123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350 |
- module scripts;
- COMMENT
- ######################
- ## ##
- ## ADVANCED ##
- ## APPLICATIONS ##
- ## ##
- ######################
- This module contains several additional advanced applications of
- standard basis computations, inspired partly by the scripts
- distributed with the commutative algebra package MACAULAY
- (Bayer/Stillman/Eisenbud).
- The following topics are currently covered :
- - [BGK]'s heuristic variable optimization
- - certain stuff on maps (preimage, ratpreimage)
- - ideals of points (in affine and proj. spaces)
- - ideals of (affine and proj.) monomial curves
- - General Rees rings, associated graded rings, and related
- topics (analytic spread, symmetric algebra)
- - several short scripts (minimal generators, symbolic powers
- of primes, singular locus)
- END COMMENT;
- %---------- [BGK]'s heuristic variable optimization ----------
- symbolic operator varopt;
- symbolic procedure varopt m;
- if !*mode='algebraic then makelist varopt!* dpmat_from_a m
- else varopt!* m;
- symbolic procedure varopt!* m;
- % Find a heuristically optimal variable order.
- begin scalar c; c:=mo_zero();
- for each x in dpmat_list m do
- for each y in bas_dpoly x do c:=mo_lcm(c,car y);
- return
- for each x in
- sort(mo_2list c,function(lambda(x,y); cdr x>cdr y)) collect
- car x;
- end;
- % ----- Certain stuff on maps -------------
- % A ring map is represented as a list
- % {preimage_ring, image_ring, subst_list},
- % where subst_list is a substitution list {v1=ex1,v2=ex2,...} in
- % algebraic prefix form, i.e. looks like (list (equal var image) ...)
- symbolic operator preimage;
- symbolic procedure preimage(m,map);
- % Compute the preimage of an ideal m under a (polynomial) ring map.
- if !*mode='algebraic then
- begin map:=cdr reval map;
- return preimage!*(reval m,
- {ring_from_a first map, ring_from_a second map, third map});
- end
- else preimage!*(m,map);
- symbolic procedure preimage!*(m,map);
- % m and the result are given and returned in algebraic prefix form.
- if not !*noetherian then
- rederr"PREIMAGE only for noetherian term orders"
- else begin scalar u,oldring,newring,oldnames;
- if not eqcar(m,'list) then rederr"PREIMAGE only for ideals";
- oldring:=first map; newring:=second map;
- oldnames:=ring_names oldring;
- setring!* ring_sum(newring,oldring);
- u:=bas_renumber for each x in cdr third map collect
- << if not member(second x,oldnames) then
- typerr(second x,"var. name");
- bas_make(0,dp_diff(dp_from_a second x,dp_from_a third x))
- >>;
- m:=matsum!* {dpmat_from_a m,dpmat_make(length u,0,u,nil,nil)};
- m:=dpmat_2a eliminate!*(m,ring_names newring);
- setring!* oldring;
- return m;
- end;
- symbolic operator ratpreimage;
- symbolic procedure ratpreimage(m,map);
- % Compute the preimage of an ideal m under a rational ring map.
- if !*mode='algebraic then
- begin map:=cdr reval map;
- return ratpreimage!*(reval m,
- {ring_from_a first map, ring_from_a second map, third map});
- end
- else ratpreimage!*(m,map);
- symbolic procedure ratpreimage!*(m,map);
- % m and the result are given and returned in algebraic prefix form.
- if not !*noetherian then
- rederr"RATPREIMAGE only for noetherian term orders"
- else begin scalar u,oldring,newnames,oldnames,f,g,v,g0;
- if not eqcar(m,'list) then rederr"RATPREIMAGE only for ideals";
- oldring:=first map; v:=gensym();
- newnames:=v . ring_names second map;
- oldnames:=ring_names oldring; u:=append(oldnames,newnames);
- setring!* ring_define(u,nil,'lex,for each x in u collect 1);
- g0:=dp_fi 1;
- u:=bas_renumber for each x in cdr third map collect
- << if not member(second x,oldnames) then
- typerr(second x,"var. name");
- f:=simp third x; g:=dp_from_a prepf denr f;
- f:=dp_from_a prepf numr f; g0:=dp_prod(g,g0);
- bas_make(0,dp_diff(dp_prod(g,dp_from_a second x),f))
- >>;
- u:=bas_make(0,dp_diff(dp_prod(g0,dp_from_a v),dp_fi 1)) . u;
- m:=matsum!* {dpmat_from_a m,dpmat_make(length u,0,u,nil,nil)};
- m:=dpmat_2a eliminate!*(m,newnames);
- setring!* oldring;
- return m;
- end;
- % ---- The ideals of affine resp. proj. points. The old stuff, but the
- % ---- algebraic interface now uses the linear algebra approach.
- symbolic procedure affine_points1!* m;
- begin scalar names;
- if length(names:=ring_names cali!=basering) neq length cadr m then
- typerr(m,"coordinate matrix");
- m:=for each x in cdr m collect
- 'list . for each y in pair(names,x) collect
- {'plus,car y,{'minus,reval cdr y}};
- m:=for each x in m collect dpmat_from_a x;
- m:=matintersect!* m;
- return m;
- end;
- symbolic procedure scripts!=ideal u;
- 'list . for each x in cali_choose(u,2) collect
- {'plus,{'times, car first x,cdr second x},
- {'minus,{'times, car second x,cdr first x}}};
- symbolic procedure proj_points1!* m;
- begin scalar names;
- if length(names:=ring_names cali!=basering) neq length cadr m then
- typerr(m,"coordinate matrix");
- m:=for each x in cdr m collect scripts!=ideal pair(names,x);
- m:=for each x in m collect interreduce!* dpmat_from_a x;
- m:=matintersect!* m;
- return m;
- end;
- % ----- Affine and proj. monomial curves ------------
- symbolic operator affine_monomial_curve;
- symbolic procedure affine_monomial_curve(l,R);
- % l is a list of integers, R contains length l ring var. names.
- % Returns the generators of the monomial curve (t^i : i\in l) in R.
- if !*mode='algebraic then
- dpmat_2a affine_monomial_curve!*(cdr reval l,cdr reval R)
- else affine_monomial_curve!*(l,R);
- symbolic procedure affine_monomial_curve!*(l,R);
- if not numberlistp l then typerr(l,"number list")
- else if length l neq length R then
- rederr"number of variables doesn't match"
- else begin scalar u,t0,v;
- v:=list gensym();
- r:=ring_define(r,{l},'revlex,l);
- setring!* ring_sum(r,ring_define(v,degreeorder!* v,'lex,'(1)));
- t0:=dp_from_a car v;
- u:=bas_renumber for each x in pair(l,ring_names r) collect
- bas_make(0,dp_diff(dp_from_a cdr x,dp_power(t0,car x)));
- u:=dpmat_make(length u,0,u,nil,nil);
- u:=(eliminate!*(u,v) where cali!=monset=ring_names cali!=basering);
- setring!* r;
- return dpmat_neworder(u,dpmat_gbtag u);
- end;
- symbolic operator proj_monomial_curve;
- symbolic procedure proj_monomial_curve(l,R);
- % l is a list of integers, R contains length l ring var. names.
- % Returns the generators of the monomial curve
- % (s^(d-i)*t^i : i\in l) in R where d = max { x : x \in l}
- if !*mode='algebraic then
- dpmat_2a proj_monomial_curve!*(cdr reval l,cdr reval R)
- else proj_monomial_curve!*(l,R);
- symbolic procedure proj_monomial_curve!*(l,R);
- if not numberlistp l then typerr(l,"number list")
- else if length l neq length R then
- rederr"number of variables doesn't match"
- else begin scalar u,t0,t1,v,d;
- t0:=gensym(); t1:=gensym(); v:={t0,t1};
- d:=listexpand(function max2,l);
- r:=ring_define(r,degreeorder!* r,'revlex,for each x in r collect 1);
- setring!* ring_sum(r,ring_define(v,degreeorder!* v,'lex,'(1 1)));
- t0:=dp_from_a t0; t1:=dp_from_a t1;
- u:=bas_renumber for each x in pair(l,ring_names r) collect
- bas_make(0,dp_diff(dp_from_a cdr x,
- dp_prod(dp_power(t0,car x),dp_power(t1,d-car x))));
- u:=dpmat_make(length u,0,u,nil,nil);
- u:=(eliminate!*(u,v) where cali!=monset=ring_names cali!=basering);
- setring!* r;
- return dpmat_neworder(u,dpmat_gbtag u);
- end;
- % -- General Rees rings, associated graded rings, and related topics --
- symbolic operator blowup;
- symbolic procedure blowup(m,n,vars);
- % vars is a list of var. names for the ring R
- % of the same length as dpmat_list n.
- % Returns an ideal J such that (S+R)/J == S/M [ N.t ]
- % ( with S = the current ring )
- % is the blow up ring of the ideal N over S/M.
- % (S+R) is the new current ring.
- if !*mode='algebraic then
- dpmat_2a blowup!*(dpmat_from_a reval m,dpmat_from_a reval n,
- cdr reval vars)
- else blowup!*(M,N,vars);
- symbolic procedure blowup!*(M,N,vars);
- if (dpmat_cols m > 0)or(dpmat_cols n > 0) then
- rederr"BLOWUP defined only for ideals"
- else if not !*noetherian then
- rederr"BLOWUP only for noetherian term orders"
- else begin scalar u,s,t0,v,r1;
- if length vars neq dpmat_rows n then
- rederr {"ring must have",dpmat_rows n,"variables"};
- u:=for each x in dpmat_rowdegrees n collect mo_ecart cdr x;
- r1:=ring_define(vars,list u,'revlex,u);
- s:=ring_sum(cali!=basering,r1); v:=list(gensym());
- setring!* ring_sum(s,ring_define(v,degreeorder!* v,'lex,'(1)));
- t0:=dp_from_a car v;
- n:=for each x in
- pair(vars,for each y in dpmat_list n collect bas_dpoly y)
- collect dp_diff(dp_from_a car x,
- dp_prod(dp_neworder cdr x,t0));
- m:=bas_renumber append(bas_neworder dpmat_list m,
- for each x in n collect bas_make(0,x));
- m:=(eliminate!*(interreduce!* dpmat_make(length m,0,m,nil,nil),v)
- where cali!=monset=nil);
- setring!* s;
- return dpmat_neworder(m,dpmat_gbtag m);
- end;
- symbolic operator assgrad;
- symbolic procedure assgrad(m,n,vars);
- % vars is a list of var. names for the ring T
- % of the same length as dpmat_list n.
- % Returns an ideal J such that (S+T)/J == (R/N + N/N^2 + ... )
- % ( with R=S/M and S the current ring )
- % is the associated graded ring of the ideal N over R.
- % (S+T) is the new current ring.
- if !*mode='algebraic then
- dpmat_2a assgrad!*(dpmat_from_a reval m,dpmat_from_a reval n,
- cdr reval vars)
- else assgrad!*(M,N,vars);
- symbolic procedure assgrad!*(M,N,vars);
- if (dpmat_cols m > 0)or(dpmat_cols n > 0) then
- rederr"ASSGRAD defined only for ideals"
- else begin scalar u;
- u:=blowup!*(m,n,vars);
- return matsum!* {u,dpmat_neworder(n,nil)};
- end;
- symbolic operator analytic_spread;
- symbolic procedure analytic_spread m;
- % Returns the analytic spread of the ideal m.
- if !*mode='algebraic then analytic_spread!* dpmat_from_a reval m
- else analytic_spread!* m;
- symbolic procedure analytic_spread!* m;
- if (dpmat_cols m>0) then rederr"ANALYTIC SPREAD only for ideals"
- else (begin scalar r,m1,vars;
- r:=ring_names cali!=basering;
- vars:=for each x in dpmat_list m collect gensym();
- m1:=blowup!*(dpmat_from_dpoly nil,m,vars);
- return dim!* gbasis!* matsum!*{m1,dpmat_from_a('list . r)};
- end) where cali!=basering=cali!=basering;
- symbolic operator sym;
- symbolic procedure sym(M,vars);
- % vars is a list of var. names for the ring R
- % of the same length as dpmat_list M.
- % Returns an ideal J such that (S+R)/J == Sym(M)
- % ( with S = the current ring )
- % is the symmetric algebra of M over S.
- % (S+R) is the new current ring.
- if !*mode='algebraic then
- dpmat_2a sym!*(dpmat_from_a M,cdr reval vars)
- else sym!*(m,vars);
- symbolic procedure sym!*(m,vars);
- % The symmetric algebra of the dpmat m.
- if not !*noetherian then
- rederr"SYM only for noetherian term orders"
- else begin scalar n,u,r1;
- if length vars neq dpmat_rows m then
- rederr {"ring must have",dpmat_rows m,"variables"};
- cali!=degrees:=dpmat_coldegs m;
- u:=for each x in dpmat_rowdegrees m collect mo_ecart cdr x;
- r1:=ring_define(vars,list u,'revlex,u); n:=syzygies!* m;
- setring!* ring_sum(cali!=basering,r1);
- return mat2list!* interreduce!*
- dpmat_mult(dpmat_neworder(n,nil),
- ideal2mat!* dpmat_from_a('list . vars));
- end;
- % ----- Several short scripts ----------
- % ------ Minimal generators of an ideal or module.
- symbolic operator minimal_generators;
- symbolic procedure minimal_generators m;
- if !*mode='algebraic then
- dpmat_2a minimal_generators!* dpmat_from_a reval m
- else minimal_generators!* m;
- symbolic procedure minimal_generators!* m;
- car groeb_minimize(m,syzygies!* m);
- % ------- Symbolic powers of prime (or unmixed) ideals
- symbolic operator symbolic_power;
- symbolic procedure symbolic_power(m,d);
- if !*mode='algebraic then
- dpmat_2a symbolic_power!*(dpmat_from_a m,reval d)
- else symbolic_power!*(m,d);
- symbolic procedure symbolic_power!*(m,d);
- eqhull!* idealpower!*(m,d);
- % ---- non zero divisor property -----------
- put('nzdp,'psopfn,'scripts!=nzdp);
- symbolic procedure scripts!=nzdp m;
- if length m neq 2 then rederr"Syntax : nzdp(dpoly,dpmat)"
- else begin scalar f,b;
- f:=reval car m; intf_get second m;
- if null(b:=get(second m,'gbasis)) then
- put(second m,'gbasis,b:=gbasis!* get(second m,'basis));
- return if nzdp!*(dp_from_a f,b) then 'yes else 'no;
- end;
- symbolic procedure nzdp!*(f,m);
- % Test dpoly f for a non zero divisor on coker m. m must be a gbasis.
- submodulep!*(matqquot!*(m,f),m);
- endmodule; % scripts
- end;
|