 1/4 1/4
- 5 *( - 2*atan(-----------) + log(5 *x - 1) - log(5 *x + 1))
- 1/4
- 5
- -------------------------------------------------------------------
- 20
- testint(1/(3*x**4+7),x);
- 1/4
- 3/4 1/4 sqrt(2)*21 - 2*sqrt(3)*x
- (sqrt(2)*3 *7 *( - 2*atan(-----------------------------)
- 1/4
- sqrt(2)*21
- 1/4
- sqrt(2)*21 + 2*sqrt(3)*x
- + 2*atan(-----------------------------)
- 1/4
- sqrt(2)*21
- 1/4 2
- - log( - sqrt(2)*21 *x + sqrt(7) + sqrt(3)*x )
- 1/4 2
- + log(sqrt(2)*21 *x + sqrt(7) + sqrt(3)*x )))/168
- testint(1/(x**4+3*x**2-1),x);
- 2*x
- (sqrt(2)*(6*sqrt(sqrt(13) + 3)*sqrt(13)*atan(----------------------------)
- sqrt(sqrt(13) + 3)*sqrt(2)
- 2*x
- - 26*sqrt(sqrt(13) + 3)*atan(----------------------------) + 3
- sqrt(sqrt(13) + 3)*sqrt(2)
- *sqrt(sqrt(13) - 3)*sqrt(13)*log( - sqrt(sqrt(13) - 3) + sqrt(2)*x)
- - 3*sqrt(sqrt(13) - 3)*sqrt(13)*log(sqrt(sqrt(13) - 3) + sqrt(2)*x)
- + 13*sqrt(sqrt(13) - 3)*log( - sqrt(sqrt(13) - 3) + sqrt(2)*x)
- - 13*sqrt(sqrt(13) - 3)*log(sqrt(sqrt(13) - 3) + sqrt(2)*x)))/104
- testint(1/(x**4-3*x**2-1),x);
- 2*x
- (sqrt(2)*( - 6*sqrt(sqrt(13) - 3)*sqrt(13)*atan(----------------------------)
- sqrt(sqrt(13) - 3)*sqrt(2)
- 2*x
- - 26*sqrt(sqrt(13) - 3)*atan(----------------------------) - 3
- sqrt(sqrt(13) - 3)*sqrt(2)
- *sqrt(sqrt(13) + 3)*sqrt(13)*log( - sqrt(sqrt(13) + 3) + sqrt(2)*x)
- + 3*sqrt(sqrt(13) + 3)*sqrt(13)*log(sqrt(sqrt(13) + 3) + sqrt(2)*x)
- + 13*sqrt(sqrt(13) + 3)*log( - sqrt(sqrt(13) + 3) + sqrt(2)*x)
- - 13*sqrt(sqrt(13) + 3)*log(sqrt(sqrt(13) + 3) + sqrt(2)*x)))/104
- testint(1/(x**4-3*x**2+1),x);
- ( - sqrt(5)*log( - sqrt(5) + 2*x - 1) - sqrt(5)*log( - sqrt(5) + 2*x + 1)
- + sqrt(5)*log(sqrt(5) + 2*x - 1) + sqrt(5)*log(sqrt(5) + 2*x + 1)
- + 5*log( - sqrt(5) + 2*x - 1) - 5*log( - sqrt(5) + 2*x + 1)
- + 5*log(sqrt(5) + 2*x - 1) - 5*log(sqrt(5) + 2*x + 1))/20
- testint(1/(x**4-4*x**2+1),x);
- 2*x 2*x
- (sqrt(2)*(2*sqrt(3)*atanh(-------------------) + 6*atanh(-------------------)
- sqrt(6) - sqrt(2) sqrt(6) - sqrt(2)
- - sqrt(6) - sqrt(2) + 2*x
- - sqrt(3)*log(----------------------------)
- 2
- sqrt(6) + sqrt(2) + 2*x
- + sqrt(3)*log(-------------------------)
- 2
- - sqrt(6) - sqrt(2) + 2*x
- + 3*log(----------------------------)
- 2
- sqrt(6) + sqrt(2) + 2*x
- - 3*log(-------------------------)))/24
- 2
- testint(1/(x**4+4*x**2+1),x);
- 2*x 2*x
- (sqrt(2)*(2*sqrt(3)*atan(-------------------) - 6*atan(-------------------)
- sqrt(6) + sqrt(2) sqrt(6) + sqrt(2)
- - sqrt(6)*i + sqrt(2)*i + 2*x
- - sqrt(3)*log(--------------------------------)*i
- 2
- sqrt(6)*i - sqrt(2)*i + 2*x
- + sqrt(3)*log(-----------------------------)*i
- 2
- - sqrt(6)*i + sqrt(2)*i + 2*x
- - 3*log(--------------------------------)*i
- 2
- sqrt(6)*i - sqrt(2)*i + 2*x
- + 3*log(-----------------------------)*i))/24
- 2
- testint(1/(x**4+x**2+2),x);
- sqrt(2*sqrt(2) - 1) - 2*x
- (2*sqrt(2*sqrt(2) + 1)*sqrt(2)*atan(---------------------------)
- sqrt(2*sqrt(2) + 1)
- sqrt(2*sqrt(2) - 1) - 2*x
- - 8*sqrt(2*sqrt(2) + 1)*atan(---------------------------)
- sqrt(2*sqrt(2) + 1)
- sqrt(2*sqrt(2) - 1) + 2*x
- - 2*sqrt(2*sqrt(2) + 1)*sqrt(2)*atan(---------------------------)
- sqrt(2*sqrt(2) + 1)
- sqrt(2*sqrt(2) - 1) + 2*x
- + 8*sqrt(2*sqrt(2) + 1)*atan(---------------------------)
- sqrt(2*sqrt(2) + 1)
- 2
- - sqrt(2*sqrt(2) - 1)*sqrt(2)*log( - sqrt(2*sqrt(2) - 1)*x + sqrt(2) + x )
- 2
- + sqrt(2*sqrt(2) - 1)*sqrt(2)*log(sqrt(2*sqrt(2) - 1)*x + sqrt(2) + x )
- 2
- - 4*sqrt(2*sqrt(2) - 1)*log( - sqrt(2*sqrt(2) - 1)*x + sqrt(2) + x )
- 2
- + 4*sqrt(2*sqrt(2) - 1)*log(sqrt(2*sqrt(2) - 1)*x + sqrt(2) + x ))/56
- testint(1/(x**4-x**2+2),x);
- sqrt(2*sqrt(2) + 1) - 2*x
- ( - 2*sqrt(2*sqrt(2) - 1)*sqrt(2)*atan(---------------------------)
- sqrt(2*sqrt(2) - 1)
- sqrt(2*sqrt(2) + 1) - 2*x
- - 8*sqrt(2*sqrt(2) - 1)*atan(---------------------------)
- sqrt(2*sqrt(2) - 1)
- sqrt(2*sqrt(2) + 1) + 2*x
- + 2*sqrt(2*sqrt(2) - 1)*sqrt(2)*atan(---------------------------)
- sqrt(2*sqrt(2) - 1)
- sqrt(2*sqrt(2) + 1) + 2*x
- + 8*sqrt(2*sqrt(2) - 1)*atan(---------------------------)
- sqrt(2*sqrt(2) - 1)
- 2
- + sqrt(2*sqrt(2) + 1)*sqrt(2)*log( - sqrt(2*sqrt(2) + 1)*x + sqrt(2) + x )
- 2
- - sqrt(2*sqrt(2) + 1)*sqrt(2)*log(sqrt(2*sqrt(2) + 1)*x + sqrt(2) + x )
- 2
- - 4*sqrt(2*sqrt(2) + 1)*log( - sqrt(2*sqrt(2) + 1)*x + sqrt(2) + x )
- 2
- + 4*sqrt(2*sqrt(2) + 1)*log(sqrt(2*sqrt(2) + 1)*x + sqrt(2) + x ))/56
- testint(1/(x**6-1),x);
- 2*x - 1 2*x + 1 2
- ( - 2*sqrt(3)*atan(---------) - 2*sqrt(3)*atan(---------) + log(x - x + 1)
- sqrt(3) sqrt(3)
- 2
- - log(x + x + 1) + 2*log(x - 1) - 2*log(x + 1))/12
- testint(1/(x**6-2),x);
- 1/6 1/6
- 1/6 2 - 2*x 2 + 2*x
- (2 *(2*sqrt(3)*atan(--------------) - 2*sqrt(3)*atan(--------------)
- 1/6 1/6
- 2 *sqrt(3) 2 *sqrt(3)
- 1/6 1/6 1/6 1/3 2
- - 2*log(2 + x) + 2*log( - 2 + x) + log( - 2 *x + 2 + x )
- 1/6 1/3 2
- - log(2 *x + 2 + x )))/24
- testint(1/(x**6+2),x);
- 1/6 1/6
- 1/6 2 *sqrt(3) - 2*x 2 *sqrt(3) + 2*x
- (2 *( - 2*atan(--------------------) + 2*atan(--------------------)
- 1/6 1/6
- 2 2
- x 1/6 1/3 2
- + 4*atan(------) - sqrt(3)*log( - 2 *sqrt(3)*x + 2 + x )
- 1/6
- 2
- 1/6 1/3 2
- + sqrt(3)*log(2 *sqrt(3)*x + 2 + x )))/24
- testint(1/(x**8+1),x);
- sqrt( - sqrt(2) + 2) - 2*x
- ( - 2*sqrt(sqrt(2) + 2)*atan(----------------------------)
- sqrt(sqrt(2) + 2)
- sqrt( - sqrt(2) + 2) + 2*x
- + 2*sqrt(sqrt(2) + 2)*atan(----------------------------)
- sqrt(sqrt(2) + 2)
- sqrt(sqrt(2) + 2) - 2*x
- - 2*sqrt( - sqrt(2) + 2)*atan(-------------------------)
- sqrt( - sqrt(2) + 2)
- sqrt(sqrt(2) + 2) + 2*x
- + 2*sqrt( - sqrt(2) + 2)*atan(-------------------------)
- sqrt( - sqrt(2) + 2)
- 2
- - sqrt( - sqrt(2) + 2)*log( - sqrt( - sqrt(2) + 2)*x + x + 1)
- 2
- + sqrt( - sqrt(2) + 2)*log(sqrt( - sqrt(2) + 2)*x + x + 1)
- 2
- - sqrt(sqrt(2) + 2)*log( - sqrt(sqrt(2) + 2)*x + x + 1)
- 2
- + sqrt(sqrt(2) + 2)*log(sqrt(sqrt(2) + 2)*x + x + 1))/16
- testint(1/(x**8-1),x);
- sqrt(2) - 2*x sqrt(2) + 2*x
- (2*sqrt(2)*atan(---------------) - 2*sqrt(2)*atan(---------------) - 4*atan(x)
- sqrt(2) sqrt(2)
- 2 2
- + sqrt(2)*log( - sqrt(2)*x + x + 1) - sqrt(2)*log(sqrt(2)*x + x + 1)
- + 2*log(x - 1) - 2*log(x + 1))/16
- testint(1/(x**8-x**4+1),x);
- sqrt(6) + sqrt(2) - 4*x
- ( - 2*sqrt( - sqrt(3) + 2)*sqrt(3)*atan(-------------------------)
- 2*sqrt( - sqrt(3) + 2)
- sqrt(6) + sqrt(2) - 4*x
- - 6*sqrt( - sqrt(3) + 2)*atan(-------------------------)
- 2*sqrt( - sqrt(3) + 2)
- sqrt(6) + sqrt(2) + 4*x
- + 2*sqrt( - sqrt(3) + 2)*sqrt(3)*atan(-------------------------)
- 2*sqrt( - sqrt(3) + 2)
- sqrt(6) + sqrt(2) + 4*x
- + 6*sqrt( - sqrt(3) + 2)*atan(-------------------------)
- 2*sqrt( - sqrt(3) + 2)
- 2*sqrt( - sqrt(3) + 2) - 4*x
- - 2*sqrt(6)*atan(------------------------------)
- sqrt(6) + sqrt(2)
- 2*sqrt( - sqrt(3) + 2) + 4*x
- + 2*sqrt(6)*atan(------------------------------)
- sqrt(6) + sqrt(2)
- 2
- - sqrt( - sqrt(3) + 2)*sqrt(3)*log( - sqrt( - sqrt(3) + 2)*x + x + 1)
- 2
- + sqrt( - sqrt(3) + 2)*sqrt(3)*log(sqrt( - sqrt(3) + 2)*x + x + 1)
- 2
- - 3*sqrt( - sqrt(3) + 2)*log( - sqrt( - sqrt(3) + 2)*x + x + 1)
- 2
- + 3*sqrt( - sqrt(3) + 2)*log(sqrt( - sqrt(3) + 2)*x + x + 1)
- 2
- - sqrt(6)*x - sqrt(2)*x + 2*x + 2
- - sqrt(6)*log(-------------------------------------)
- 2
- 2
- sqrt(6)*x + sqrt(2)*x + 2*x + 2
- + sqrt(6)*log(----------------------------------))/24
- 2
- testint(x**7/(x**12+1),x);
- sqrt(6) + sqrt(2) - 4*x
- ( - sqrt( - sqrt(3) + 2)*sqrt(6)*atan(-------------------------)
- 2*sqrt( - sqrt(3) + 2)
- sqrt(6) + sqrt(2) - 4*x
- - 3*sqrt( - sqrt(3) + 2)*sqrt(2)*atan(-------------------------)
- 2*sqrt( - sqrt(3) + 2)
- sqrt(6) + sqrt(2) + 4*x
- - sqrt( - sqrt(3) + 2)*sqrt(6)*atan(-------------------------)
- 2*sqrt( - sqrt(3) + 2)
- sqrt(6) + sqrt(2) + 4*x
- - 3*sqrt( - sqrt(3) + 2)*sqrt(2)*atan(-------------------------)
- 2*sqrt( - sqrt(3) + 2)
- 2*sqrt( - sqrt(3) + 2) - 4*x
- + sqrt( - sqrt(3) + 2)*sqrt(6)*atan(------------------------------)
- sqrt(6) + sqrt(2)
- 2*sqrt( - sqrt(3) + 2) - 4*x
- + 3*sqrt( - sqrt(3) + 2)*sqrt(2)*atan(------------------------------)
- sqrt(6) + sqrt(2)
- 2*sqrt( - sqrt(3) + 2) + 4*x
- + sqrt( - sqrt(3) + 2)*sqrt(6)*atan(------------------------------)
- sqrt(6) + sqrt(2)
- 2*sqrt( - sqrt(3) + 2) + 4*x
- + 3*sqrt( - sqrt(3) + 2)*sqrt(2)*atan(------------------------------)
- sqrt(6) + sqrt(2)
- 2 2
- + log( - sqrt( - sqrt(3) + 2)*x + x + 1) - 2*log( - sqrt(2)*x + x + 1)
- 2 2
- + log(sqrt( - sqrt(3) + 2)*x + x + 1) - 2*log(sqrt(2)*x + x + 1)
- 2
- - sqrt(6)*x - sqrt(2)*x + 2*x + 2
- + log(-------------------------------------)
- 2
- 2
- sqrt(6)*x + sqrt(2)*x + 2*x + 2
- + log(----------------------------------))/24
- 2
- % Examples involving logarithms.
- testint(log x,x);
- x*(log(x) - 1)
- testint(x*log x,x);
- 2
- x *(2*log(x) - 1)
- -------------------
- 4
- testint(x**2*log x,x);
- 3
- x *(3*log(x) - 1)
- -------------------
- 9
- testint(x**p*log x,x);
- p
- x *x*(log(x)*p + log(x) - 1)
- ------------------------------
- 2
- p + 2*p + 1
- testint((log x)**2,x);
- 2
- x*(log(x) - 2*log(x) + 2)
- testint(x**9*log x**11,x);
- 10 11 10 9
- (x *(15625000*log(x) - 17187500*log(x) + 17187500*log(x)
- 8 7 6 5
- - 15468750*log(x) + 12375000*log(x) - 8662500*log(x) + 5197500*log(x)
- 4 3 2
- - 2598750*log(x) + 1039500*log(x) - 311850*log(x) + 62370*log(x)
- - 6237))/156250000
- testint(log x**2/x,x);
- 3
- log(x)
- ---------
- 3
- testint(1/log x,x);
- ei(log(x))
- testint(1/log(x+1),x);
- ei(log(x + 1))
- testint(1/(x*log x),x);
- log(log(x))
- testint(1/(x*log x)**2,x);
- - (ei( - log(x))*log(x)*x + 1)
- ---------------------------------
- log(x)*x
- testint((log x)**p/x,x);
- p
- log(x) *log(x)
- ----------------
- p + 1
- testint(log x *(a*x+b),x);
- x*(2*log(x)*a*x + 4*log(x)*b - a*x - 4*b)
- -------------------------------------------
- 4
- testint((a*x+b)**2*log x,x);
- 2 2 2 2 2 2
- (x*(6*log(x)*a *x + 18*log(x)*a*b*x + 18*log(x)*b - 2*a *x - 9*a*b*x - 18*b )
- )/18
- testint(log x/(a*x+b)**2,x);
- - log(a*x + b)*a*x - log(a*x + b)*b + log(x)*a*x
- ---------------------------------------------------
- a*b*(a*x + b)
- testint(x*log (a*x+b),x);
- 2 2 2 2 2
- 2*log(a*x + b)*a *x - 2*log(a*x + b)*b - a *x + 2*a*b*x
- ------------------------------------------------------------
- 2
- 4*a
- testint(x**2*log(a*x+b),x);
- 3 3 3 3 3 2 2 2
- 6*log(a*x + b)*a *x + 6*log(a*x + b)*b - 2*a *x + 3*a *b*x - 6*a*b *x
- ---------------------------------------------------------------------------
- 3
- 18*a
- testint(log(x**2+a**2),x);
- x 2 2
- 2*atan(---)*a + log(a + x )*x - 2*x
- a
- testint(x*log(x**2+a**2),x);
- 2 2 2 2 2 2 2
- log(a + x )*a + log(a + x )*x - x
- ----------------------------------------
- 2
- testint(x**2*log(x**2+a**2),x);
- x 3 2 2 3 2 3
- - 6*atan(---)*a + 3*log(a + x )*x + 6*a *x - 2*x
- a
- -------------------------------------------------------
- 9
- testint(x**4*log(x**2+a**2),x);
- x 5 2 2 5 4 2 3 5
- 30*atan(---)*a + 15*log(a + x )*x - 30*a *x + 10*a *x - 6*x
- a
- ------------------------------------------------------------------
- 75
- testint(log(x**2-a**2),x);
- 2 2 2 2
- - log( - a + x )*a + log( - a + x )*x + 2*log( - a - x)*a - 2*x
- testint(log(log(log(log(x)))),x);
- 1
- - int(-------------------------------------,x) + log(log(log(log(x))))*x
- log(log(log(x)))*log(log(x))*log(x)
- % Examples involving circular functions.
- testint(sin x,x);
- - cos(x)
- % 2.01 #5;
- testint(cos x,x);
- sin(x)
- % #6;
- testint(tan x,x);
- 2
- log(tan(x) + 1)
- ------------------
- 2
- % #11;
- testint(1/tan(x),x);
- 2
- - log(tan(x) + 1) + 2*log(tan(x))
- -------------------------------------
- 2
- % 2.01 #12;
- testint(1/(1+tan(x))**2,x);
- 2 2
- ( - log(tan(x) + 1)*tan(x) - log(tan(x) + 1) + 2*log(tan(x) + 1)*tan(x)
- + 2*log(tan(x) + 1) + 2*tan(x))/(4*(tan(x) + 1))
- testint(1/cos x,x);
- x x
- - log(tan(---) - 1) + log(tan(---) + 1)
- 2 2
- testint(1/sin x,x);
- x
- log(tan(---))
- 2
- testint(sin x**2,x);
- - cos(x)*sin(x) + x
- ----------------------
- 2
- testint(x**3*sin(x**2),x);
- 2 2 2
- - cos(x )*x + sin(x )
- -------------------------
- 2
- testint(sin x**3,x);
- 2
- - cos(x)*sin(x) - 2*cos(x) + 2
- ----------------------------------
- 3
- testint(sin x**p,x);
- p
- int(sin(x) ,x)
- testint((sin x**2+1)**2*cos x,x);
- 4 2
- sin(x)*(3*sin(x) + 10*sin(x) + 15)
- --------------------------------------
- 15
- testint(cos x**2,x);
- cos(x)*sin(x) + x
- -------------------
- 2
- testint(cos x**3,x);
- 2
- sin(x)*( - sin(x) + 3)
- -------------------------
- 3
- testint(sin(a*x+b),x);
- - cos(a*x + b)
- -----------------
- a
- testint(1/cos x**2,x);
- sin(x)
- --------
- cos(x)
- testint(sin x*sin(2*x),x);
- - 2*cos(2*x)*sin(x) + cos(x)*sin(2*x)
- ----------------------------------------
- 3
- testint(x*sin x,x);
- - cos(x)*x + sin(x)
- testint(x**2*sin x,x);
- 2
- - cos(x)*x + 2*cos(x) + 2*sin(x)*x
- testint(x*sin x**2,x);
- 2 2
- - 2*cos(x)*sin(x)*x + sin(x) + x - 2
- -----------------------------------------
- 4
- testint(x**2*sin x**2,x);
- 2 2 3
- - 6*cos(x)*sin(x)*x + 3*cos(x)*sin(x) + 6*sin(x) *x + 2*x - 3*x
- --------------------------------------------------------------------
- 12
- testint(x*sin x**3,x);
- 2 3
- - 3*cos(x)*sin(x) *x - 6*cos(x)*x + sin(x) + 6*sin(x)
- ---------------------------------------------------------
- 9
- testint(x*cos x,x);
- cos(x) + sin(x)*x
- testint(x**2*cos x,x);
- 2
- 2*cos(x)*x + sin(x)*x - 2*sin(x)
- testint(x*cos x**2,x);
- 2 2
- 2*cos(x)*sin(x)*x - sin(x) + x + 2
- --------------------------------------
- 4
- testint(x**2*cos x**2,x);
- 2 2 3
- 6*cos(x)*sin(x)*x - 3*cos(x)*sin(x) - 6*sin(x) *x + 2*x + 3*x
- -----------------------------------------------------------------
- 12
- testint(x*cos x**3,x);
- 2 3
- - cos(x)*sin(x) + 7*cos(x) - 3*sin(x) *x + 9*sin(x)*x + 1
- -------------------------------------------------------------
- 9
- testint(sin x/x,x);
- si(x)
- testint(cos x/x,x);
- ci(x)
- testint(sin x/x**2,x);
- ci(x)*x - sin(x)
- ------------------
- x
- testint(sin x**2/x,x);
- - ci(2*x) + log(x)
- ---------------------
- 2
- testint(tan x**3,x);
- 2 2
- - log(tan(x) + 1) + tan(x)
- -------------------------------
- 2
- % z := a+b*x;
- testint(sin z,x);
- - cos(a + b*x)
- -----------------
- b
- testint(cos z,x);
- sin(a + b*x)
- --------------
- b
- testint(tan z,x);
- 2
- log(tan(a + b*x) + 1)
- ------------------------
- 2*b
- testint(1/tan z,x);
- 2
- - log(tan(a + b*x) + 1) + 2*log(tan(a + b*x))
- -------------------------------------------------
- 2*b
- testint(1/sin z,x);
- a + b*x
- log(tan(---------))
- 2
- ---------------------
- b
- testint(1/cos z,x);
- a + b*x a + b*x
- - log(tan(---------) - 1) + log(tan(---------) + 1)
- 2 2
- ------------------------------------------------------
- b
- testint(sin z**2,x);
- - cos(a + b*x)*sin(a + b*x) + b*x
- ------------------------------------
- 2*b
- testint(sin z**3,x);
- 2
- - cos(a + b*x)*sin(a + b*x) - 2*cos(a + b*x) + 2
- ----------------------------------------------------
- 3*b
- testint(cos z**2,x);
- cos(a + b*x)*sin(a + b*x) + b*x
- ---------------------------------
- 2*b
- testint(cos z**3,x);
- 2
- sin(a + b*x)*( - sin(a + b*x) + 3)
- -------------------------------------
- 3*b
- testint(1/cos z**2,x);
- sin(a + b*x)
- ----------------
- cos(a + b*x)*b
- testint(1/(1+cos x),x);
- x
- tan(---)
- 2
- testint(1/(1-cos x),x);
- - 1
- ----------
- x
- tan(---)
- 2
- testint(1/(1+sin x),x);
- x
- 2*tan(---)
- 2
- --------------
- x
- tan(---) + 1
- 2
- testint(1/(1-sin x),x);
- x
- - 2*tan(---)
- 2
- ---------------
- x
- tan(---) - 1
- 2
- testint(1/(a+b*sin x),x);
- x
- tan(---)*a + b
- 2 2 2
- 2*sqrt(a - b )*atan(----------------)
- 2 2
- sqrt(a - b )
- ----------------------------------------
- 2 2
- a - b
- testint(1/(a+b*sin x+cos x),x);
- x x
- tan(---)*a - tan(---) + b
- 2 2 2 2
- 2*sqrt(a - b - 1)*atan(---------------------------)
- 2 2
- sqrt(a - b - 1)
- -------------------------------------------------------
- 2 2
- a - b - 1
- testint(x**2*sin z**2,x);
- 2 2
- ( - 6*cos(a + b*x)*sin(a + b*x)*b *x + 3*cos(a + b*x)*sin(a + b*x)
- 2 3 3 3
- + 6*sin(a + b*x) *b*x + 9*a + 2*b *x - 3*b*x)/(12*b )
- testint(cos x*cos(2*x),x);
- - cos(2*x)*sin(x) + 2*cos(x)*sin(2*x)
- ----------------------------------------
- 3
- testint(x**2*cos z**2,x);
- 2 2
- (6*cos(a + b*x)*sin(a + b*x)*b *x - 3*cos(a + b*x)*sin(a + b*x)
- 2 3 3 3
- - 6*sin(a + b*x) *b*x + 2*b *x + 3*b*x)/(12*b )
- testint(1/tan x**3,x);
- 2 2 2
- log(tan(x) + 1)*tan(x) - 2*log(tan(x))*tan(x) - 1
- ------------------------------------------------------
- 2
- 2*tan(x)
- testint(x**3*tan(x)**4,x);
- 2 2 3 3 2 2
- (48*int(tan(x)*x ,x) - 6*log(tan(x) + 1) + 4*tan(x) *x - 6*tan(x) *x
- 3 4 2
- - 12*tan(x)*x + 12*tan(x)*x + 3*x - 6*x )/12
- testint(x**3*tan(x)**6,x);
- 2 2 5 3 4 2
- ( - 276*int(tan(x)*x ,x) + 60*log(tan(x) + 1) + 12*tan(x) *x - 9*tan(x) *x
- 3 3 3 2 2 2 3
- - 20*tan(x) *x + 6*tan(x) *x + 48*tan(x) *x - 3*tan(x) + 60*tan(x)*x
- 4 2
- - 114*tan(x)*x - 15*x + 57*x )/60
- testint(x*tan(x)**2,x);
- 2 2
- - log(tan(x) + 1) + 2*tan(x)*x - x
- ---------------------------------------
- 2
- testint(sin(2*x)*cos(3*x),x);
- 2*cos(3*x)*cos(2*x) + 3*sin(3*x)*sin(2*x)
- -------------------------------------------
- 5
- testint(sin x**2*cos x**2,x);
- 3
- 2*cos(x)*sin(x) - cos(x)*sin(x) + x
- --------------------------------------
- 8
- testint(1/(sin x**2*cos x**2),x);
- 2
- 2*sin(x) - 1
- ---------------
- cos(x)*sin(x)
- testint(d**x*sin x,x);
- x
- d *( - cos(x) + log(d)*sin(x))
- --------------------------------
- 2
- log(d) + 1
- testint(d**x*cos x,x);
- x
- d *(cos(x)*log(d) + sin(x))
- -----------------------------
- 2
- log(d) + 1
- testint(x*d**x*sin x,x);
- x 2 3
- (d *( - cos(x)*log(d) *x + 2*cos(x)*log(d) - cos(x)*x + log(d) *sin(x)*x
- 2 4 2
- - log(d) *sin(x) + log(d)*sin(x)*x + sin(x)))/(log(d) + 2*log(d) + 1)
- testint(x*d**x*cos x,x);
- x 3 2
- (d *(cos(x)*log(d) *x - cos(x)*log(d) + cos(x)*log(d)*x + cos(x)
- 2 4 2
- + log(d) *sin(x)*x - 2*log(d)*sin(x) + sin(x)*x))/(log(d) + 2*log(d) + 1
- )
- testint(x**2*d**x*sin x,x);
- x 4 2 3 2 2
- (d *( - cos(x)*log(d) *x + 4*cos(x)*log(d) *x - 2*cos(x)*log(d) *x
- 2 2
- - 6*cos(x)*log(d) + 4*cos(x)*log(d)*x - cos(x)*x + 2*cos(x)
- 5 2 4 3 2
- + log(d) *sin(x)*x - 2*log(d) *sin(x)*x + 2*log(d) *sin(x)*x
- 3 2
- + 2*log(d) *sin(x) + log(d)*sin(x)*x - 6*log(d)*sin(x) + 2*sin(x)*x))/(
- 6 4 2
- log(d) + 3*log(d) + 3*log(d) + 1)
- testint(x**2*d**x*cos x,x);
- x 5 2 4 3 2
- (d *(cos(x)*log(d) *x - 2*cos(x)*log(d) *x + 2*cos(x)*log(d) *x
- 3 2
- + 2*cos(x)*log(d) + cos(x)*log(d)*x - 6*cos(x)*log(d) + 2*cos(x)*x
- 4 2 3 2 2
- + log(d) *sin(x)*x - 4*log(d) *sin(x)*x + 2*log(d) *sin(x)*x
- 2 2 6
- + 6*log(d) *sin(x) - 4*log(d)*sin(x)*x + sin(x)*x - 2*sin(x)))/(log(d)
- 4 2
- + 3*log(d) + 3*log(d) + 1)
- testint(x**3*d**x*sin x,x);
- x 6 3 5 2 4 3
- (d *( - cos(x)*log(d) *x + 6*cos(x)*log(d) *x - 3*cos(x)*log(d) *x
- 4 3 2 3
- - 18*cos(x)*log(d) *x + 12*cos(x)*log(d) *x + 24*cos(x)*log(d)
- 2 3 2 2
- - 3*cos(x)*log(d) *x - 12*cos(x)*log(d) *x + 6*cos(x)*log(d)*x
- 3 7 3
- - 24*cos(x)*log(d) - cos(x)*x + 6*cos(x)*x + log(d) *sin(x)*x
- 6 2 5 3 5
- - 3*log(d) *sin(x)*x + 3*log(d) *sin(x)*x + 6*log(d) *sin(x)*x
- 4 2 4 3 3
- - 3*log(d) *sin(x)*x - 6*log(d) *sin(x) + 3*log(d) *sin(x)*x
- 3 2 2 2
- - 12*log(d) *sin(x)*x + 3*log(d) *sin(x)*x + 36*log(d) *sin(x)
- 3 2
- + log(d)*sin(x)*x - 18*log(d)*sin(x)*x + 3*sin(x)*x - 6*sin(x)))/(
- 8 6 4 2
- log(d) + 4*log(d) + 6*log(d) + 4*log(d) + 1)
- testint(x**3*d**x*cos x,x);
- x 7 3 6 2 5 3
- (d *(cos(x)*log(d) *x - 3*cos(x)*log(d) *x + 3*cos(x)*log(d) *x
- 5 4 2 4
- + 6*cos(x)*log(d) *x - 3*cos(x)*log(d) *x - 6*cos(x)*log(d)
- 3 3 3 2 2
- + 3*cos(x)*log(d) *x - 12*cos(x)*log(d) *x + 3*cos(x)*log(d) *x
- 2 3 2
- + 36*cos(x)*log(d) + cos(x)*log(d)*x - 18*cos(x)*log(d)*x + 3*cos(x)*x
- 6 3 5 2 4 3
- - 6*cos(x) + log(d) *sin(x)*x - 6*log(d) *sin(x)*x + 3*log(d) *sin(x)*x
- 4 3 2 3
- + 18*log(d) *sin(x)*x - 12*log(d) *sin(x)*x - 24*log(d) *sin(x)
- 2 3 2 2
- + 3*log(d) *sin(x)*x + 12*log(d) *sin(x)*x - 6*log(d)*sin(x)*x
- 3 8 6
- + 24*log(d)*sin(x) + sin(x)*x - 6*sin(x)*x))/(log(d) + 4*log(d)
- 4 2
- + 6*log(d) + 4*log(d) + 1)
- testint(sin x*sin(2*x)*sin(3*x),x);
- ( - cos(3*x)*cos(2*x)*cos(x) + 6*cos(3*x)*cos(2*x)*sin(x)*x
- + 6*cos(3*x)*cos(x)*sin(2*x)*x - 8*cos(3*x)*sin(2*x)*sin(x)
- - 6*cos(2*x)*cos(x)*sin(3*x)*x + 3*cos(2*x)*sin(3*x)*sin(x)
- + 6*sin(3*x)*sin(2*x)*sin(x)*x)/24
- testint(cos x*cos(2*x)*cos(3*x),x);
- (6*cos(3*x)*cos(2*x)*cos(x)*x + 8*cos(3*x)*cos(2*x)*sin(x)
- + 5*cos(3*x)*cos(x)*sin(2*x) - 6*cos(3*x)*sin(2*x)*sin(x)*x
- + 6*cos(2*x)*sin(3*x)*sin(x)*x + 6*cos(x)*sin(3*x)*sin(2*x)*x
- + 9*sin(3*x)*sin(2*x)*sin(x))/24
- testint(sin(x*kx)**3*x**2,x);
- 2 2 2 2 2 2
- ( - 9*cos(kx*x)*sin(kx*x) *kx *x + 2*cos(kx*x)*sin(kx*x) - 18*cos(kx*x)*kx *x
- 3 3
- + 40*cos(kx*x) + 6*sin(kx*x) *kx*x + 36*sin(kx*x)*kx*x + 16)/(27*kx )
- testint(x*cos(xi/sin(x))*cos(x)/sin(x)**2,x);
- xi
- cos(--------)*cos(x)*x
- sin(x)
- int(------------------------,x)
- 2
- sin(x)
- % Mixed angles and half angles.
- int(cos(x)/(sin(x)*tan(x/2)),x);
- x
- - (tan(---)*x + 1)
- 2
- ---------------------
- x
- tan(---)
- 2
- % This integral produces a messy result because the code for
- % converting half angle tans to sin and cos is not effective enough.
- testint(sin(a*x)/(b+c*sin(a*x))**2,x);
- a*x
- tan(-----)*b + c
- 2 2 2 2
- ( - 2*sqrt(b - c )*atan(------------------)*sin(a*x)*c
- 2 2
- sqrt(b - c )
- a*x
- tan(-----)*b + c
- 2 2 2 3 2
- - 2*sqrt(b - c )*atan(------------------)*b*c - cos(a*x)*b + cos(a*x)*b*c )/
- 2 2
- sqrt(b - c )
- 4 2 3 5 5 3 2 4
- (a*(sin(a*x)*b *c - 2*sin(a*x)*b *c + sin(a*x)*c + b - 2*b *c + b*c ))
- % Examples involving logarithms and circular functions.
- testint(sin log x,x);
- x*( - cos(log(x)) + sin(log(x)))
- ----------------------------------
- 2
- testint(cos log x,x);
- x*(cos(log(x)) + sin(log(x)))
- -------------------------------
- 2
- % Examples involving exponentials.
- testint(e**x,x);
- x
- e
- % 2.01 #3;
- testint(a**x,x);
- x
- a
- --------
- log(a)
- % 2.01 #4;
- testint(e**(a*x),x);
- a*x
- e
- ------
- a
- testint(e**(a*x)/x,x);
- ei(a*x)
- testint(1/(a+b*e**(m*x)),x);
- m*x
- - log(e *b + a) + m*x
- --------------------------
- a*m
- testint(e**(2*x)/(1+e**x),x);
- x x
- e - log(e + 1)
- testint(e**(2*x)*e**(a*x),x);
- a*x + 2*x
- e
- ------------
- a + 2
- testint(1/(a*e**(m*x)+b*e**(-m*x)),x);
- m*x
- e *a
- sqrt(b)*sqrt(a)*atan(-----------------)
- sqrt(b)*sqrt(a)
- -----------------------------------------
- a*b*m
- testint(x*e**(a*x),x);
- a*x
- e *(a*x - 1)
- ----------------
- 2
- a
- testint(x**20*e**x,x);
- x 20 19 18 17 16 15 14
- e *(x - 20*x + 380*x - 6840*x + 116280*x - 1860480*x + 27907200*x
- 13 12 11 10
- - 390700800*x + 5079110400*x - 60949324800*x + 670442572800*x
- 9 8 7
- - 6704425728000*x + 60339831552000*x - 482718652416000*x
- 6 5 4
- + 3379030566912000*x - 20274183401472000*x + 101370917007360000*x
- 3 2
- - 405483668029440000*x + 1216451004088320000*x - 2432902008176640000*x
- + 2432902008176640000)
- testint(a**x/b**x,x);
- x
- a
- ----------------------
- x
- b *(log(a) - log(b))
- testint(a**x*b**x,x);
- x x
- b *a
- -----------------
- log(a) + log(b)
- testint(a**x/x**2,x);
- x
- ei(log(a)*x)*log(a)*x - a
- ----------------------------
- x
- testint(x*a**x/(1+b*x)**2,x);
- x
- a *x
- int(-----------------------------------------------------------,x)*(log(a) - b)
- 2 2 3 2 2
- log(a)*b *x + 2*log(a)*b*x + log(a) - b *x - 2*b *x - b
- testint(x*e**(a*x)/(1+a*x)**2,x);
- a*x
- e
- --------------
- 2
- a *(a*x + 1)
- testint(x*k**(x**2),x);
- 2
- x
- k
- ----------
- 2*log(k)
- testint(e**(x**2),x);
- - sqrt(pi)*erf(i*x)*i
- ------------------------
- 2
- testint(x*e**(x**2),x);
- 2
- x
- e
- -----
- 2
- testint((x+1)*e**(1/x)/x**4,x);
- 1/x 2
- e *( - x + x - 1)
- ----------------------
- 2
- x
- testint((2*x**3+x)*(e**(x**2))**2*e**(1-x*e**(x**2))/(1-x*e**(x**2))**2,
- x);
- - e
- --------------------
- 2
- x 2
- e *x x
- e *(e *x - 1)
- testint(e**(e**(e**(e**x))),x);
- x
- e
- e
- e
- int(e ,x)
- % Examples involving exponentials and logarithms.
- testint(e**x*log x,x);
- x
- - ei(x) + e *log(x)
- testint(x*e**x*log x,x);
- x x x
- ei(x) + e *log(x)*x - e *log(x) - e
- testint(e**(2*x)*log(e**x),x);
- 2*x
- e *(2*x - 1)
- ----------------
- 4
- % Examples involving square roots.
- testint(sqrt(2)*x**2 + 2*x,x);
- 2
- x *(sqrt(2)*x + 3)
- --------------------
- 3
- testint(log x/sqrt(a*x+b),x);
- (2*(sqrt(a*x + b)*log(x) - 2*sqrt(a*x + b)
- + 2*sqrt(b)*log( - sqrt(a*x + b) - sqrt(b)) - sqrt(b)*log(x)))/a
- u:=sqrt(a+b*x);
- u := sqrt(a + b*x)
- v:=sqrt(c+d*x);
- v := sqrt(c + d*x)
- testint(u*v,x);
- 2 2
- (sqrt(c + d*x)*sqrt(a + b*x)*a*b*d + sqrt(c + d*x)*sqrt(a + b*x)*b *c*d
- 2 2
- + 2*sqrt(c + d*x)*sqrt(a + b*x)*b *d *x
- sqrt(d)*sqrt(a + b*x) + sqrt(b)*sqrt(c + d*x) 2 2
- - sqrt(d)*sqrt(b)*log(-----------------------------------------------)*a *d +
- sqrt(a*d - b*c)
- sqrt(d)*sqrt(a + b*x) + sqrt(b)*sqrt(c + d*x)
- 2*sqrt(d)*sqrt(b)*log(-----------------------------------------------)*a*b*c*d
- sqrt(a*d - b*c)
- sqrt(d)*sqrt(a + b*x) + sqrt(b)*sqrt(c + d*x) 2 2
- - sqrt(d)*sqrt(b)*log(-----------------------------------------------)*b *c )/
- sqrt(a*d - b*c)
- 2 2
- (4*b *d )
- testint(u,x);
- 2*sqrt(a + b*x)*(a + b*x)
- ---------------------------
- 3*b
- testint(x*u,x);
- 2 2 2
- 2*sqrt(a + b*x)*( - 2*a + a*b*x + 3*b *x )
- ---------------------------------------------
- 2
- 15*b
- testint(x**2*u,x);
- 3 2 2 2 3 3
- 2*sqrt(a + b*x)*(8*a - 4*a *b*x + 3*a*b *x + 15*b *x )
- ----------------------------------------------------------
- 3
- 105*b
- testint(u/x,x);
- 2*sqrt(a + b*x) - sqrt(a)*log( - sqrt(a + b*x) - sqrt(a))
- + sqrt(a)*log( - sqrt(a + b*x) + sqrt(a))
- testint(u/x**2,x);
- ( - 2*sqrt(a + b*x)*a - sqrt(a)*log( - sqrt(a + b*x) - sqrt(a))*b*x
- + sqrt(a)*log( - sqrt(a + b*x) + sqrt(a))*b*x)/(2*a*x)
- testint(1/u,x);
- 2*sqrt(a + b*x)
- -----------------
- b
- testint(x/u,x);
- 2*sqrt(a + b*x)*( - 2*a + b*x)
- --------------------------------
- 2
- 3*b
- testint(x**2/u,x);
- 2 2 2
- 2*sqrt(a + b*x)*(8*a - 4*a*b*x + 3*b *x )
- --------------------------------------------
- 3
- 15*b
- testint(1/(x*u),x);
- sqrt(a)*( - log( - sqrt(a + b*x) - sqrt(a)) + log( - sqrt(a + b*x) + sqrt(a)))
- --------------------------------------------------------------------------------
- a
- testint(1/(x**2*u),x);
- ( - 2*sqrt(a + b*x)*a + sqrt(a)*log( - sqrt(a + b*x) - sqrt(a))*b*x
- 2
- - sqrt(a)*log( - sqrt(a + b*x) + sqrt(a))*b*x)/(2*a *x)
- testint(u**p,x);
- p/2
- 2*(a + b*x) *(a + b*x)
- --------------------------
- b*(p + 2)
- testint(x*u**p,x);
- p/2 2 2 2 2 2
- 2*(a + b*x) *( - 2*a + a*b*p*x + b *p*x + 2*b *x )
- --------------------------------------------------------
- 2 2
- b *(p + 6*p + 8)
- testint(atan((-sqrt(2)+2*x)/sqrt(2)),x);
- sqrt(2) - 2*x sqrt(2) - 2*x
- (2*sqrt(2)*atan(---------------) - 4*atan(---------------)*x
- sqrt(2) sqrt(2)
- 2
- - sqrt(2)*log(sqrt(2)*x - x - 1))/4
- testint(1/sqrt(x**2-1),x);
- 2
- log(sqrt(x - 1) + x)
- testint(sqrt(x+1)*sqrt x,x);
- 2*sqrt(x)*sqrt(x + 1)*x + sqrt(x)*sqrt(x + 1) - log(sqrt(x + 1) + sqrt(x))
- ----------------------------------------------------------------------------
- 4
- testint(sin(sqrt x),x);
- 2*( - sqrt(x)*cos(sqrt(x)) + sin(sqrt(x)))
- testint(x*(1-x^2)^(-9/4),x);
- 2 1/4
- - 2*( - x + 1)
- ----------------------------
- 2 2
- 5*sqrt( - x + 1)*(x - 1)
- testint(x/sqrt(1-x^4),x);
- 2
- asin(x )
- ----------
- 2
- testint(1/(x*sqrt(1+x^4)),x);
- 4 2 4 2
- log(sqrt(x + 1) + x - 1) - log(sqrt(x + 1) + x + 1)
- ---------------------------------------------------------
- 2
- testint(x/sqrt(1+x^2+x^4),x);
- 4 2 2
- 2*sqrt(x + x + 1) + 2*x + 1
- log(--------------------------------)
- sqrt(3)
- ---------------------------------------
- 2
- testint(1/(x*sqrt(x^2-1-x^4)),x);
- 4 2
- sqrt( - x + x - 1)
- - int(----------------------,x)
- 5 3
- x - x + x
- % Examples from James Davenport's thesis:
- testint(1/sqrt(x**2-1)+10/sqrt(x**2-4),x);
- 2
- 2 sqrt(x - 4) + x
- log(sqrt(x - 1) + x) + 10*log(------------------)
- 2
- % p. 173
- testint(sqrt(x+sqrt(x**2+a**2))/x,x);
- 2 2
- sqrt(sqrt(a + x ) + x)
- int(-------------------------,x)
- x
- % Examples generated by differentiating various functions.
- testint(df(sqrt(1+x**2)/(1-x),x),x);
- 2
- - sqrt(x + 1)
- -----------------
- x - 1
- testint(df(log(x+sqrt(1+x**2)),x),x);
- 2
- log(sqrt(x + 1) + x)
- testint(df(sqrt(x)+sqrt(x+1)+sqrt(x+2),x),x);
- sqrt(x + 2) + sqrt(x + 1) + sqrt(x)
- testint(df(sqrt(x**5-2*x+1)-sqrt(x**3+1),x),x);
- 5 3
- sqrt(x - 2*x + 1) - sqrt(x + 1)
- % Another such example from James Davenport's thesis (p. 146).
- % It contains a point of order 3, which is found by use of Mazur's
- % bound on the torsion of elliptic curves over the rationals;
- testint(df(log(1+sqrt(x**3+1)),x),x);
- 3
- sqrt(x + 1)
- 3*( - int(--------------,x) + log(x))
- 4
- x + x
- ---------------------------------------
- 2
- % Examples quoted by Joel Moses:
- testint(1/sqrt(2*h*r**2-alpha**2),r);
- 2 2
- sqrt( - alpha + 2*h*r ) + sqrt(h)*sqrt(2)*r
- sqrt(h)*sqrt(2)*log(----------------------------------------------)
- alpha
- ---------------------------------------------------------------------
- 2*h
- testint(1/(r*sqrt(2*h*r**2-alpha**2-epsilon**2)),r);
- 2 2
- (2*sqrt(alpha + epsilon )
- 2 2 2
- sqrt( - alpha - epsilon + 2*h*r ) + sqrt(h)*sqrt(2)*r 2
- *atan(---------------------------------------------------------))/(alpha
- 2 2
- sqrt(alpha + epsilon )
- 2
- + epsilon )
- testint(1/(r*sqrt(2*h*r**2-alpha**2-2*k*r)),r);
- 2 2
- sqrt(h)*sqrt( - alpha + 2*h*r - 2*k*r)*sqrt(2) + 2*h*r
- 2*atan(----------------------------------------------------------)
- sqrt(h)*sqrt(2)*alpha
- --------------------------------------------------------------------
- alpha
- testint(1/(r*sqrt(2*h*r**2-alpha**2-epsilon**2-2*k*r)),r);
- 2 2
- (2*sqrt(alpha + epsilon )
- 2 2 2
- sqrt(h)*sqrt( - alpha - epsilon + 2*h*r - 2*k*r)*sqrt(2) + 2*h*r
- *atan(---------------------------------------------------------------------))/(
- 2 2
- sqrt(h)*sqrt(alpha + epsilon )*sqrt(2)
- 2 2
- alpha + epsilon )
- testint(r/sqrt(2*e*r**2-alpha**2),r);
- 2 2
- sqrt( - alpha + 2*e*r )
- --------------------------
- 2*e
- testint(r/sqrt(2*e*r**2-alpha**2-epsilon**2),r);
- 2 2 2
- sqrt( - alpha + 2*e*r - epsilon )
- -------------------------------------
- 2*e
- testint(r/sqrt(2*e*r**2-alpha**2-2*k*r**4),r);
- 2
- e*i - 2*i*k*r
- sqrt(k)*sqrt(2)*asinh(--------------------------)*i
- 2 2
- sqrt( - 2*alpha *k + e )
- -----------------------------------------------------
- 4*k
- testint(r/sqrt(2*e*r**2-alpha**2-2*k*r),r);
- 2 2
- (2*sqrt( - alpha + 2*e*r - 2*k*r)*e + sqrt(e)*sqrt(2)
- 2 2
- sqrt(e)*sqrt( - alpha + 2*e*r - 2*k*r)*sqrt(2) + 2*e*r - k 2
- *log(--------------------------------------------------------------)*k)/(4*e )
- 2 2
- sqrt(2*alpha *e + k )
- testint(1/(r*sqrt(2*h*r**2-alpha**2-2*k*r**4)),r);
- 2 2 4
- sqrt( - alpha + 2*h*r - 2*k*r )
- - int(-----------------------------------,r)
- 2 3 5
- alpha *r - 2*h*r + 2*k*r
- testint(1/(r*sqrt(2*h*r**2-alpha**2-epsilon**2-2*k*r**4)),r);
- 2 2 2 4
- sqrt( - alpha - epsilon + 2*h*r - 2*k*r )
- - int(----------------------------------------------,r)
- 2 2 3 5
- alpha *r + epsilon *r - 2*h*r + 2*k*r
- Comment many of these integrals used to require Steve Harrington's
- code to evaluate. They originated in Novosibirsk as examples
- of using Analytik. There are still a few examples that could
- be evaluated using better heuristics;
- testint(a*sin(3*x+5)**2*cos(3*x+5),x);
- 3
- sin(3*x + 5) *a
- -----------------
- 9
- testint(log(x**2)/x**3,x);
- 2
- - (log(x ) + 1)
- ------------------
- 2
- 2*x
- testint(x*sin(x+a),x);
- - cos(a + x)*x + sin(a + x)
- testint((log(x)*(1-x)-1)/(e**x*log(x)**2),x);
- x
- -----------
- x
- e *log(x)
- testint(x**3*(a*x**2+b)**(-1),x);
- 2 2
- - log(a*x + b)*b + a*x
- ---------------------------
- 2
- 2*a
- testint(x**(1/2)*(x+1)**(-7/2),x);
- 2 2
- (2*( - 2*sqrt(x + 1)*x - 4*sqrt(x + 1)*x - 2*sqrt(x + 1) + 2*sqrt(x)*x
- 2
- + 5*sqrt(x)*x))/(15*sqrt(x + 1)*(x + 2*x + 1))
- testint(x**(-1)*(x+1)**(-1),x);
- - log(x + 1) + log(x)
- testint(x**(-1/2)*(2*x-1)**(-1),x);
- sqrt(2)*(log(2*sqrt(x) - sqrt(2)) - log(2*sqrt(x) + sqrt(2)))
- ---------------------------------------------------------------
- 2
- testint((x**2+1)*x**(1/2),x);
- 2
- 2*sqrt(x)*x*(3*x + 7)
- ------------------------
- 21
- testint(x**(-1)*(x-a)**(1/3),x);
- 1/6 1/6
- 2*( - a + x) - a *sqrt(3)
- ( - 2*sqrt(3)*atan(--------------------------------)*a
- 1/6
- a
- 1/6 1/6
- 2*( - a + x) + a *sqrt(3) 2/3 1/3
- + 2*sqrt(3)*atan(--------------------------------)*a + 6*a *( - a + x)
- 1/6
- a
- 1/3 1/3
- - 2*log(( - a + x) + a )*a
- 1/6 1/6 1/3 1/3
- + log( - a *( - a + x) *sqrt(3) + ( - a + x) + a )*a
- 1/6 1/6 1/3 1/3 2/3
- + log(a *( - a + x) *sqrt(3) + ( - a + x) + a )*a)/(2*a )
- testint(x*sinh(x),x);
- cosh(x)*x - sinh(x)
- testint(x*cosh(x),x);
- - cosh(x) + sinh(x)*x
- testint(sinh(2*x)/cosh(2*x),x);
- log(cosh(2*x))
- ----------------
- 2
- testint((i*eps*sinh x-1)/(eps*i*cosh x+i*a-x),x);
- log(cosh(x)*eps*i + a*i - x)
- testint(sin(2*x+3)*cos(x)**2,x);
- 2
- ( - 4*cos(2*x + 3)*cos(x)*sin(x)*x + 2*cos(2*x + 3)*sin(x) - 3*cos(2*x + 3)
- 2
- - 4*sin(2*x + 3)*sin(x) *x + 2*sin(2*x + 3)*x + 3)/8
- testint(x*atan(x),x);
- 2
- atan(x)*x + atan(x) - x
- --------------------------
- 2
- testint(x*acot(x),x);
- 2
- acot(x)*x + acot(x) + x
- --------------------------
- 2
- testint(x*log(x**2+a),x);
- 2 2 2 2
- log(a + x )*a + log(a + x )*x - x
- -------------------------------------
- 2
- testint(sin(x+a)*cos(x),x);
- - cos(a + x)*cos(x) - cos(a + x)*sin(x)*x + cos(x)*sin(a + x)*x
- ------------------------------------------------------------------
- 2
- testint(cos(x+a)*sin(x),x);
- - cos(a + x)*cos(x) + cos(a + x)*sin(x)*x - cos(x)*sin(a + x)*x
- ------------------------------------------------------------------
- 2
- testint((1+sin(x))**(1/2),x);
- int(sqrt(sin(x) + 1),x)
- testint((1-sin(x))**(1/2),x);
- int(sqrt( - sin(x) + 1),x)
- testint((1+cos(x))**(1/2),x);
- int(sqrt(cos(x) + 1),x)
- testint((1-cos(x))**(1/2),x);
- int(sqrt( - cos(x) + 1),x)
- testint(1/(x**(1/2)-(x-1)**(1/2)),x);
- 2*(sqrt(x - 1)*x - sqrt(x - 1) + sqrt(x)*x)
- ---------------------------------------------
- 3
- testint(1/(1-(x+1)**(1/2)),x);
- - 2*(sqrt(x + 1) + log(sqrt(x + 1) - 1))
- testint(x/(x**4+36)**(1/2),x);
- 4 2
- sqrt(x + 36) + x
- log(--------------------)
- 6
- ---------------------------
- 2
- testint(1/(x**(1/3)+x**(1/2)),x);
- 1/6 1/3 1/6
- 6*x - 3*x + 2*sqrt(x) - 6*log(x + 1)
- testint(log(2+3*x**2),x);
- 3*x 2
- 2*sqrt(6)*atan(---------) + 3*log(3*x + 2)*x - 6*x
- sqrt(6)
- -----------------------------------------------------
- 3
- testint(cot(x),x);
- x 2 x
- - log(tan(---) + 1) + log(tan(---))
- 2 2
- testint(cot x**4,x);
- 3
- - cot(x) + 3*cot(x) + 3*x
- -----------------------------
- 3
- testint(tanh(x),x);
- 2*x
- log(e + 1) - x
- testint(coth(x),x);
- x x
- log(e - 1) + log(e + 1) - x
- testint(b**x,x);
- x
- b
- --------
- log(b)
- testint((x**4+x**(-4)+2)**(1/2),x);
- 4
- x - 3
- --------
- 3*x
- testint((2*x+1)/(3*x+2),x);
- - log(3*x + 2) + 6*x
- -----------------------
- 9
- testint(x*log(x+(x**2+1)**(1/2)),x);
- 2 2 2 2
- - sqrt(x + 1)*x + 2*log(sqrt(x + 1) + x)*x + log(sqrt(x + 1) + x)
- ------------------------------------------------------------------------
- 4
- testint(x*(e**x*sin(x)+1)**2,x);
- 2*x 2*x x x
- ( - 2*e *cos(x)*sin(x)*x + e *cos(x)*sin(x) - 8*e *cos(x)*x + 8*e *cos(x)
- 2*x 2 2*x 2*x x 2
- + 2*e *sin(x) *x + e *x - e + 8*e *sin(x)*x + 4*x )/8
- testint(x*e**x*cos(x),x);
- x
- e *(cos(x)*x + sin(x)*x - sin(x))
- -----------------------------------
- 2
- Comment the following set came from Herbert Stoyan;
- testint(1/(x-3)**4,x);
- - 1
- ---------------------------
- 3 2
- 3*(x - 9*x + 27*x - 27)
- testint(x/(x**3-1),x);
- 2*x + 1 2
- 2*sqrt(3)*atan(---------) - log(x + x + 1) + 2*log(x - 1)
- sqrt(3)
- ------------------------------------------------------------
- 6
- testint(x/(x**4-1),x);
- 2
- - log(x + 1) + log(x - 1) + log(x + 1)
- ------------------------------------------
- 4
- testint(log(x)*(x**3+1)/(x**4+2),x);
- log(x) log(x) 2
- - 4*int(----------,x) + 2*int(--------,x) + log(x)
- 5 4
- x + 2*x x + 2
- ------------------------------------------------------
- 2
- testint(log(x)+log(x+1)+log(x+2),x);
- log(x + 2)*x + 2*log(x + 2) + log(x + 1)*x + log(x + 1) + log(x)*x - 3*x
- testint(1/(x**3+5),x);
- 1/3
- 1/3 5 - 2*x 2/3 1/3 2
- (5 *( - 2*sqrt(3)*atan(--------------) - log(5 - 5 *x + x )
- 1/3
- sqrt(3)*5
- 1/3
- + 2*log(5 + x)))/30
- testint(1/sqrt(1+x**2),x);
- 2
- log(sqrt(x + 1) + x)
- testint(sqrt(x**2+3),x);
- 2
- 2 sqrt(x + 3) + x
- sqrt(x + 3)*x + 3*log(------------------)
- sqrt(3)
- --------------------------------------------
- 2
- testint(x/(x+1)**2,x);
- log(x + 1)*x + log(x + 1) - x
- -------------------------------
- x + 1
- COMMENT The following integrals were used among others as a test of
- Moses' SIN program;
- testint(asin x,x);
- 2
- asin(x)*x + sqrt( - x + 1)
- testint(x**2*asin x,x);
- 2
- int(asin(x)*x ,x)
- testint(sec x**2/(1+sec x**2-3*tan x),x);
- x x
- log( - sqrt(5) + 2*tan(---) + 1) - log( - sqrt(2) + tan(---) + 1)
- 2 2
- x x
- + log(sqrt(5) + 2*tan(---) + 1) - log(sqrt(2) + tan(---) + 1)
- 2 2
- testint(1/sec x**2,x);
- cos(x)*sin(x) + x
- -------------------
- 2
- testint((5*x**2-3*x-2)/(x**2*(x-2)),x);
- 3*log(x - 2)*x + 2*log(x)*x - 1
- ---------------------------------
- x
- testint(1/(4*x**2+9)**(1/2),x);
- 2
- sqrt(4*x + 9) + 2*x
- log(----------------------)
- 3
- -----------------------------
- 2
- testint((x**2+4)**(-1/2),x);
- 2
- sqrt(x + 4) + x
- log(------------------)
- 2
- testint(1/(9*x**2-12*x+10),x);
- 3*x - 2
- sqrt(6)*atan(---------)
- sqrt(6)
- -------------------------
- 18
- testint(1/(x**8-2*x**7+2*x**6-2*x**5+x**4),x);
- 2 4 2 3 4 3
- (3*log(x + 1)*x - 3*log(x + 1)*x - 30*log(x - 1)*x + 30*log(x - 1)*x
- 4 3 4 2 3
- + 24*log(x)*x - 24*log(x)*x - 30*x + 12*x + 8*x + 4)/(12*x *(x - 1))
- testint((a*x**3+b*x**2+c*x+d)/((x+1)*x*(x-3)),x);
- (27*log(x - 3)*a + 9*log(x - 3)*b + 3*log(x - 3)*c + log(x - 3)*d
- - 3*log(x + 1)*a + 3*log(x + 1)*b - 3*log(x + 1)*c + 3*log(x + 1)*d
- - 4*log(x)*d + 12*a*x)/12
- testint(1/(2-log(x**2+1))**5,x);
- 2 5 2 4 2 3 2 2
- - int(1/(log(x + 1) - 10*log(x + 1) + 40*log(x + 1) - 80*log(x + 1)
- 2
- + 80*log(x + 1) - 32),x)
- % The next integral appeared in Risch's 1968 paper.
- testint(2*x*e**(x**2)*log(x)+e**(x**2)/x+(log(x)-2)/(log(x)**2+x)**2+
- ((2/x)*log(x)+(1/x)+1)/(log(x)**2+x),x);
- 2 2
- x 3 x 2 2 2
- (e *log(x) + e *log(x)*x + log(log(x) + x)*log(x) + log(log(x) + x)*x
- 2
- - log(x))/(log(x) + x)
- % The following integral would not evaluate in REDUCE 3.3.
- testint(exp(x*ze+x/2)*sin(pi*ze)**4*x**4,ze);
- (2*x*ze + x)/2 3 3 3
- (e *x *( - 16*cos(pi*ze)*sin(pi*ze) *pi *x
- 3 3 3
- - 4*cos(pi*ze)*sin(pi*ze) *pi*x - 24*cos(pi*ze)*sin(pi*ze)*pi *x
- 4 2 2 4 4 2 2 2 4
- + 4*sin(pi*ze) *pi *x + sin(pi*ze) *x + 12*sin(pi*ze) *pi *x + 24*pi ))/
- 4 2 2 4
- (64*pi + 20*pi *x + x )
- % This one evaluates:
- testint(erf(x),x);
- 2
- x
- e *erf(x)*pi*x + sqrt(pi)
- ----------------------------
- 2
- x
- e *pi
- % So why not this one?
- testint(erf(x+a),x);
- int(erf(a + x),x)
- Comment here is an example of using the integrator with pattern
- matching;
- for all m,n let int(k1**m*log(k1)**n/(p**2-k1**2),k1)=foo(m,n),
- int(k1*log(k1)**n/(p**2-k1**2),k1)=foo(1,n),
- int(k1**m*log(k1)/(p**2-k1**2),k1)=foo(m,1),
- int(k1*log(k1)/(p**2-k1**2),k1)=foo(1,1),
- int(log(k1)**n/(k1*(p**2-k1**2)),k1)=foo(-1,n);
- int(k1**2*log(k1)/(p**2-k1**2),k1);
- *** foo declared operator
- foo(2,1)
- COMMENT It is interesting to see how much of this one can be done;
- let f1s= (12*log(s/mc**2)*s**2*pi**2*mc**3*(-8*s-12*mc**2+3*mc)
- + pi**2*(12*s**4*mc+3*s**4+176*s**3*mc**3-24*s**3*mc**2
- -144*s**2*mc**5-48*s*mc**7+24*s*mc**6+4*mc**9-3*mc**8))
- /(384*e**(s/y)*s**2);
- int(f1s,s);
- 2 s/y - s 9 s/y - s 8
- (pi *( - 4*e *ei(------)*mc *s + 3*e *ei(------)*mc *s
- y y
- s/y - s 7 s/y - s 6
- - 48*e *ei(------)*mc *s*y + 24*e *ei(------)*mc *s*y
- y y
- s/y - s 5 2 s/y - s 4 2
- - 144*e *ei(------)*mc *s*y + 36*e *ei(------)*mc *s*y
- y y
- s/y - s 3 3 s 5 2
- - 96*e *ei(------)*mc *s*y + 144*log(-----)*mc *s*y
- y 2
- mc
- s 4 2 s 3 2 2
- - 36*log(-----)*mc *s*y + 96*log(-----)*mc *s *y
- 2 2
- mc mc
- s 3 3 9 8 5 2
- + 96*log(-----)*mc *s*y - 4*mc *y + 3*mc *y + 144*mc *s*y
- 2
- mc
- 3 2 2 3 3 2 2 2 2 3 3 2
- - 176*mc *s *y - 80*mc *s*y + 24*mc *s *y + 24*mc *s*y - 12*mc*s *y
- 2 3 4 3 2 2 3 4 s/y
- - 24*mc*s *y - 24*mc*s*y - 3*s *y - 6*s *y - 6*s*y ))/(384*e *s*y)
- factor ei,log;
- ws;
- s/y - s 3 2
- (e *ei(------)*mc *pi *s
- y
- 6 5 4 3 2 2 2 3
- *( - 4*mc + 3*mc - 48*mc *y + 24*mc *y - 144*mc *y + 36*mc*y - 96*y )
- s 3 2 2 2 2 9
- + 12*log(-----)*mc *pi *s*y *(12*mc - 3*mc + 8*s + 8*y) + pi *y*( - 4*mc
- 2
- mc
- 8 5 3 2 3 2 2 2
- + 3*mc + 144*mc *s*y - 176*mc *s *y - 80*mc *s*y + 24*mc *s *y
- 2 2 3 2 2 3 3 2 2
- + 24*mc *s*y - 12*mc*s *y - 24*mc*s *y - 24*mc*s*y - 3*s *y - 6*s *y
- 3 s/y
- - 6*s*y ))/(384*e *s*y)
- Comment the following integrals reveal deficiencies in the current
- integrator;
- %high degree denominator;
- %testint(1/(2-log(x**2+1))**5,x);
- %this example should evaluate;
- testint(sin(2*x)/cos(x),x);
- sin(2*x)
- int(----------,x)
- cos(x)
- %this example, which appeared in Tobey's thesis, needs factorization
- %over algebraic fields. It currently gives an ugly answer and so has
- %been suppressed;
- % testint((7*x**13+10*x**8+4*x**7-7*x**6-4*x**3-4*x**2+3*x+3)/
- % (x**14-2*x**8-2*x**7-2*x**4-4*x**3-x**2+2*x+1),x);
- symbolic summarize!-integral!-test();
- ***** SUMMARY OF INTEGRAL TESTS *****
- Number of integrals tested: 278
- Total time taken: 19320 ms
- Number of garbage collections: 38
- Number of incorrect integrals: 0
- Number of unevaluated integrals: 21
- Integrands of unevaluated integrals are:
- log(log(log(log(x))))
- p
- sin(x)
- 4 3
- tan(x) *x
- 6 3
- tan(x) *x
- xi
- cos(--------)*cos(x)*x
- sin(x)
- ------------------------
- 2
- sin(x)
- x
- a *x
- -------------------
- 2 2
- b *x + 2*b*x + 1
- x
- e
- e
- e
- e
- 1
- ------------------------
- 4 2
- sqrt( - x + x - 1)*x
- 2 2
- sqrt(sqrt(a + x ) + x)
- -------------------------
- x
- 2
- 3*x
- ---------------------------
- 3 3
- 2*sqrt(x + 1) + 2*x + 2
- 1
- -------------------------------------
- 2 2 4
- sqrt( - alpha + 2*h*r - 2*k*r )*r
- 1
- ------------------------------------------------
- 2 2 2 4
- sqrt( - alpha - epsilon + 2*h*r - 2*k*r )*r
- sqrt(sin(x) + 1)
- sqrt( - sin(x) + 1)
- sqrt(cos(x) + 1)
- sqrt( - cos(x) + 1)
- 3
- log(x)*x + log(x)
- --------------------
- 4
- x + 2
- 2
- asin(x)*x
- 2 5 2 4 2 3 2 2
- ( - 1)/(log(x + 1) - 10*log(x + 1) + 40*log(x + 1) - 80*log(x + 1)
- 2
- + 80*log(x + 1) - 32)
- erf(a + x)
- sin(2*x)
- ----------
- cos(x)
- end;
- 4: 4: 4: 4: 4: 4: 4: 4: 4:
- Time for test: 19340 ms, plus GC time: 1060 ms
- 5: 5:
- Quitting
- Sun Jan 3 23:46:20 MET 1999
|