applysym.tex 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158
  1. \documentclass[12pt]{article}
  2. %Sets size of page and margins
  3. \oddsidemargin -8mm \evensidemargin -8mm
  4. \topmargin 0pt \headheight 0pt \headsep 0pt
  5. \textheight 23cm \textwidth 17cm
  6. \title{Programs for Applying Symmetries of PDEs}
  7. \author{Thomas Wolf \\
  8. School of Mathematical Sciences \\
  9. Queen Mary and Westfield College \\
  10. University of London \\
  11. London E1 4NS \\
  12. T.Wolf@maths.qmw.ac.uk
  13. }
  14. \begin{document}
  15. \maketitle
  16. \begin{abstract}
  17. In this paper the programs {\tt APPLYSYM}, {\tt QUASILINPDE} and
  18. {\tt DETRAFO} are described which aim at the utilization
  19. of infinitesimal symmetries of differential equations. The purpose
  20. of {\tt QUASILINPDE} is the general solution of
  21. quasilinear PDEs. This procedure is used by {\tt APPLYSYM}
  22. for the application of point symmetries for either
  23. \begin{itemize}
  24. \item calculating similarity variables to perform a point transformation
  25. which lowers the order of an ODE or effectively reduces the number of
  26. explicitly occuring independent variables in a PDE(-system) or for
  27. \item generalizing given special solutions of ODEs / PDEs with new constant
  28. parameters.
  29. \end{itemize}
  30. The program {\tt DETRAFO} performs arbitrary point- and contact
  31. transformations of ODEs / PDEs and is applied if similarity
  32. and symmetry variables have been found.
  33. The program {\tt APPLYSYM} is used in connection with the program
  34. {\tt LIEPDE} for formulating and solving the conditions for point- and
  35. contact symmetries which is described in \cite{LIEPDE}.
  36. The actual problem solving is done in all these programs through a call
  37. to the package {\tt CRACK} for solving overdetermined PDE-systems.
  38. \end{abstract}
  39. \tableofcontents
  40. %-------------------------------------------------------------------------
  41. \section{Introduction and overview of the symmetry \\ method}
  42. The investigation of infinitesimal symmetries of differential equations
  43. (DEs) with computer algebra programs attrackted considerable attention
  44. over the last years. Corresponding programs are available in all
  45. major computer algebra systems. In a review article by W.\ Hereman
  46. \cite{WHer} about 200 references are given, many of them describing related
  47. software.
  48. One reason for the popularity of the symmetry method
  49. is the fact that Sophus Lie's method
  50. \cite{lie1},\cite{lie2} is the most widely
  51. used method for computing exact solutions of non-linear DEs. Another reason is
  52. that the first step in this
  53. method, the formulation of the determining equation for the generators
  54. of the symmetries, can already be very cumbersome, especially in the
  55. case of PDEs of higher order and/or in case of many dependent and independent
  56. variables. Also, the formulation of the conditions is a straight forward
  57. task involving only differentiations and basic algebra - an ideal task for
  58. computer algebra systems. Less straight forward is the automatic solution
  59. of the symmetry conditions which is the strength of the program {\tt LIEPDE}
  60. (for a comparison with another program see \cite{LIEPDE}).
  61. The novelty described in this paper are programs aiming at
  62. the final third step: Applying symmetries for
  63. \begin{itemize}
  64. \item calculating similarity variables to perform a point transformation
  65. which lowers the order of an ODE or effectively reduces the number of
  66. explicitly occuring independent variables of a PDE(-system) or for
  67. \item generalizing given special solutions of ODEs/PDEs with new constant
  68. parameters.
  69. \end{itemize}
  70. Programs which run on their own but also allow interactive user control
  71. are indispensible for these calculations. On one hand the calculations can
  72. become quite lengthy, like variable transformations of PDEs (of higher order,
  73. with many variables). On the other hand the freedom of choosing the right
  74. linear combination of symmetries and choosing the optimal new symmetry- and
  75. similarity variables makes it necessary to `play' with the problem
  76. interactively.
  77. The focus in this paper is directed on questions of implementation and
  78. efficiency, no principally new mathematics is presented.
  79. In the following subsections a review of the first two steps of the symmetry
  80. method is given as well as the third, i.e.\ the application step is outlined.
  81. Each of the remaining sections is devoted to one procedure.
  82. %---------------------------------------
  83. \subsection{The first step: Formulating the symmetry conditions}
  84. To obey classical Lie-symmetries, differential equations
  85. \begin{equation}
  86. H_A = 0 \label{PDEs}
  87. \end{equation}
  88. for unknown functions $y^\alpha,\;\;1\leq \alpha \leq p$
  89. of independent variables $x^i,\;\;1\leq i \leq q$
  90. must be forminvariant against infinitesimal transformations
  91. \begin{equation}
  92. \tilde{x}^i = x^i + \varepsilon \xi^i, \;\; \;\;\;
  93. \tilde{y}^\alpha = y^\alpha + \varepsilon \eta^\alpha \label{tran}
  94. \end{equation}
  95. in first order of $\varepsilon.$ To transform the equations (\ref{PDEs})
  96. by (\ref{tran}), derivatives of $y^\alpha$ must be transformed, i.e. the part
  97. linear in $\varepsilon$ must be determined. The corresponding formulas are
  98. (see e.g. \cite{Olv}, \cite{Step})
  99. \begin{eqnarray}
  100. \tilde{y}^\alpha_{j_1\ldots j_k} & = &
  101. y^\alpha_{j_1\ldots j_k} + \varepsilon
  102. \eta^\alpha_{j_1\ldots j_k} + O(\varepsilon^2) \nonumber \\ \vspace{3mm}
  103. \eta^\alpha_{j_1\ldots j_{k-1}j_k} & = &
  104. \frac{D \eta^\alpha_{j_1\ldots j_{k-1}}}{D x^k} -
  105. y^\alpha_{ij_1\ldots j_{k-1}}\frac{D \xi^i}{D x^k} \label{recur}
  106. \end{eqnarray}
  107. where $D/Dx^k$ means total differentiation w.r.t.\ $x^k$ and
  108. from now on lower latin indices of functions $y^\alpha,$
  109. (and later $u^\alpha$)
  110. denote partial differentiation w.r.t.\ the independent variables $x^i,$
  111. (and later $v^i$).
  112. The complete symmetry condition then takes the form
  113. \begin{eqnarray}
  114. X H_A & = & 0 \;\; \; \; \mbox{mod} \; \; \; H_A = 0\ \label{sbed1} \\
  115. X & = & \xi^i \frac{\partial}{\partial x^i} +
  116. \eta^\alpha \frac{\partial}{\partial y^\alpha} +
  117. \eta^\alpha_m \frac{\partial}{\partial y^\alpha_m} +
  118. \eta^\alpha_{mn} \frac{\partial}{\partial y^\alpha_{mn}} + \ldots +
  119. \eta^\alpha_{mn\ldots p} \frac{\partial}{\partial y^\alpha_{mn\ldots p}}.
  120. \label{sbed2}
  121. \end{eqnarray}
  122. where mod $H_A = 0$ means that the original PDE-system is used to replace
  123. some partial derivatives of $y^\alpha$ to reduce the number of independent
  124. variables, because the symmetry condition (\ref{sbed1}) must be
  125. fulfilled identically in $x^i, y^\alpha$ and all partial
  126. derivatives of $y^\alpha.$
  127. For point symmetries, $\xi^i, \eta^\alpha$ are functions of $x^j,
  128. y^\beta$ and for contact symmetries they depend on $x^j, y^\beta$ and
  129. $y^\beta_k.$ We restrict ourself to point symmetries as those are the only
  130. ones that can be applied by the current version of the program {\tt APPLYSYM}
  131. (see below). For literature about generalized symmetries see \cite{WHer}.
  132. Though the formulation of the symmetry conditions (\ref{sbed1}),
  133. (\ref{sbed2}), (\ref{recur})
  134. is straightforward and handled in principle by all related
  135. programs \cite{WHer}, the computational effort to formulate
  136. the conditions (\ref{sbed1}) may cause problems if
  137. the number of $x^i$ and $y^\alpha$ is high. This can
  138. partially be avoided if at first only a few conditions are formulated
  139. and solved such that the remaining ones are much shorter and quicker to
  140. formulate.
  141. A first step in this direction is to investigate one PDE $H_A = 0$
  142. after another, as done in \cite{Cham}. Two methods to partition the
  143. conditions for a single PDE are described by Bocharov/Bronstein
  144. \cite{Alex} and Stephani \cite{Step}.
  145. In the first method only those terms of the symmetry condition
  146. $X H_A = 0$ are calculated which contain
  147. at least a derivative of $y^\alpha$ of a minimal order $m.$
  148. Setting coefficients
  149. of these $u$-derivatives to zero provides symmetry conditions. Lowering the
  150. minimal order $m$ successively then gradually provides all symmetry conditions.
  151. The second method is even more selective. If $H_A$ is of order $n$
  152. then only terms of the symmetry condition $X H_A = 0$ are generated which
  153. contain $n'$th order derivatives of $y^\alpha.$ Furthermore these derivatives
  154. must not occur in $H_A$ itself. They can therefore occur
  155. in the symmetry condition
  156. (\ref{sbed1}) only in
  157. $\eta^\alpha_{j_1\ldots j_n},$ i.e. in the terms
  158. \[\eta^\alpha_{j_1\ldots j_n}
  159. \frac{\partial H_A}{\partial y^\alpha_{j_1\ldots j_n}}. \]
  160. If only coefficients of $n'$th order derivatives of $y^\alpha$ need to be
  161. accurate to formulate preliminary conditions
  162. then from the total derivatives to be taken in
  163. (\ref{recur}) only that part is performed which differentiates w.r.t.\ the
  164. highest $y^\alpha$-derivatives.
  165. This means, for example, to form only
  166. $y^\alpha_{mnk} \partial/\partial y^\alpha_{mn} $
  167. if the expression, which is to be differentiated totally w.r.t.\ $x^k$,
  168. contains at most second order derivatives of $y^\alpha.$
  169. The second method is applied in {\tt LIEPDE}.
  170. Already the formulation of the remaining conditions is speeded up
  171. considerably through this iteration process. These methods can be applied if
  172. systems of DEs or single PDEs of at least second order are investigated
  173. concerning symmetries.
  174. %---------------------------------------
  175. \subsection{The second step: Solving the symmetry conditions}
  176. The second step in applying the whole method consists in solving the
  177. determining conditions (\ref{sbed1}), (\ref{sbed2}), (\ref{recur})
  178. which are linear homogeneous PDEs for $\xi^i, \eta^\alpha$. The
  179. complete solution of this system is not algorithmic any more because the
  180. solution of a general linear PDE-system is as difficult as the solution of
  181. its non-linear characteristic ODE-system which is not covered by algorithms
  182. so far.
  183. Still algorithms are used successfully to simplify the PDE-system by
  184. calculating
  185. its standard normal form and by integrating exact PDEs
  186. if they turn up in this simplification process \cite{LIEPDE}.
  187. One problem in this respect, for example,
  188. concerns the optimization of the symbiosis of both algorithms. By that we
  189. mean the ranking of priorities between integrating, adding integrability
  190. conditions and doing simplifications by substitutions - all depending on
  191. the length of expressions and the overall structure of the PDE-system.
  192. Also the extension of the class of PDEs which can be integrated exactly is
  193. a problem to be pursuit further.
  194. The program {\tt LIEPDE} which formulates the symmetry conditions calls the
  195. program {\tt CRACK} to solve them. This is done in a number of successive
  196. calls in order to formulate and solve some first order PDEs of the
  197. overdetermined system first and use their solution to formulate and solve the
  198. next subset of conditions as described in the previous subsection.
  199. Also, {\tt LIEPDE} can work on DEs that contain parametric constants and
  200. parametric functions. An ansatz for the symmetry generators can be
  201. formulated. For more details see \cite{LIEPDE} or \cite{WoBra}.
  202. The call of {\tt LIEPDE} is \\
  203. {\tt LIEPDE}(\{{\it de}, {\it fun}, {\it var}\},
  204. \{{\it od}, {\it lp}, {\it fl}\}); \\
  205. where
  206. \begin{itemize}
  207. \item {\it de} is a single DE or a list of DEs in the form of a vanishing
  208. expression or in the form $\ldots=\ldots\;\;$.
  209. \item {\it fun} is the single function or the list of functions occuring
  210. in {\it de}.
  211. \item {\it var} is the single variable or the list of variables in {\it de}.
  212. \item {\it od} is the order of the ansatz for $\xi, \eta.$ It is = 0 for
  213. point symmetries and = 1 for contact symmetries (accepted by
  214. {\tt LIEPDE} only in case of one ODE/PDE for one unknown function).
  215. % and $>1$ for dynamical symmetries
  216. %(only in case of one ODE for one unknown function)
  217. \item If {\it lp} is $nil$ then the standard ansatz for $\xi^i, \eta^\alpha$
  218. is taken which is
  219. \begin{itemize}
  220. \item for point symmetries ({\it od} =0) is $\xi^i = \xi^i(x^j,y^\beta),
  221. \eta^\alpha = \eta^\alpha(x^j,y^\beta)$
  222. \item for contact symmetries ({\it od} =1) is
  223. $ \xi^i := \Omega_{u_i}, \;\;\;
  224. \eta := u_i\Omega_{u_i} \; - \; \Omega, $ \\
  225. $\Omega:=\Omega(x^i, u, u_j)$
  226. %\item for dynamical symmetries ({\it od}$>1$) \\
  227. % $ \xi := \Omega,_{u'}, \;\;\;
  228. % \eta := u'\Omega,_{u'} \; - \; \Omega, \;\;\;
  229. % \Omega:=\Omega(x, u, u',\ldots, y^{({\it od}-1)})$
  230. % where {\it od} must be less than the order of the ODE.
  231. \end{itemize}
  232. If {\it lp} is not $nil$ then {\it lp} is the ansatz for
  233. $\xi^i, \eta^\alpha$ and must have the form
  234. \begin{itemize}
  235. \item for point symmetries
  236. \verb+{xi_+\mbox{$x1$}\verb+ = ..., ..., eta_+\mbox{$u1$}\verb+ = ..., ...}+
  237. where {\tt xi\_, eta\_ }
  238. are fixed and $x1, \ldots, u1$ are to be replaced by the actual names
  239. of the variables and functions.
  240. \item otherwise {\tt spot\_ = ...} where the expression on the right hand
  241. side is the ansatz for the Symmetry-POTential $\Omega.$
  242. \end{itemize}
  243. \item {\it fl} is the list of free functions in the ansatz
  244. in case {\it lp} is not $nil.$
  245. \end{itemize}
  246. The result of {\tt LIEPDE} is a list with 3 elements, each of which
  247. is a list:
  248. \[ \{\{{\it con}_1,{\it con}_2,\ldots\},
  249. \{{\tt xi}\__{\ldots}=\ldots, \ldots,
  250. {\tt eta}\__{\ldots}=\ldots, \ldots\},
  251. \{{\it flist}\}\}. \]
  252. The first list contains remaining unsolved symmetry conditions {\it con}$_i$. It
  253. is the empty list \{\} if all conditions have been solved. The second list
  254. gives the symmetry generators, i.e.\ expressions for $\xi_i$ and $\eta_j$. The
  255. last list contains all free constants and functions occuring in the first
  256. and second list.
  257. %That the automatic calculation of symmetries run in most practical cases
  258. %is shown with the following example. It is insofar difficult, as many
  259. %symmetries exist and the solution consequently more difficult is to deriv.
  260. %
  261. %---------------------------------------
  262. %\subsection{Example}
  263. %For the following PDE-system, which takes its simplest form in the
  264. %formalism of exterior forms:
  265. %
  266. %\begin{eqnarray*}
  267. %0 & = & 3k_t,_{tt}-2k_t,_{xx}-2k_t,_{yy}-2k_t,_{zz}-k_x,_{tx}-2k_zk_x,_y \\
  268. % & & +2k_yk_x,_z-k_y,_{ty}+2k_zk_y,_x-2k_xk_y,_z-k_z,_{tz}-2k_yk_z,_x+2k_xk_z,_y \\
  269. %0 & = & k_t,_{tx}-2k_zk_t,_y+2k_yk_t,_z+2k_x,_{tt}-3k_x,_{xx}-2k_x,_{yy} \\
  270. % & & -2k_x,_{zz}+2k_zk_y,_t-k_y,_{xy}-2k_tk_y,_z-2k_yk_z,_t-k_z,_{xz}+2k_tk_z,_y \\
  271. %0 & = & k_t,_{ty}+2k_zk_t,_x-2k_xk_t,_z-2k_zk_x,_t-k_x,_{xy}+2k_tk_x,_z \\
  272. % & & +2k_y,_{tt}-2k_y,_{xx}-3k_y,_{yy}-2k_y,_{zz}+2k_xk_z,_t-2k_tk_z,_x-k_z,_{yz} \\
  273. %0 & = & k_t,_{tz}-2k_yk_t,_x+2k_xk_t,_y+2k_yk_x,_t-k_x,_{xz}-2k_tk_x,_y \\
  274. % & & -2k_xk_y,_t+2k_tk_y,_x-k_y,_{yz}+2k_z,_{tt}-2k_z,_{xx}-2k_z,_{yy}-3k_z,_{zz}
  275. %\end{eqnarray*}
  276. %---------------------------------------
  277. \subsection{The third step: Application of infinitesimal symmetries}
  278. If infinitesimal symmetries have been found then
  279. the program {\tt APPLYSYM} can use them for the following purposes:
  280. \begin{enumerate}
  281. \item Calculation of one symmetry variable and further similarity variables.
  282. After transforming
  283. the DE(-system) to these variables, the symmetry variable will not occur
  284. explicitly any more. For ODEs this has the consequence that their order has
  285. effectively been reduced.
  286. \item Generalization of a special solution by one or more constants of
  287. integration.
  288. \end{enumerate}
  289. Both methods are described in the following section.
  290. %-------------------------------------------------------------------------
  291. \section{Applying symmetries with {\tt APPLYSYM}}
  292. %---------------------------------------
  293. \subsection{The first mode: Calculation of similarity and symmetry variables}
  294. In the following we assume that a symmetry generator $X$, given
  295. in (\ref{sbed2}), is known such that ODE(s)/PDE(s) $H_A=0$
  296. satisfy the symmetry condition (\ref{sbed1}). The aim is to
  297. find new dependent functions $u^\alpha = u^\alpha(x^j,y^\beta)$ and
  298. new independent variables $v^i = v^i(x^j,y^\beta),\;\;
  299. 1\leq\alpha,\beta\leq p,\;1\leq i,j \leq q$
  300. such that the symmetry generator
  301. $X = \xi^i(x^j,y^\beta)\partial_{x^i} +
  302. \eta^\alpha(x^j,y^\beta)\partial_{y^\alpha}$
  303. transforms to
  304. \begin{equation}
  305. X = \partial_{v^1}. \label{sbed3}
  306. \end{equation}
  307. Inverting the above transformation to $x^i=x^i(v^j,u^\beta),
  308. y^\alpha=y^\alpha(v^j,u^\beta)$ and setting \\
  309. $H_A(x^i(v^j,u^\beta), y^\alpha(v^j,u^\beta),\ldots) =
  310. h_A(v^j, u^\beta,\ldots)$
  311. this means that
  312. \begin{eqnarray*}
  313. 0 & = & X H_A(x^i,y^\alpha,y^\beta_j,\ldots)\;\;\; \mbox{mod} \;\;\; H_A=0 \\
  314. & = & X h_A(v^i,u^\alpha,u^\beta_j,\ldots)\;\;\; \mbox{mod} \;\;\; h_A=0 \\
  315. & = & \partial_{v^1}h_A(v^i,u^\alpha,u^\beta_j,\ldots)\;\;\; \mbox{mod}
  316. \;\;\; h_A=0.
  317. \end{eqnarray*}
  318. Consequently, the variable $v^1$ does not occur explicitly in $h_A$.
  319. In the case of an ODE(-system) $(v^1=v)$
  320. the new equations $0=h_A(v,u^\alpha,du^\beta/dv,\ldots)$
  321. are then of lower total order
  322. after the transformation $z = z(u^1) = du^1/dv$ with now $z, u^2,\ldots u^p$
  323. as unknown functions and $u^1$ as independent variable.
  324. The new form (\ref{sbed3}) of $X$ leads directly to conditions for the
  325. symmetry variable $v^1$ and the similarity variables
  326. $v^i|_{i\neq 1}, u^\alpha$ (all functions of $x^k,y^\gamma$):
  327. \begin{eqnarray}
  328. X v^1 = 1 & = & \xi^i(x^k,y^\gamma)\partial_{x^i}v^1 +
  329. \eta^\alpha(x^k,y^\gamma)\partial_{y^\alpha}v^1 \label{ql1} \\
  330. X v^j|_{j\neq 1} = X u^\beta = 0 & = &
  331. \xi^i(x^k,y^\gamma)\partial_{x^i}u^\beta +
  332. \eta^\alpha(x^k,y^\gamma)\partial_{y^\alpha}u^\beta \label{ql2}
  333. \end{eqnarray}
  334. The general solutions of (\ref{ql1}), (\ref{ql2}) involve free functions
  335. of $p+q-1$ arguments. From the general solution of equation (\ref{ql2}),
  336. $p+q-1$ functionally independent special solutions have to be selected
  337. ($v^2,\ldots,v^p$ and $u^1,\ldots,u^q$),
  338. whereas from (\ref{ql1}) only one solution $v^1$ is needed.
  339. Together, the expressions for the symmetry and similarity variables must
  340. define a non-singular transformation $x,y \rightarrow u,v$.
  341. Different special solutions selected at this stage
  342. will result in different
  343. resulting DEs which are equivalent under point transformations but may
  344. look quite differently. A transformation that is more difficult than another
  345. one will in general
  346. only complicate the new DE(s) compared with the simpler transformation.
  347. We therefore seek the simplest possible special
  348. solutions of (\ref{ql1}), (\ref{ql2}). They also
  349. have to be simple because the transformation has to be inverted to solve for
  350. the old variables in order to do the transformations.
  351. The following steps are performed in the corresponding mode of the
  352. program {\tt APPLYSYM}:
  353. \begin{itemize}
  354. \item The user is asked to specify a symmetry by selecting one symmetry
  355. from all the known symmetries or by specifying a linear combination of them.
  356. \item Through a call of the procedure {\tt QUASILINPDE} (described in a later
  357. section) the two linear first order PDEs (\ref{ql1}), (\ref{ql2}) are
  358. investigated and, if possible, solved.
  359. \item From the general solution of (\ref{ql1}) 1 special solution
  360. is selected and from (\ref{ql2}) $p+q-1$ special
  361. solutions are selected which should be as simple as possible.
  362. \item The user is asked whether the symmetry variable should be one of the
  363. independent variables (as it has been assumed so far) or one of the new
  364. functions (then only derivatives of this function and not the function itself
  365. turn up in the new DE(s)).
  366. \item Through a call of the procedure {\tt DETRAFO} the transformation
  367. $x^i,y^\alpha \rightarrow v^j,u^\beta$ of the DE(s) $H_A=0$ is finally done.
  368. \item The program returns to the starting menu.
  369. \end{itemize}
  370. %---------------------------------------
  371. \subsection{The second mode: Generalization of special solutions}
  372. A second application of infinitesimal symmetries is the generalization
  373. of a known special solution given in implicit form through
  374. $0 = F(x^i,y^\alpha)$. If one knows a symmetry variable $v^1$ and
  375. similarity variables $v^r, u^\alpha,\;\;2\leq r\leq p$ then
  376. $v^1$ can be shifted by a constant $c$ because of
  377. $\partial_{v^1}H_A = 0$ and
  378. therefore the DEs $0 = H_A(v^r,u^\alpha,u^\beta_j,\ldots)$
  379. are unaffected by the shift. Hence from
  380. \[0 = F(x^i, y^\alpha) = F(x^i(v^j,u^\beta), y^\alpha(v^j,u^\beta)) =
  381. \bar{F}(v^j,u^\beta)\] follows that
  382. \[ 0 = \bar{F}(v^1+c,v^r,u^\beta) =
  383. \bar{F}(v^1(x^i,y^\alpha)+c, v^r(x^i,y^\alpha), u^\beta(x^i,y^\alpha))\]
  384. defines implicitly a generalized solution $y^\alpha=y^\alpha(x^i,c)$.
  385. This generalization works only if $\partial_{v^1}\bar{F} \neq 0$ and
  386. if $\bar{F}$ does not already have
  387. a constant additive to $v^1$.
  388. The method above needs to know $x^i=x^i(u^\beta,v^j),\;
  389. y^\alpha=y^\alpha(u^\beta,v^j)$ \underline{and}
  390. $u^\alpha = u^\alpha(x^j,y^\beta), v^\alpha = v^\alpha(x^j,y^\beta)$
  391. which may be practically impossible.
  392. Better is, to integrate $x^i,y^\alpha$ along $X$:
  393. \begin{equation}
  394. \frac{d\bar{x}^i}{d\varepsilon} = \xi^i(\bar{x}^j(\varepsilon),
  395. \bar{y}^\beta(\varepsilon)), \;\;\;\;\;
  396. \frac{d\bar{y}^\alpha}{d\varepsilon} = \eta^\alpha(\bar{x}^j(\varepsilon),
  397. \bar{y}^\beta(\varepsilon))
  398. \label{ODEsys}
  399. \end{equation}
  400. with initial values $\bar{x}^i = x^i, \bar{y}^\alpha = y^\alpha$
  401. for $\varepsilon = 0.$
  402. (This ODE-system is the characteristic system of (\ref{ql2}).)
  403. Knowing only the finite transformations
  404. \begin{equation}
  405. \bar{x}^i = \bar{x}^i(x^j,y^\beta,\varepsilon),\;\;
  406. \bar{y}^\alpha = \bar{y}^\alpha(x^j,y^\beta,\varepsilon) \label{ODEsol}
  407. \end{equation}
  408. gives immediately the inverse transformation
  409. $\bar{x}^i = \bar{x}^i(x^j,y^\beta,\varepsilon),\;\;
  410. \bar{y}^\alpha = \bar{y}^\alpha(x^j,y^\beta,\varepsilon)$
  411. just by $\varepsilon \rightarrow -\varepsilon$ and renaming
  412. $x^i,y^\alpha \leftrightarrow \bar{x}^i,\bar{y}^\alpha.$
  413. The special solution $0 = F(x^i,y^\alpha)$
  414. is generalized by the new constant
  415. $\varepsilon$ through
  416. \[ 0 = F(x^i,y^\alpha) = F(x^i(\bar{x}^j,\bar{y}^\beta,\varepsilon),
  417. y^\alpha(\bar{x}^j,\bar{y}^\beta,\varepsilon)) \]
  418. after dropping the $\bar{~}$.
  419. The steps performed in the corresponding mode of the
  420. program {\tt APPLYSYM} show features of both techniques:
  421. \begin{itemize}
  422. \item The user is asked to specify a symmetry by selecting one symmetry
  423. from all the known symmetries or by specifying a linear combination of them.
  424. \item The special solution to be generalized and the name of the new
  425. constant have to be put in.
  426. \item Through a call of the procedure {\tt QUASILINPDE}, the PDE (\ref{ql1})
  427. is solved which amounts to a solution of its characteristic ODE system
  428. (\ref{ODEsys}) where $v^1=\varepsilon$.
  429. \item {\tt QUASILINPDE} returns a list of constant expressions
  430. \begin{equation}
  431. c_i = c_i(x^k, y^\beta, \varepsilon),\;\;1\leq i\leq p+q
  432. \end{equation}
  433. which are solved for
  434. $x^j=x^j(c_i,\varepsilon),\;\; y^\alpha=y^\alpha(c_i,\varepsilon)$
  435. to obtain the generalized solution through
  436. \[ 0 = F(x^j, y^\alpha)
  437. = F( x^j(c_i(x^k, y^\beta, 0), \varepsilon),
  438. y^\alpha(c_i(x^k, y^\beta, 0), \varepsilon)). \]
  439. \item The new solution is availabe for further generalizations w.r.t.\ other
  440. symmetries.
  441. \end{itemize}
  442. If one would like to generalize a given special solution with $m$ new
  443. constants because $m$ symmetries are known, then one could run the whole
  444. program $m$ times, each time with a different symmetry or one could run the
  445. program once with a linear combination of $m$ symmetry generators which
  446. again is a symmetry generator. Running the program once adds one constant
  447. but we have in addition $m-1$ arbitrary constants in the linear combination
  448. of the symmetries, so $m$ new constants are added.
  449. Usually one will generalize the solution gradually to make solving
  450. (\ref{ODEsys}) gradually more difficult.
  451. %---------------------------------------
  452. \subsection{Syntax}
  453. The call of {\tt APPLYSYM} is
  454. {\tt APPLYSYM}(\{{\it de}, {\it fun}, {\it var}\}, \{{\it sym}, {\it cons}\});
  455. \begin{itemize}
  456. \item {\it de} is a single DE or a list of DEs in the form of a vanishing
  457. expression or in the form $\ldots=\ldots\;\;$.
  458. \item {\it fun} is the single function or the list of functions occuring
  459. in {\it de}.
  460. \item {\it var} is the single variable or the list of variables in {\it de}.
  461. \item {\it sym} is a linear combination of all symmetries, each with a
  462. different constant coefficient, in form of a list of the $\xi^i$ and
  463. $\eta^\alpha$: \{xi\_\ldots=\ldots,\ldots,eta\_\ldots=\ldots,\ldots\},
  464. where the indices after `xi\_' are the variable names and after `eta\_'
  465. the function names.
  466. \item {\it cons} is the list of constants in {\it sym}, one constant for each
  467. symmetry.
  468. \end{itemize}
  469. The list that is the first argument of {\tt APPLYSYM} is the same as the
  470. first argument of {\tt LIEPDE} and the
  471. second argument is the list that {\tt LIEPDE} returns without its first
  472. element (the unsolved conditions). An example is given below.
  473. What {\tt APPLYSYM} returns depends on the last performed modus.
  474. After modus 1 the return is \\
  475. \{\{{\it newde}, {\it newfun}, {\it newvar}\}, {\it trafo}\} \\
  476. where
  477. \begin{itemize}
  478. \item {\it newde} lists the transformed equation(s)
  479. \item {\it newfun} lists the new function name(s)
  480. \item {\it newvar} lists the new variable name(s)
  481. \item {\it trafo} lists the transformations $x^i=x^i(v^j,u^\beta),
  482. y^\alpha=y^\alpha(v^j,u^\beta)$
  483. \end{itemize}
  484. After modus 2, {\tt APPLYSYM} returns the generalized special solution.
  485. %---------------------------------------
  486. \subsection{Example: A second order ODE}
  487. Weyl's class of solutions of Einsteins field equations consists of
  488. axialsymmetric time independent metrics of the form
  489. \begin{equation}
  490. {\rm{d}} s^2 = e^{-2 U} \left[ e^{2 k} \left( \rm{d} \rho^2 + \rm{d}
  491. z^2 \right)+\rho^2 \rm{d} \varphi^2 \right] - e^{2 U} \rm{d} t^2,
  492. \end{equation}
  493. where $U$ and $k$ are functions of $\rho$ and $z$. If one is interested in
  494. generalizing these solutions to have a time dependence then the resulting
  495. DEs can be transformed such that one longer third order ODE for $U$ results
  496. which contains only $\rho$ derivatives \cite{Markus}. Because $U$ appears
  497. not alone but only as derivative, a substitution
  498. \begin{equation}
  499. g = dU/d\rho \label{g1dgl}
  500. \end{equation}
  501. lowers the order and the introduction of a function
  502. \begin{equation}
  503. h = \rho g - 1 \label{g2dgl}
  504. \end{equation}
  505. simplifies the ODE to
  506. \begin{equation}
  507. 0 = 3\rho^2h\,h''
  508. -5\rho^2\,h'^2+5\rho\,h\,h'-20\rho\,h^3h'-20\,h^4+16\,h^6+4\,h^2. \label{hdgl}
  509. \end{equation}
  510. where $'= d/d\rho$.
  511. Calling {\tt LIEPDE} through
  512. \small \begin{verbatim}
  513. depend h,r;
  514. prob:={{-20*h**4+16*h**6+3*r**2*h*df(h,r,2)+5*r*h*df(h,r)
  515. -20*h**3*r*df(h,r)+4*h**2-5*r**2*df(h,r)**2},
  516. {h}, {r}};
  517. sym:=liepde(prob,{0,nil,nil});
  518. end; \end{verbatim} \normalsize
  519. gives \small \begin{verbatim}
  520. 3 2
  521. sym := {{}, {xi_r= - c10*r - c11*r, eta_h=c10*h*r }, {c10,c11}}.
  522. \end{verbatim} \normalsize
  523. All conditions have been solved because the first element of {\tt sym}
  524. is $\{\}$. The two existing symmetries are therefore
  525. \begin{equation}
  526. - \rho^3 \partial_{\rho} + h \rho^2 \,\partial_{h} \;\;\;\;\;\;\mbox{and}
  527. \;\;\;\;\;\;\rho \partial_{\rho}.
  528. \end{equation}
  529. Corresponding finite
  530. transformations can be calculated with {\tt APPLYSYM} through
  531. \small \begin{verbatim}
  532. newde:=applysym(de,rest sym);
  533. \end{verbatim} \normalsize
  534. The interactive session is given below with the user input following
  535. the prompt `{\tt Input:3:}' or following `?'. (Empty lines have been deleted.)
  536. \small \begin{verbatim}
  537. Do you want to find similarity and symmetry variables (enter `1;')
  538. or generalize a special solution with new parameters (enter `2;')
  539. or exit the program (enter `;')
  540. Input:3: 1;
  541. \end{verbatim} \normalsize
  542. We enter `1;' because we want to reduce dependencies by finding similarity
  543. variables and one symmetry variable and then doing the transformation such
  544. that the symmetry variable does not explicitly occur in the DE.
  545. \small \begin{verbatim}
  546. ---------------------- The 1. symmetry is:
  547. 3
  548. xi_r= - r
  549. 2
  550. eta_h=h*r
  551. ---------------------- The 2. symmetry is:
  552. xi_r= - r
  553. ----------------------
  554. Which single symmetry or linear combination of symmetries
  555. do you want to apply?
  556. Enter an expression with `sy_(i)' for the i'th symmetry.
  557. sy_(1);
  558. \end{verbatim} \normalsize
  559. We could have entered `sy\_(2);' or a combination of both
  560. as well with the calculation running then
  561. differently.
  562. \small \begin{verbatim}
  563. The symmetry to be applied in the following is
  564. 3 2
  565. {xi_r= - r ,eta_h=h*r }
  566. Enter the name of the new dependent variables:
  567. Input:3: u;
  568. Enter the name of the new independent variables:
  569. Input:3: v;
  570. \end{verbatim} \normalsize
  571. This was the input part, now the real calculation starts.
  572. \small \begin{verbatim}
  573. The ODE/PDE (-system) under investigation is :
  574. 2 2 2 3
  575. 0 = 3*df(h,r,2)*h*r - 5*df(h,r) *r - 20*df(h,r)*h *r
  576. 6 4 2
  577. + 5*df(h,r)*h*r + 16*h - 20*h + 4*h
  578. for the function(s) : h.
  579. It will be looked for a new dependent variable u
  580. and an independent variable v such that the transformed
  581. de(-system) does not depend on u or v.
  582. 1. Determination of the similarity variable
  583. 2
  584. The quasilinear PDE: 0 = r *(df(u_,h)*h - df(u_,r)*r).
  585. The equivalent characteristic system:
  586. 3
  587. 0= - df(u_,r)*r
  588. 2
  589. 0= - r *(df(h,r)*r + h)
  590. for the functions: h(r) u_(r).
  591. \end{verbatim} \normalsize
  592. The PDE is equation (\ref{ql2}).
  593. \small \begin{verbatim}
  594. The general solution of the PDE is given through
  595. 0 = ff(u_,h*r)
  596. with arbitrary function ff(..).
  597. A suggestion for this function ff provides:
  598. 0 = - h*r + u_
  599. Do you like this choice? (Y or N)
  600. ?y
  601. \end{verbatim} \normalsize
  602. For the following calculation only a single special solution of the PDE is
  603. necessary
  604. and this has to be specified from the general solution by choosing a special
  605. function {\tt ff}. (This function is called {\tt ff} to prevent a clash with
  606. names of user variables/functions.) In principle any choice of {\tt ff} would
  607. work, if it defines a non-singular coordinate transformation, i.e.\ here $r$
  608. must be a function of $u\_$. If we have $q$ independent variables and
  609. $p$ functions of them then {\tt ff} has $p+q$ arguments. Because of the
  610. condition $0 = ${\tt ff} one has essentially the freedom of choosing a function
  611. of $p+q-1$ arguments freely. This freedom is also necessary to select $p+q-1$
  612. different functions {\tt ff} and to find as many functionally independent
  613. solutions $u\_$ which all become the new similarity variables. $q$ of them
  614. become the new functions $u^\alpha$ and $p-1$ of them the new variables
  615. $v^2,\ldots,v^p$. Here we have $p=q=1$ (one single ODE).
  616. Though the program could have done that alone, once the general solution
  617. {\tt ff(..)} is known, the user can interfere here to enter a simpler solution,
  618. if possible.
  619. \small \begin{verbatim}
  620. 2. Determination of the symmetry variable
  621. 2 3
  622. The quasilinear PDE: 0 = df(u_,h)*h*r - df(u_,r)*r - 1.
  623. The equivalent characteristic system:
  624. 3
  625. 0=df(r,u_) + r
  626. 2
  627. 0=df(h,u_) - h*r
  628. for the functions: r(u_) h(u_) .
  629. New attempt with a different independent variable
  630. The equivalent characteristic system:
  631. 2
  632. 0=df(u_,h)*h*r - 1
  633. 2
  634. 0=r *(df(r,h)*h + r)
  635. for the functions: r(h) u_(h) .
  636. The general solution of the PDE is given through
  637. 2 2 2
  638. - 2*h *r *u_ + h
  639. 0 = ff(h*r,--------------------)
  640. 2
  641. with arbitrary function ff(..).
  642. A suggestion for this function ff(..) yields:
  643. 2 2
  644. h *( - 2*r *u_ + 1)
  645. 0 = ---------------------
  646. 2
  647. Do you like this choice? (Y or N)
  648. ?y
  649. \end{verbatim} \normalsize
  650. Similar to above.
  651. \small \begin{verbatim}
  652. The suggested solution of the algebraic system which will
  653. do the transformation is:
  654. sqrt(v)*sqrt(2)
  655. {h=sqrt(v)*sqrt(2)*u,r=-----------------}
  656. 2*v
  657. Is the solution ok? (Y or N)
  658. ?y
  659. In the intended transformation shown above the dependent
  660. variable is u and the independent variable is v.
  661. The symmetry variable is v, i.e. the transformed expression
  662. will be free of v.
  663. Is this selection of dependent and independent variables ok? (Y or N)
  664. ?n
  665. \end{verbatim} \normalsize
  666. We so far assumed that the symmetry variable is one of the new variables, but,
  667. of course we also could choose it to be one of the new functions.
  668. If it is one of the functions then only derivatives of this function occur
  669. in the new DE, not the function itself. If it is one of the variables then
  670. this variable will not occur explicitly.
  671. In our case we prefer (without strong reason) to have the function as
  672. symmetry variable. We therefore answered with `no'. As a consequence, $u$ and
  673. $v$ will exchange names such that still all new functions have the name $u$
  674. and the new variables have name $v$:
  675. \small \begin{verbatim}
  676. Please enter a list of substitutions. For example, to
  677. make the variable, which is so far call u1, to an
  678. independent variable v2 and the variable, which is
  679. so far called v2, to an dependent variable u1,
  680. enter: `{u1=v2, v2=u1};'
  681. Input:3: {u=v,v=u};
  682. The transformed equation which should be free of u:
  683. 3 6 2 3
  684. 0=3*df(u,v,2)*v - 16*df(u,v) *v - 20*df(u,v) *v + 5*df(u,v)
  685. Do you want to find similarity and symmetry variables (enter `1;')
  686. or generalize a special solution with new parameters (enter `2;')
  687. or exit the program (enter `;')
  688. Input:3: ;
  689. \end{verbatim}
  690. We stop here. The following is returned from our {\tt APPLYSYM} call:
  691. \small \begin{verbatim}
  692. 3 6 2 3
  693. {{{3*df(u,v,2)*v - 16*df(u,v) *v - 20*df(u,v) *v + 5*df(u,v)},
  694. {u},
  695. {v}},
  696. sqrt(u)*sqrt(2)
  697. {r=-----------------, h=sqrt(u)*sqrt(2)*v }}
  698. 2*u
  699. \end{verbatim} \normalsize
  700. The use of {\tt APPLYSYM} effectively provided us the finite
  701. transformation
  702. \begin{equation}
  703. \rho=(2\,u)^{-1/2},\;\;\;\;\;h=(2\,u)^{1/2}\,v \label{trafo1}.
  704. \end{equation}
  705. and the new ODE
  706. \begin{equation}
  707. 0 = 3u''v - 16u'^3v^6 - 20u'^2v^3 + 5u' \label{udgl}
  708. \end{equation}
  709. where $u=u(v)$ and $'=d/dv.$
  710. Using one symmetry we reduced the 2.\,order ODE (\ref{hdgl})
  711. to a first order ODE (\ref{udgl}) for $u'$ plus one
  712. integration. The second symmetry can be used to reduce the remaining ODE
  713. to an integration too by introducing a variable $w$ through $v^3d/dv = d/dw$,
  714. i.e. $w = -1/(2v^2)$. With
  715. \begin{equation}
  716. p=du/dw \label{udot}
  717. \end{equation}
  718. the remaining ODE is
  719. \[0 = 3\,w\,\frac{dp}{dw} + 2\,p\,(p+1)(4\,p+1) \]
  720. with solution
  721. \[ \tilde{c}w^{-2}/4 = \tilde{c}v^4 = \frac{p^3(p+1)}{(4\,p+1)^4},\;\;\;
  722. \tilde{c}=const. \]
  723. Writing (\ref{udot}) as $p = v^3(du/dp)/(dv/dp)$ we get $u$ by integration
  724. and with (\ref{trafo1}) further a parametric solution for $\rho,h$:
  725. \begin{eqnarray}
  726. \rho & = & \left(\frac{3c_1^2(2p-1)}{p^{1/2}(p+1)^{1/2}}+c_2\right)^{-1/2} \\
  727. h & = & \frac{(c_2p^{1/2}(p+1)^{1/2}+6c_1^2p-3c_1^2)^{1/2}p^{1/2}}{c_1(4p+1)}
  728. \end{eqnarray}
  729. where $c_1, c_2 = const.$ and $c_1=\tilde{c}^{1/4}.$ Finally, the metric
  730. function $U(p)$ is obtained as an integral from (\ref{g1dgl}),(\ref{g2dgl}).
  731. %---------------------------------------
  732. \subsection{Limitations of {\tt APPLYSYM}}
  733. Restrictions of the applicability of the program {\tt APPLYSYM} result
  734. from limitations of the program {\tt QUASILINPDE} described in a section below.
  735. Essentially this means that symmetry generators may only be polynomially
  736. non-linear in $x^i, y^\alpha$.
  737. Though even then the solvability can not be guaranteed, the
  738. generators of Lie-symmetries are mostly very simple such that the
  739. resulting PDE (\ref{PDE}) and the corresponding characteristic
  740. ODE-system have good chances to be solvable.
  741. Apart from these limitations implied through the solution of differential
  742. equations with {\tt CRACK} and algebraic equations with {\tt SOLVE}
  743. the program {\tt APPLYSYM} itself is free of restrictions,
  744. i.e.\ if once new versions of {\tt CRACK, SOLVE}
  745. would be available then {\tt APPLYSYM} would not have to be changed.
  746. Currently, whenever a computational step could not be performed
  747. the user is informed and has the possibility of entering interactively
  748. the solution of the unsolved algebraic system or the unsolved linear PDE.
  749. %-------------------------------------------------------------------------
  750. \section{Solving quasilinear PDEs}
  751. %---------------------------------------
  752. \subsection{The content of {\tt QUASILINPDE}}
  753. The generalization of special solutions of DEs as well as the computation of
  754. similarity and symmetry variables involve the general solution of single
  755. first order linear PDEs.
  756. The procedure {\tt QUASILINPDE} is a general procedure
  757. aiming at the general solution of
  758. PDEs
  759. \begin{equation}
  760. a_1(w_i,\phi)\phi_{w_1} + a_2(w_i,\phi)\phi_{w_2} + \ldots +
  761. a_n(w_i,\phi)\phi_{w_n} = b(w_i,\phi) \label{PDE}
  762. \end{equation}
  763. in $n$ independent variables $w_i, i=1\ldots n$ for one unknown function
  764. $\phi=\phi(w_i)$.
  765. \begin{enumerate}
  766. \item
  767. The first step in solving a quasilinear PDE (\ref{PDE})
  768. is the formulation of the corresponding characteristic ODE-system
  769. \begin{eqnarray}
  770. \frac{dw_i}{d\varepsilon} & = & a_i(w_j,\phi) \label{char1} \\
  771. \frac{d\phi}{d\varepsilon} & = & b(w_j,\phi) \label{char2}
  772. \end{eqnarray}
  773. for $\phi, w_i$ regarded now as functions of one variable $\varepsilon$.
  774. Because the $a_i$ and $b$ do not depend explicitly on $\varepsilon$, one of the
  775. equations (\ref{char1}),(\ref{char2}) with non-vanishing right hand side
  776. can be used to divide all others through it and by that having a system
  777. with one less ODE to solve.
  778. If the equation to divide through is one of
  779. (\ref{char1}) then the remaining system would be
  780. \begin{eqnarray}
  781. \frac{dw_i}{dw_k} & = & \frac{a_i}{a_k} , \;\;\;i=1,2,\ldots k-1,k+1,\ldots n
  782. \label{char3} \\
  783. \frac{d\phi}{dw_k} & = & \frac{b}{a_k} \label{char4}
  784. \end{eqnarray}
  785. with the independent variable $w_k$ instead of $\varepsilon$.
  786. If instead we divide through equation
  787. (\ref{char2}) then the remaining system would be
  788. \begin{eqnarray}
  789. \frac{dw_i}{d\phi} & = & \frac{a_i}{b} , \;\;\;i=1,2,\ldots n
  790. \label{char3a}
  791. \end{eqnarray}
  792. with the independent variable $\phi$ instead of $\varepsilon$.
  793. The equation to divide through is chosen by a
  794. subroutine with a heuristic to find the ``simplest'' non-zero
  795. right hand side ($a_k$ or $b$), i.e.\ one which
  796. \begin{itemize}
  797. \item is constant or
  798. \item depends only on one variable or
  799. \item is a product of factors, each of which depends only on
  800. one variable.
  801. \end{itemize}
  802. One purpose of this division is to reduce the number of ODEs by one.
  803. Secondly, the general solution of (\ref{char1}), (\ref{char2}) involves
  804. an additive constant to $\varepsilon$ which is not relevant and would
  805. have to be set to zero. By dividing through one ODE we eliminate
  806. $\varepsilon$ and lose the problem of identifying this constant in the
  807. general solution before we would have to set it to zero.
  808. \item % from enumerate
  809. To solve the system (\ref{char3}), (\ref{char4}) or (\ref{char3a}),
  810. the procedure {\tt CRACK} is called.
  811. Although being designed primarily for the solution of overdetermined
  812. PDE-systems, {\tt CRACK} can also be used to solve simple not
  813. overdetermined ODE-systems. This solution
  814. process is not completely algorithmic. Improved versions of {\tt CRACK}
  815. could be used, without making any changes of {\tt QUASILINPDE}
  816. necessary.
  817. If the characteristic ODE-system can not be solved in the form
  818. (\ref{char3}), (\ref{char4}) or (\ref{char3a})
  819. then successively all other ODEs of (\ref{char1}), (\ref{char2})
  820. with non-vanishing right hand side are used for division until
  821. one is found
  822. such that the resulting ODE-system can be solved completely.
  823. Otherwise the PDE can not be solved by {\tt QUASILINPDE}.
  824. \item % from enumerate
  825. If the characteristic ODE-system (\ref{char1}), (\ref{char2}) has been
  826. integrated completely and in full generality to the implicit solution
  827. \begin{equation}
  828. 0 = G_i(\phi, w_j, c_k, \varepsilon),\;\;
  829. i,k=1,\ldots,n+1,\;\;j=1,\ldots,n \label{charsol1}
  830. \end{equation}
  831. then according to the general theory for solving first order PDEs,
  832. $\varepsilon$ has
  833. to be eliminated from one of the equations and to be substituted in the
  834. others to have left $n$ equations.
  835. Also the constant that turns up additively to $\varepsilon$
  836. is to be set to zero. Both tasks are automatically
  837. fulfilled, if, as described above, $\varepsilon$ is already eliminated
  838. from the beginning by dividing all equations of (\ref{char1}),
  839. (\ref{char2})
  840. through one of them.
  841. On either way one ends up with $n$ equations
  842. \begin{equation}
  843. 0=g_i(\phi,w_j,c_k),\;\;i,j,k=1\ldots n \label{charsol2}
  844. \end{equation}
  845. involving $n$ constants $c_k$.
  846. The final step is to solve (\ref{charsol2}) for the $c_i$ to obtain
  847. \begin{equation}
  848. c_i = c_i(\phi, w_1,\ldots ,w_n) \;\;\;\;\;i=1,\ldots n . \label{cons}
  849. \end{equation}
  850. The final solution $\phi = \phi(w_i)$ of the PDE (\ref{PDE}) is then
  851. given implicitly through
  852. \[ 0 = F(c_1(\phi,w_i),c_2(\phi,w_i),\ldots,c_n(\phi,w_i)) \]
  853. where $F$ is an arbitrary function with $n$ arguments.
  854. \end{enumerate}
  855. %---------------------------------------
  856. \subsection{Syntax}
  857. The call of {\tt QUASILINPDE} is \\
  858. {\tt QUASILINPDE}({\it de}, {\it fun}, {\it varlist});
  859. \begin{itemize}
  860. \item
  861. {\it de} is the differential expression which vanishes due to the PDE
  862. {\it de}$\; = 0$ or, {\it de} may be the differential equation itself in the
  863. form $\;\;\ldots = \ldots\;\;$.
  864. \item
  865. {\it fun} is the unknown function.
  866. \item
  867. {\it varlist} is the list of variables of {\it fun}.
  868. \end{itemize}
  869. The result of {\tt QUASILINPDE} is a list of general solutions
  870. \[ \{{\it sol}_1, {\it sol}_2, \ldots \}. \]
  871. If {\tt QUASILINPDE} can not solve the PDE then it returns $\{\}$.
  872. Each solution ${\it sol}_i$ is a list of expressions
  873. \[ \{{\it ex}_1, {\it ex}_2, \ldots \} \]
  874. such that the dependent function ($\phi$ in (\ref{PDE})) is determined
  875. implicitly through an arbitrary function $F$ and the algebraic
  876. equation \[ 0 = F({\it ex}_1, {\it ex}_2, \ldots). \]
  877. %---------------------------------------
  878. \subsection{Examples}
  879. {\em Example 1:}\\
  880. To solve the quasilinear first order PDE \[1 = xu,_x + uu,_y - zu,_z\]
  881. for the function $u = u(x,y,z),$ the input would be
  882. \small \begin{verbatim}
  883. depend u,x,y,z;
  884. de:=x*df(u,x)+u*df(u,y)-z*df(u,z) - 1;
  885. varlist:={x,y,z};
  886. QUASILINPDE(de,u,varlist);
  887. \end{verbatim} \normalsize
  888. In this example the procedure returns
  889. \[\{ \{ x/e^u, ze^u, u^2 - 2y \} \},\]
  890. i.e. there is one general solution (because the outer list has only one
  891. element which itself is a list) and $u$ is given implicitly through
  892. the algebraic equation
  893. \[ 0 = F(x/e^u, ze^u, u^2 - 2y)\]
  894. with arbitrary function $F.$ \\
  895. {\em Example 2:}\\
  896. For the linear inhomogeneous PDE
  897. \[ 0 = y z,_x + x z,_y - 1, \;\;\;\;\mbox{for}\;\;\;\;z=z(x,y)\]
  898. {\tt QUASILINPDE} returns the result that for an arbitrary function $F,$ the
  899. equation
  900. \[ 0 = F\left(\frac{x+y}{e^z},e^z(x-y)\right) \]
  901. defines the general solution for $z$. \\
  902. {\em Example 3:}\\
  903. For the linear inhomogeneous PDE (3.8) from \cite{KamkePDE}
  904. \[ 0 = x w,_x + (y+z)(w,_y - w,_z), \;\;\;\;\mbox{for}\;\;\;\;w=w(x,y,z)\]
  905. {\tt QUASILINPDE} returns the result
  906. that for an arbitrary function $F,$ the equation
  907. \[ 0 = F\left(w, \;y+z, \;\ln(x)(y+z)-y\right) \]
  908. defines the general solution for $w$, i.e.\ for any function $f$
  909. \[ w = f\left(y+z, \;\ln(x)(y+z)-y\right) \]
  910. solves the PDE.
  911. %---------------------------------------
  912. \subsection{Limitations of {\tt QUASILINPDE}}
  913. One restriction on the applicability of {\tt QUASILINPDE} results from
  914. the program {\tt CRACK} which tries to solve the
  915. characteristic ODE-system of the PDE. So far {\tt CRACK} can be
  916. applied only to polynomially non-linear DE's, i.e.\ the characteristic
  917. ODE-system (\ref{char3}),(\ref{char4}) or (\ref{char3a}) may
  918. only be polynomially non-linear, i.e.\ in the PDE (\ref{PDE})
  919. the expressions $a_i$ and $b$ may only be rational in $w_j,\phi$.
  920. The task of {\tt CRACK} is simplified as (\ref{charsol1}) does not have to
  921. be solved for $w_j, \phi$. On the other hand (\ref{charsol1}) has to be
  922. solved for the $c_i$. This gives a
  923. second restriction coming from the REDUCE function {\tt SOLVE}.
  924. Though {\tt SOLVE} can be applied
  925. to polynomial and transzendential equations, again no guarantee for
  926. solvability can be given.
  927. %-------------------------------------------------------------------------
  928. \section{Transformation of DEs}
  929. %---------------------------------------
  930. \subsection{The content of {\tt DETRAFO}}
  931. Finally, after having found the finite transformations,
  932. the program {\tt APPLYSYM} calls the procedure
  933. {\tt DETRAFO} to perform the transformations. {\tt DETRAFO}
  934. can also be used alone to do point- or higher order transformations
  935. which involve a considerable computational effort if the
  936. differential order of the expression to be transformed is high and
  937. if many dependent and independent variables are involved.
  938. This might be especially useful if one wants to experiment
  939. and try out different coordinate transformations interactively,
  940. using {\tt DETRAFO} as standalone procedure.
  941. To run {\tt DETRAFO}, the old functions $y^{\alpha}$ and old
  942. variables $x^i$ must be
  943. known explicitly in terms of algebraic or
  944. differential expressions of the new functions $u^{\beta}$
  945. and new variables $v^j$. Then for point transformations the identity
  946. \begin{eqnarray}
  947. dy^{\alpha} & = & \left(y^{\alpha},_{v^i} +
  948. y^{\alpha},_{u^{\beta}}u^{\beta},_{v^i}\right) dv^i \\
  949. & = & y^{\alpha},_{x^j}dx^j \\
  950. & = & y^{\alpha},_{x^j}\left(x^j,_{v^i} +
  951. x^j,_{u^{\beta}}u^{\beta},_{v^i}\right) dv^i
  952. \end{eqnarray}
  953. provides the transformation
  954. \begin{equation}
  955. y^{\alpha},_{x^j} = \frac{dy^\alpha}{dv^i}\cdot
  956. \left(\frac{dx^j}{dv^i}\right)^{-1} \label{trafo}
  957. \end{equation}
  958. with {\it det}$\left(dx^j/dv^i\right) \neq 0$ because of the regularity
  959. of the transformation which is checked by {\tt DETRAFO}. Non-regular
  960. transformations are not performed.
  961. {\tt DETRAFO} is not restricted to point transformations.
  962. In the case of
  963. contact- or higher order transformations, the total
  964. derivatives $dy^{\alpha}/dv^i$ and $dx^j/dv^i$ then only include all
  965. $v^i-$ derivatives of $u^{\beta}$ which occur in
  966. \begin{eqnarray*}
  967. y^{\alpha} & = & y^{\alpha}(v^i,u^{\beta},u^{\beta},_{v^j},\ldots) \\
  968. x^k & = & x^k(v^i,u^{\beta},u^{\beta},_{v^j},\ldots).
  969. \end{eqnarray*}
  970. %---------------------------------------
  971. \subsection{Syntax}
  972. The call of {\tt DETRAFO} is
  973. \begin{tabbing}
  974. {\tt DETRAFO}(\=\{{\it ex}$_1$, {\it ex}$_2$, \ldots , {\it ex}$_m$\}, \\
  975. \>\{{\it ofun}$_1=${\it fex}$_1$, {\it ofun}$_2=${\it fex}$_2$,
  976. \ldots ,{\it ofun}$_p=${\it fex}$_p$\}, \\
  977. \>\{{\it ovar}$_1=${\it vex}$_1$, {\it ovar}$_2=${\it vex}$_2$, \ldots ,
  978. {\it ovar}$_q=${\it vex}$_q$\}, \\
  979. \>\{{\it nfun}$_1$, {\it nfun}$_2$, \ldots , {\it nfun}$_p$\},\\
  980. \>\{{\it nvar}$_1$, {\it nvar}$_2$, \ldots , {\it nvar}$_q$\});
  981. \end{tabbing}
  982. where $m,p,q$ are arbitrary.
  983. \begin{itemize}
  984. \item
  985. The {\it ex}$_i$ are differential expressions to be transformed.
  986. \item
  987. The second list is the list of old functions {\it ofun} expressed
  988. as expressions {\it fex} in terms
  989. of new functions {\it nfun} and new independent variables {\it nvar}.
  990. \item
  991. Similarly the third list expresses the old independent variables {\it ovar}
  992. as expressions {\it vex} in terms of new functions
  993. {\it nfun} and new independent variables {\it nvar}.
  994. \item
  995. The last two lists include the new functions {\it nfun}
  996. and new independent variables {\it nvar}.
  997. \end{itemize}
  998. Names for {\it ofun, ovar, nfun} and {\it nvar} can be arbitrarily
  999. chosen.
  1000. As the result {\tt DETRAFO} returns the first argument of its input,
  1001. i.e.\ the list
  1002. \[\{{\it ex}_1, {\it ex}_2, \ldots , {\it ex}_m\}\]
  1003. where all ${\it ex}_i$ are transformed.
  1004. %---------------------------------------
  1005. \subsection{Limitations of {\tt DETRAFO}}
  1006. The only requirement is that
  1007. the old independent variables $x^i$ and old functions $y^\alpha$ must be
  1008. given explicitly in terms of new variables $v^j$ and new functions $u^\beta$
  1009. as indicated in the syntax.
  1010. Then all calculations involve only differentiations and basic algebra.
  1011. %-------------------------------------------------------------------------
  1012. \section{Availability}
  1013. The programs run under {\tt REDUCE 3.6} and are available
  1014. by anonymous ftp from \\ {\tt ftp.maths.qmw.ac.uk}, directory
  1015. {\tt pub/tw}.
  1016. \begin{thebibliography}{99}
  1017. \bibitem{WHer} W.\,Hereman, Chapter 13 in vol 3 of the CRC Handbook of
  1018. Lie Group Analysis of Differential Equations, Ed.: N.H.\,Ibragimov,
  1019. CRC Press, Boca Raton, Florida (1995).
  1020. Systems described in this paper are among others: \\
  1021. DELiA (Alexei Bocharov et.al.) Pascal \\
  1022. DIFFGROB2 (Liz Mansfield) Maple \\
  1023. DIMSYM (James Sherring and Geoff Prince) REDUCE \\
  1024. HSYM (Vladimir Gerdt) Reduce \\
  1025. LIE (V. Eliseev, R.N. Fedorova and V.V. Kornyak) Reduce \\
  1026. LIE (Alan Head) muMath \\
  1027. Lie (Gerd Baumann) Mathematica \\
  1028. LIEDF/INFSYM (Peter Gragert and Paul Kersten) Reduce \\
  1029. Liesymm (John Carminati, John Devitt and Greg Fee) Maple \\
  1030. MathSym (Scott Herod) Mathematica \\
  1031. NUSY (Clara Nucci) Reduce \\
  1032. PDELIE (Peter Vafeades) Macsyma \\
  1033. SPDE (Fritz Schwarz) Reduce and Axiom \\
  1034. SYM\_DE (Stanly Steinberg) Macsyma \\
  1035. Symmgroup.c (Dominique Berube and Marc de Montigny) Mathematica \\
  1036. STANDARD FORM (Gregory Reid and Alan Wittkopf) Maple \\
  1037. SYMCAL (Gregory Reid) Macsyma and Maple \\
  1038. SYMMGRP.MAX (Benoit Champagne, Willy Hereman and Pavel Winternitz) Macsyma \\
  1039. LIE package (Khai Vu) Maple \\
  1040. Toolbox for symmetries (Mark Hickman) Maple \\
  1041. Lie symmetries (Jeffrey Ondich and Nick Coult) Mathematica.
  1042. \bibitem{lie1} S.\, Lie, Sophus Lie's 1880 Transformation Group Paper,
  1043. Translated by M.\, Ackerman, comments by R.\, Hermann, Mathematical Sciences
  1044. Press, Brookline, (1975).
  1045. \bibitem{lie2} S.\,Lie, Differentialgleichungen, Chelsea Publishing Company,
  1046. New York, (1967).
  1047. \bibitem{LIEPDE} T.\,Wolf, An efficiency improved program {\tt LIEPDE}
  1048. for determining Lie - symmetries of PDEs, Proceedings of the workshop on
  1049. Modern group theory methods in Acireale (Sicily) Nov.\,(1992)
  1050. \bibitem{Riq} C.\,Riquier, Les syst\`{e}mes d'\'{e}quations
  1051. aux d\'{e}riv\'{e}es partielles, Gauthier--Villars, Paris (1910).
  1052. \bibitem{Th} J.\,Thomas, Differential Systems, AMS, Colloquium
  1053. publications, v.\,21, N.Y.\,(1937).
  1054. \bibitem{Ja} M.\,Janet, Le\c{c}ons sur les syst\`{e}mes d'\'{e}quations aux
  1055. d\'{e}riv\'{e}es, Gauthier--Villars, Paris (1929).
  1056. \bibitem{Topu} V.L.\,Topunov, Reducing Systems of Linear Differential
  1057. Equations to a Passive Form, Acta Appl.\,Math.\,16 (1989) 191--206.
  1058. \bibitem{Alex} A.V.\,Bocharov and M.L.\,Bronstein, Efficiently
  1059. Implementing Two Methods of the Geometrical Theory of Differential
  1060. Equations: An Experience in Algorithm and Software Design, Acta.\,Appl.
  1061. Math.\,16 (1989) 143--166.
  1062. \bibitem{Olv} P.J. Olver, Applications of Lie Groups to Differential
  1063. Equations, Springer-Verlag New York (1986).
  1064. \bibitem{Reid1} G.J.\,Reid, A triangularization algorithm which
  1065. determines the Lie symmetry algebra of any system of PDEs, J.Phys.\,A:
  1066. Math.\,Gen.\,23 (1990) L853-L859.
  1067. \bibitem{FS} F.\,Schwarz, Automatically Determining Symmetries of Partial
  1068. Differential Equations, Computing 34, (1985) 91-106.
  1069. \bibitem{Fush} W.I.\,Fushchich and V.V.\,Kornyak, Computer Algebra
  1070. Application for Determining Lie and Lie--B\"{a}cklund Symmetries of
  1071. Differential Equations, J.\,Symb.\,Comp.\,7 (1989) 611--619.
  1072. \bibitem{Ka} E.\,Kamke, Differentialgleichungen, L\"{o}sungsmethoden
  1073. und L\"{o}sungen, Band 1, Gew\"{o}hnliche Differentialgleichungen,
  1074. Chelsea Publishing Company, New York, 1959.
  1075. \bibitem{KamkePDE} E.\,Kamke, Differentialgleichungen, L\"{o}sungsmethoden
  1076. und L\"{o}sungen, Band 2, Partielle Differentialgleichungen, 6.Aufl.,
  1077. Teubner, Stuttgart:Teubner, 1979.
  1078. \bibitem{Wo} T.\,Wolf, An Analytic Algorithm for Decoupling and Integrating
  1079. systems of Nonlinear Partial Differential Equations, J.\,Comp.\,Phys.,
  1080. no.\,3, 60 (1985) 437-446 and, Zur analytischen Untersuchung und exakten
  1081. L\"{o}sung von Differentialgleichungen mit Computeralgebrasystemen,
  1082. Dissertation B, Jena (1989).
  1083. \bibitem{WoBra} T.\,Wolf, A. Brand, The Computer Algebra Package {\tt CRACK}
  1084. for Investigating PDEs, Manual for the package {\tt CRACK} in the REDUCE
  1085. network library and in Proceedings of ERCIM School on Partial
  1086. Differential Equations and Group Theory, April 1992 in Bonn, GMD Bonn.
  1087. \bibitem{WM} M.A.H.\,MacCallum, F.J.\,Wright, Algebraic Computing with REDUCE,
  1088. Clarendon Press, Oxford (1991).
  1089. \bibitem{Mal} M.A.H.\, MacCallum, An Ordinary Differential Equation
  1090. Solver for REDUCE, Proc.\, ISAAC'88, Springer Lect.\, Notes in Comp Sci.
  1091. 358, 196--205.
  1092. \bibitem{Step} H.\,Stephani, Differential equations, Their solution using
  1093. symmetries, Cambridge University Press (1989).
  1094. \bibitem{Karp} V.I.\,Karpman, Phys.\,Lett.\,A 136, 216 (1989)
  1095. \bibitem{Cham} B.\,Champagne, W.\,Hereman and P.\,Winternitz, The computer
  1096. calculation of Lie point symmetries of large systems of differential
  1097. equations, Comp.\,Phys.\,Comm.\,66, 319-340 (1991)
  1098. \bibitem{Markus} M.\,Kubitza, private communication
  1099. \end{thebibliography}
  1100. \end{document}