123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489 |
- Sun Aug 18 18:06:11 2002 run on Windows
- *** ^ redefined
- % Test file for XIDEAL package (Groebner bases for exterior algebra)
- % Declare EXCALC variables
- pform {x,y,z,t}=0,f(i)=1,{u,u(i),u(i,j)}=0;
- % Reductions with xmodideal (all should be zero)
- d x^d y xmodideal {d x - d y};
- 0
- d x^d y^d z xmodideal {d x^d y - d z^d t};
- 0
- d x^d z^d t xmodideal {d x^d y - d z^d t};
- 0
- f(2)^d x^d y xmodideal {d t^f(1) - f(2)^f(3),
- f(3)^f(1) - d x^d y};
- 0
- d t^f(1)^d z xmodideal {d t^f(1) - f(2)^f(3),
- f(1)^d z - d x^d y,
- d t^d y - d x^f(2)};
- 0
- f(3)^f(4)^f(5)^f(6)
- xmodideal {f(1)^f(2) + f(3)^f(4) + f(5)^f(6)};
- 0
- f(1)^f(4)^f(5)^f(6)
- xmodideal {f(1)^f(2) + f(2)^f(3) + f(3)^f(4)
- + f(4)^f(5) + f(5)^f(6)};
- 0
- d x^d y^d z xmodideal {x**2+y**2+z**2-1,x*d x+y*d y+z*d z};
- 0
- % Changing the division between exterior variables and parameters
- xideal {a*d x+y*d y};
- d x*a + d y*y
- {---------------}
- a
- xvars {a};
- xideal {a*d x+y*d y};
- {d x*a + d y*y,d x^d y}
- xideal({a*d x+y*d y},{a,y});
- {d x*a + d y*y,
- d x^d y*y}
- xvars {};
- % all 0-forms are coefficients
- excoeffs(d u - (a*p - q)*d y);
- {1, - a*p + q}
- exvars(d u - (a*p - q)*d y);
- {d u,d y}
- xvars {p,q};
- % p,q are no longer coefficients
- excoeffs(d u - (a*p - q)*d y);
- { - a,1,1}
- exvars(d u - (a*p - q)*d y);
- {d y*p,d y*q,d u}
- xvars nil;
- % Exterior system for heat equation on 1st jet bundle
- S := {d u - u(-t)*d t - u(-x)*d x,
- d u(-t)^d t + d u(-x)^d x,
- d u(-x)^d t - u(-t)*d x^d t};
- s := { - d t*u + d u - d x*u ,
- t x
- - (d t^d u + d x^d u ),
- t x
- u *d t^d x - d t^d u }
- t x
- % Check that it's closed.
- dS := d S xmodideal S;
- ds := {}
- % Exterior system for a Monge-Ampere equation
- korder d u(-y,-y),d u(-x,-y),d u(-x,-x),d u(-y),d u(-x),d u;
- M := {u(-x,-x)*u(-y,-y) - u(-x,-y)**2,
- d u - u(-x)*d x - u(-y)*d y,
- d u(-x) - u(-x,-x)*d x - u(-x,-y)*d y,
- d u(-y) - u(-x,-y)*d x - u(-y,-y)*d y}$
- % Get the full Groebner basis
- gbdeg := xideal M;
- 2
- gbdeg := {u *u - (u ) ,
- x x y y x y
- d u - d x*u - d y*u ,
- x y
- d u - d x*u - d y*u ,
- x x x x y
- d u - d x*u - d y*u }
- y x y y y
- % Changing the term ordering can be dramatic
- xorder gradlex;
- gradlex
- gbgrad := xideal M;
- 2
- gbgrad := {u *u - (u ) ,
- x x y y x y
- - d u + d x*u + d y*u ,
- x y
- - d u + d x*u + d y*u ,
- y x y y y
- - d u + d x*u + d y*u ,
- x x x x y
- d u ^d x + d u ^d y,
- x y
- - d u *u + d u *u ,
- x y y y x y
- - d u *u + d u *u ,
- x x y y x x
- d u ^d u ,
- y x
- d u *u - d u*u + d y*u *u - d y*u *u ,
- y x x y x y y x y y
- d u *u - d u*u + d y*u *u - d y*u *u ,
- x x x x x x y x y x
- u *d x^d y + d u^d x,
- y
- u *d x^d y + d u ^d x,
- y y y
- d u^d x^d y,
- - u *d u^d y + u *d u ^d y - d u ^d u,
- x y y x x
- - u *d u^d y + u *d u ^d y,
- x x x x
- u *d u^d y + u *d u ^d x + d u ^d u,
- y y y x y
- d u ^d x^d y,
- x
- d u ^d u^d y,
- x
- d u ^d u^d x,
- x
- - u *d u^d x + u *d u ^d x,
- y y y y
- d u ^d u^d x}
- y
- % But the bases are equivalent
- gbdeg xmod gbgrad;
- {}
- xorder deglex;
- deglex
- gbgrad xmod gbdeg;
- {}
- % Some Groebner bases
- gb := xideal {f(1)^f(2) + f(3)^f(4)};
- 1 2 3 4
- gb := {f ^f + f ^f ,
- 2 3 4
- f ^f ^f ,
- 1 3 4
- f ^f ^f }
- gb := xideal {f(1)^f(2), f(1)^f(3)+f(2)^f(4)+f(5)^f(6)};
- 1 3 2 4 5 6
- gb := {f ^f + f ^f + f ^f ,
- 1 2
- f ^f ,
- 2 5 6
- f ^f ^f ,
- 2 3 4 3 5 6
- f ^f ^f - f ^f ^f ,
- 1 5 6
- f ^f ^f ,
- 3 4 5 6
- f ^f ^f ^f }
- % Non-graded ideals
- % Left and right ideals are not the same
- d t^(d z+d x^d y) xmodideal {d z+d x^d y};
- 0
- (d z+d x^d y)^d t xmodideal {d z+d x^d y};
- - 2*d t^d z
- % Higher order forms can now reduce lower order ones
- d x xmodideal {d y^d z + d x,d x^d y + d z};
- 0
- % Anything whose even part is a parameter generates the trivial ideal!!
- gb := xideal({x + d y},{});
- gb := {1}
- gb := xideal {1 + f(1) + f(1)^f(2) + f(2)^f(3)^f(4) + f(3)^f(4)^f(5)^f(6)};
- gb := {1}
- xvars nil;
- % Tracing Groebner basis calculations
- on trxideal;
- gb := xideal {x-y+y*d x-x*d y};
- Input Basis
- xpoly(1)= - x^d y + d x^y + x - y
- New Basis
- xpoly(1)=x^d y - d x^y - x + y
- wedge_pair{d y,1} -> xpoly(2)=d x^y^d y - x^d y + y^d y
- spoly_pair{2,1} -> xpoly(3)=x^x - 2*x^y + y^y
- spoly_pair{1,3} -> xpoly(4)=x^d x^y - 2*x^y^d y + y^y^d y + x^x - x^y
- spoly_pair{4,3} -> 0
- spoly_pair{4,1} -> 0
- spoly_pair{2,4} -> criterion 1 hit
- wedge_pair{d x,4} -> 0
- wedge_pair{d x,2} -> xpoly(5)=x^d x - x^d y - d x^y + y^d y
- New Basis
- xpoly(1)=x^d y - d x^y - x + y
- xpoly(2)=d x^y^d y - x^d y + y^d y
- xpoly(3)=x^x - 2*x^y + y^y
- xpoly(4)=x^d x - x^d y - d x^y + y^d y
- spoly_pair{4,3} -> 0
- spoly_pair{4,1} -> 0
- spoly_pair{2,4} -> criterion 1 hit
- wedge_pair{d x,4} -> 0
- 2 2
- gb := {x - 2*x*y + y ,
- - d x*y + d y*x - x + y,
- d x*x - 2*d x*y + d y*y - x + y,
- - d x*y + d y*y + d x^d y*y - x + y}
- off trxideal;
- % Same thing in lexicographic order, without full reduction
- xorder lex;
- lex
- off xfullreduce;
- gblex := xideal {x-y+y*d x-x*d y};
- gblex := {d x*y - d y*y - d x^d y*y + x - y,
- d x*y - d y*x + x - y}
- % Manual autoreduction
- gblex := xauto gblex;
- gblex := {d x*y - d y*y - d x^d y*y + x - y}
- % Tracing reduction
- on trxmod;
- first gb xmod gblex;
- x^x - 2*x^y + y^y =
- x^(x - d x^y^d y + d x^y - y^d y - y) +
- (d x^y^d y)^(x - d x^y^d y + d x^y - y^d y - y) +
- ( - d x^y)^(x - d x^y^d y + d x^y - y^d y - y) +
- (y^d y)^(x - d x^y^d y + d x^y - y^d y - y) +
- ( - y)^(x - d x^y^d y + d x^y - y^d y - y) +
- 0
- 0
- % Restore defaults
- on xfullreduce;
- off trxideal,trxmod;
- xvars nil;
- xorder deglex;
- deglex
- end;
- Time for test: 2694 ms
|