1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- module kredelw; % Kredel Weispfenning algorithm.
- % Author: H.Melenk (ZIB Berlin)
- fluid '(vdpsortmode!* !*groebopt !*gsugar);
- symbolic procedure gdimension_eval u;
- begin integer n,m;
- for each s in cdr gindependent_seteval u
- do if (m:=length cdr s)>n then n:=m;
- return n;
- end;
- put('gdimension,'psopfn,'gdimension_eval);
-
- symbolic procedure gindependent_seteval pars;
- % Independent set algorithm (Kredel/Weispfenning).
- % parameters:
- % 1 Groebner basis
- % 2 optional: list of variables
- begin scalar vars,u,v,w,oldorder,!*factor,!*exp,!*gsugar,
- !*groebopt;
- !*exp := t;
- u := reval car pars;
- v := if cdr pars then reval cadr pars else nil;
- w := for each j in groerevlist u
- collect if eqexpr j then !*eqn2a j else j;
- if null w then rerror(groebnr2,3,"Empty list");
- vars := if null v then
- for each j in gvarlis w collect !*a2k j
- else groerevlist v;
- if not vars then return '(list);
- oldorder := vdpinit vars;
- w:=for each j in w collect vdpevlmon a2vdp j;
- vars:=for each y in vars collect y.vdpevlmon a2vdp y;
- w:=groebkwprec(vars,nil,w,nil);
- return 'list. for each s in w collect
- 'list. reversip for each x in s collect car x;
- end;
- put('gindependent_sets,'psopfn,'gindependent_seteval);
- symbolic procedure groebkwprec(vars,s,lt,m);
- % recursive Kredel Weispfennig algorithm.
- % vars: unprocessed variables,
- % s: current subset of s,
- % lt: leading term basis,
- % m: collection of independent sets so far.
- % returns: updated m.
- begin scalar x,s1,bool;
- s1:=for each y in s collect cdr y;
- while vars do
- <<x:=car vars; vars:= cdr vars;
- if groebkwprec1(cdr x.s1,lt) then
- m:=groebkwprec(vars,x.s,lt,m);
- >>;
- bool:=t;
- for each y in m do % bool and not subsetp(s,y);
- bool:=bool and not(length s=length intersection(s,y));
- return if bool then s.m else m;
- end;
- symbolic procedure groebkwprec1(s,lt);
- % t if intersection of T(s) and lt is empty.
- if null lt then t else
- groebkwprec2(s,car lt) and groebkwprec1(s,cdr lt);
- symbolic procedure groebkwprec2(s,mon);
- % t if monomial not in T(s).
- <<for each m in s do mon:=vevcan0(m,mon);
- not vevzero!? mon>>;
- symbolic procedure vevcan0(m,mon);
- % divide multiples of m1 out of mon.
- if vevzero!? m then mon else
- if vevzero!? mon then nil else
- (if car m neq 0 then 0 else car mon).vevcan0(cdr m,cdr mon);
- endmodule;
- end;
|