123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499 |
- Sun Aug 18 18:25:41 2002 run on Windows
- %Appendix (Testfile).
- %This appendix is a test file. The symmetry groups for various
- %equations or systems of equations are determined. The variable
- %PCLASS has the default value 0 and may be changed by the user
- %before running it. The output may be compared with the results
- %which are given in the references.
- %The Burgers equations
- deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$
- cresys deq 1$
- simpsys()$
- result()$
- The differential equation
- DEQ(1):=u(1,2,2) + u(1,2)*u(1) + u(1,1)
- The symmetry generators are
- GEN(1):=dx(1)
- GEN(2):=dx(2)
- GEN(3):=dx(2)*x(1) + du(1)
- 2
- GEN(4):=dx(1)*x(1) + dx(2)*x(2)*x(1) + du(1)*( - u(1)*x(1) + x(2))
- GEN(5):=2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1)
- The non-vanishing commutators of the finite subgroup
- COMM(1,3):= dx(2)
- COMM(1,4):= 2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1)
- COMM(1,5):= 2*dx(1)
- COMM(2,4):= dx(2)*x(1) + du(1)
- COMM(2,5):= dx(2)
- COMM(3,5):= - dx(2)*x(1) - du(1)
- 2
- COMM(4,5):= - 2*dx(1)*x(1)
- - 2*dx(2)*x(2)*x(1)
- + 2*du(1)*(u(1)*x(1) - x(2))
- %The Kadomtsev-Petviashvili equation
- deq 1:=3*u(1,3,3)+u(1,2,2,2,2)+6*u(1,2,2)*u 1
- +6*u(1,2)**2+4*u(1,1,2)$
- cresys deq 1$
- simpsys()$
- result()$
- The differential equation
- DEQ(1):=3*u(1,3,3)
- +u(1,2,2,2,2)
- +6*u(1,2,2)*u(1)
- 2
- +6*u(1,2)
- +4*u(1,1,2)
- The symmetry generators are
- GEN(1):=3*dx(2)*c(12) + 2*du(1)*df(c(12),x(1))
- GEN(2):= 6*dx(2)*df(c(9),x(1))*x(3)
- - 9*dx(3)*c(9)
- + 4*du(1)*df(c(9),x(1),2)*x(3)
- GEN(3):= 27*dx(1)*xi(1)
- 2
- 3*dx(2)*( - 2*df(xi(1),x(1),2)*x(3) + 3*df(xi(1),x(1))*x(2))
- + 18*dx(3)*df(xi(1),x(1))*x(3)
- 2*du(1)*(
- 2
- -2*df(xi(1),x(1),3)*x(3)
- +3*df(xi(1),x(1),2)*x(2)
- -9*df(xi(1),x(1))*u(1))
- The remaining dependencies
- xi(1) depends on x(1)
- c(12) depends on x(1)
- c(9) depends on x(1)
- %The modified Kadomtsev-Petviashvili equation
- deq 1:=u(1,1,2)-u(1,2,2,2,2)-3*u(1,3,3)
- +6*u(1,2)**2*u(1,2,2)+6*u(1,3)*u(1,2,2)$
- cresys deq 1$
- simpsys()$
- result()$
- The differential equation
- DEQ(1):=
- -3*u(1,3,3)
- +6*u(1,3)*u(1,2,2)
- -u(1,2,2,2,2)
- 2
- +6*u(1,2,2)*u(1,2)
- +u(1,1,2)
- The symmetry generators are
- GEN(1):=du(1)*c(16)
- GEN(2):=6*dx(2)*c(14) + du(1)*df(c(14),x(1))*x(3)
- GEN(3):= 12*dx(2)*df(c(11),x(1))*x(3)
- + 72*dx(3)*c(11)
- 2
- + du(1)*(df(c(11),x(1),2)*x(3) + 6*df(c(11),x(1))*x(2))
- GEN(4):= 324*dx(1)*xi(1)
- 2
- + 18*dx(2)*(df(xi(1),x(1),2)*x(3) + 6*df(xi(1),x(1))*x(2))
- + 216*dx(3)*df(xi(1),x(1))*x(3)
- 2
- + du(1)*x(3)*(df(xi(1),x(1),3)*x(3) + 18*df(xi(1),x(1),2)*x(2))
- The remaining dependencies
- xi(1) depends on x(1)
- c(16) depends on x(1)
- c(14) depends on x(1)
- c(11) depends on x(1)
- %The real- and the imaginary part of the nonlinear Schroedinger
- %equation
- deq 1:= u(1,1)+u(2,2,2)+2*u 1**2*u 2+2*u 2**3$
- deq 2:=-u(2,1)+u(1,2,2)+2*u 1*u 2**2+2*u 1**3$
- %Because this is not a single equation the two assignments
- sder 1:=u(2,2,2)$
- sder 2:=u(1,2,2)$
- %are necessary.
- cresys()$
- simpsys()$
- result()$
- The differential equations
- DEQ(1):=u(2,2,2)
- 3
- +2*u(2)
- 2
- +2*u(2)*u(1)
- +u(1,1)
- DEQ(2):=
- -u(2,1)
- 2
- +2*u(2) *u(1)
- +u(1,2,2)
- 3
- +2*u(1)
- The symmetry generators are
- GEN(1):=dx(1)
- GEN(2):=dx(2)
- GEN(3):=du(2)*u(1) + du(1)*u(2)
- GEN(4):=2*dx(2)*x(1) - du(2)*u(1)*x(2) - du(1)*u(2)*x(2)
- GEN(5):=2*dx(1)*x(1) + dx(2)*x(2) + du(2)*u(2) - du(1)*u(1)
- The non-vanishing commutators of the finite subgroup
- COMM(1,4):= 2*dx(2)
- COMM(1,5):= 2*dx(1)
- COMM(2,4):= - du(2)*u(1) - du(1)*u(2)
- COMM(2,5):= dx(2)
- COMM(3,5):= 2*du(2)*u(1) - 2*du(1)*u(2)
- COMM(4,5):= - 2*dx(2)*x(1) - du(2)*u(1)*x(2) + 3*du(1)*u(2)*x(2)
- %The symmetries of the system comprising the four equations
- deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$
- deq 2:=u(2,1)+u(2,2,2)$
- deq 3:=u 1*u 2-2*u(2,2)$
- deq 4:=4*u(2,1)+u 2*(u 1**2+2*u(1,2))$
- sder 1:=u(1,2,2)$
- sder 2:=u(2,2,2)$
- sder 3:=u(2,2)$
- sder 4:=u(2,1)$
- %is obtained by calling
- cresys()$
- simpsys()$
- Determining system is not completely solved
- The remaining equations are
- GL(1):=df(c(5),x(2),2) + df(c(5),x(1))
- GL(2):=df(c(5),x(2),x(1)) + df(c(5),x(2),3)
- The remaining dependencies
- c(5) depends on x(1),x(2)
- Number of functions is 21
- df(c 5,x 1):=-df(c 5,x 2,2)$
- df(c 5,x 2,x 1):=-df(c 5,x 2,3)$
- simpsys()$
- result()$
- The differential equations
- DEQ(1):=u(1,2,2) + u(1,2)*u(1) + u(1,1)
- DEQ(2):=u(2,2,2) + u(2,1)
- DEQ(3):= - 2*u(2,2) + u(2)*u(1)
- 2
- DEQ(4):=4*u(2,1) + 2*u(2)*u(1,2) + u(2)*u(1)
- The symmetry generators are
- GEN(1):=dx(1)
- GEN(2):=dx(2)
- GEN(3):=du(2)*u(2)
- GEN(4):=2*dx(2)*x(1) + du(2)*u(2)*x(2) + 2*du(1)
- 2
- GEN(5):= 4*dx(1)*x(1)
- + 4*dx(2)*x(2)*x(1)
- 4*du(1)*( - u(1)*x(1) + x(2))
- 2
- + du(2)*u(2)*(x(2) - 2*x(1))
- GEN(6):=4*dx(1)*x(1) + 2*dx(2)*x(2) - du(2)*u(2) - 2*du(1)*u(1)
- GEN(7):=du(2)*c(5)*u(2) + du(1)*(2*df(c(5),x(2)) - c(5)*u(1))
- The remaining dependencies
- c(5) depends on x(1),x(2)
- Constraints
- df(c(5),x(1)):= - df(c(5),x(2),2)
- df(c(5),x(2),x(1)):= - df(c(5),x(2),3)
- The non-vanishing commutators of the finite subgroup
- COMM(1,4):= 2*dx(2)
- COMM(1,5):= 8*dx(1)*x(1) + 4*dx(2)*x(2) - 2*du(2)*u(2) - 4*du(1)*u(1)
- COMM(1,6):= 4*dx(1)
- COMM(2,4):= du(2)*u(2)
- COMM(2,5):= 4*dx(2)*x(1) + 2*du(2)*u(2)*x(2) + 4*du(1)
- COMM(2,6):= 2*dx(2)
- COMM(4,6):= - 4*dx(2)*x(1) - 2*du(2)*u(2)*x(2) - 4*du(1)
- 2
- COMM(5,6):= - 16*dx(1)*x(1)
- - 16*dx(2)*x(2)*x(1)
- + 16*du(1)*(u(1)*x(1) - x(2))
- 2
- 4*du(2)*u(2)*( - x(2) + 2*x(1))
- %The symmetries of the subsystem comprising equation 1 and 3 are
- %obtained by
- cresys(deq 1,deq 3)$
- simpsys()$
- result()$
- The differential equations
- DEQ(1):=u(1,2,2) + u(1,2)*u(1) + u(1,1)
- DEQ(3):= - 2*u(2,2) + u(2)*u(1)
- The symmetry generators are
- GEN(1):=dx(1)
- GEN(2):=dx(2)
- GEN(3):=du(2)
- GEN(4):=2*dx(2)*x(1) + du(2)*x(2) + 2*du(1)
- GEN(5):=2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1)
- 2
- GEN(6):= 4*dx(1)*x(1)
- + 4*dx(2)*x(2)*x(1)
- 4*du(1)*( - u(1)*x(1) + x(2))
- 2
- + du(2)*x(2)
- GEN(7):=du(2)*c(11)
- The remaining dependencies
- c(11) depends on x(1)
- The non-vanishing commutators of the finite subgroup
- COMM(1,4):= 2*dx(2)
- COMM(1,5):= 2*dx(1)
- COMM(1,6):= 8*dx(1)*x(1) + 4*dx(2)*x(2) - 4*du(1)*u(1)
- COMM(2,4):= du(2)
- COMM(2,5):= dx(2)
- COMM(2,6):= 4*dx(2)*x(1) + 2*du(2)*x(2) + 4*du(1)
- COMM(4,5):= - 2*dx(2)*x(1) - du(2)*x(2) - 2*du(1)
- 2
- COMM(5,6):= 8*dx(1)*x(1)
- + 8*dx(2)*x(2)*x(1)
- 8*du(1)*( - u(1)*x(1) + x(2))
- 2
- + 2*du(2)*x(2)
- %The result for all possible subsystems is discussed in detail in
- %''Symmetries and Involution Systems: Some Experiments in Computer
- %Algebra'', contribution to the Proceedings of the Oberwolfach
- %Meeting on Nonlinear Evolution Equations, Summer 1986, to appear.
- end;
- Time for test: 29568 ms, plus GC time: 371 ms
|