spde.rlg 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. Sun Aug 18 18:25:41 2002 run on Windows
  2. %Appendix (Testfile).
  3. %This appendix is a test file. The symmetry groups for various
  4. %equations or systems of equations are determined. The variable
  5. %PCLASS has the default value 0 and may be changed by the user
  6. %before running it. The output may be compared with the results
  7. %which are given in the references.
  8. %The Burgers equations
  9. deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$
  10. cresys deq 1$
  11. simpsys()$
  12. result()$
  13. The differential equation
  14. DEQ(1):=u(1,2,2) + u(1,2)*u(1) + u(1,1)
  15. The symmetry generators are
  16. GEN(1):=dx(1)
  17. GEN(2):=dx(2)
  18. GEN(3):=dx(2)*x(1) + du(1)
  19. 2
  20. GEN(4):=dx(1)*x(1) + dx(2)*x(2)*x(1) + du(1)*( - u(1)*x(1) + x(2))
  21. GEN(5):=2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1)
  22. The non-vanishing commutators of the finite subgroup
  23. COMM(1,3):= dx(2)
  24. COMM(1,4):= 2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1)
  25. COMM(1,5):= 2*dx(1)
  26. COMM(2,4):= dx(2)*x(1) + du(1)
  27. COMM(2,5):= dx(2)
  28. COMM(3,5):= - dx(2)*x(1) - du(1)
  29. 2
  30. COMM(4,5):= - 2*dx(1)*x(1)
  31. - 2*dx(2)*x(2)*x(1)
  32. + 2*du(1)*(u(1)*x(1) - x(2))
  33. %The Kadomtsev-Petviashvili equation
  34. deq 1:=3*u(1,3,3)+u(1,2,2,2,2)+6*u(1,2,2)*u 1
  35. +6*u(1,2)**2+4*u(1,1,2)$
  36. cresys deq 1$
  37. simpsys()$
  38. result()$
  39. The differential equation
  40. DEQ(1):=3*u(1,3,3)
  41. +u(1,2,2,2,2)
  42. +6*u(1,2,2)*u(1)
  43. 2
  44. +6*u(1,2)
  45. +4*u(1,1,2)
  46. The symmetry generators are
  47. GEN(1):=3*dx(2)*c(12) + 2*du(1)*df(c(12),x(1))
  48. GEN(2):= 6*dx(2)*df(c(9),x(1))*x(3)
  49. - 9*dx(3)*c(9)
  50. + 4*du(1)*df(c(9),x(1),2)*x(3)
  51. GEN(3):= 27*dx(1)*xi(1)
  52. 2
  53. 3*dx(2)*( - 2*df(xi(1),x(1),2)*x(3) + 3*df(xi(1),x(1))*x(2))
  54. + 18*dx(3)*df(xi(1),x(1))*x(3)
  55. 2*du(1)*(
  56. 2
  57. -2*df(xi(1),x(1),3)*x(3)
  58. +3*df(xi(1),x(1),2)*x(2)
  59. -9*df(xi(1),x(1))*u(1))
  60. The remaining dependencies
  61. xi(1) depends on x(1)
  62. c(12) depends on x(1)
  63. c(9) depends on x(1)
  64. %The modified Kadomtsev-Petviashvili equation
  65. deq 1:=u(1,1,2)-u(1,2,2,2,2)-3*u(1,3,3)
  66. +6*u(1,2)**2*u(1,2,2)+6*u(1,3)*u(1,2,2)$
  67. cresys deq 1$
  68. simpsys()$
  69. result()$
  70. The differential equation
  71. DEQ(1):=
  72. -3*u(1,3,3)
  73. +6*u(1,3)*u(1,2,2)
  74. -u(1,2,2,2,2)
  75. 2
  76. +6*u(1,2,2)*u(1,2)
  77. +u(1,1,2)
  78. The symmetry generators are
  79. GEN(1):=du(1)*c(16)
  80. GEN(2):=6*dx(2)*c(14) + du(1)*df(c(14),x(1))*x(3)
  81. GEN(3):= 12*dx(2)*df(c(11),x(1))*x(3)
  82. + 72*dx(3)*c(11)
  83. 2
  84. + du(1)*(df(c(11),x(1),2)*x(3) + 6*df(c(11),x(1))*x(2))
  85. GEN(4):= 324*dx(1)*xi(1)
  86. 2
  87. + 18*dx(2)*(df(xi(1),x(1),2)*x(3) + 6*df(xi(1),x(1))*x(2))
  88. + 216*dx(3)*df(xi(1),x(1))*x(3)
  89. 2
  90. + du(1)*x(3)*(df(xi(1),x(1),3)*x(3) + 18*df(xi(1),x(1),2)*x(2))
  91. The remaining dependencies
  92. xi(1) depends on x(1)
  93. c(16) depends on x(1)
  94. c(14) depends on x(1)
  95. c(11) depends on x(1)
  96. %The real- and the imaginary part of the nonlinear Schroedinger
  97. %equation
  98. deq 1:= u(1,1)+u(2,2,2)+2*u 1**2*u 2+2*u 2**3$
  99. deq 2:=-u(2,1)+u(1,2,2)+2*u 1*u 2**2+2*u 1**3$
  100. %Because this is not a single equation the two assignments
  101. sder 1:=u(2,2,2)$
  102. sder 2:=u(1,2,2)$
  103. %are necessary.
  104. cresys()$
  105. simpsys()$
  106. result()$
  107. The differential equations
  108. DEQ(1):=u(2,2,2)
  109. 3
  110. +2*u(2)
  111. 2
  112. +2*u(2)*u(1)
  113. +u(1,1)
  114. DEQ(2):=
  115. -u(2,1)
  116. 2
  117. +2*u(2) *u(1)
  118. +u(1,2,2)
  119. 3
  120. +2*u(1)
  121. The symmetry generators are
  122. GEN(1):=dx(1)
  123. GEN(2):=dx(2)
  124. GEN(3):=du(2)*u(1) + du(1)*u(2)
  125. GEN(4):=2*dx(2)*x(1) - du(2)*u(1)*x(2) - du(1)*u(2)*x(2)
  126. GEN(5):=2*dx(1)*x(1) + dx(2)*x(2) + du(2)*u(2) - du(1)*u(1)
  127. The non-vanishing commutators of the finite subgroup
  128. COMM(1,4):= 2*dx(2)
  129. COMM(1,5):= 2*dx(1)
  130. COMM(2,4):= - du(2)*u(1) - du(1)*u(2)
  131. COMM(2,5):= dx(2)
  132. COMM(3,5):= 2*du(2)*u(1) - 2*du(1)*u(2)
  133. COMM(4,5):= - 2*dx(2)*x(1) - du(2)*u(1)*x(2) + 3*du(1)*u(2)*x(2)
  134. %The symmetries of the system comprising the four equations
  135. deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$
  136. deq 2:=u(2,1)+u(2,2,2)$
  137. deq 3:=u 1*u 2-2*u(2,2)$
  138. deq 4:=4*u(2,1)+u 2*(u 1**2+2*u(1,2))$
  139. sder 1:=u(1,2,2)$
  140. sder 2:=u(2,2,2)$
  141. sder 3:=u(2,2)$
  142. sder 4:=u(2,1)$
  143. %is obtained by calling
  144. cresys()$
  145. simpsys()$
  146. Determining system is not completely solved
  147. The remaining equations are
  148. GL(1):=df(c(5),x(2),2) + df(c(5),x(1))
  149. GL(2):=df(c(5),x(2),x(1)) + df(c(5),x(2),3)
  150. The remaining dependencies
  151. c(5) depends on x(1),x(2)
  152. Number of functions is 21
  153. df(c 5,x 1):=-df(c 5,x 2,2)$
  154. df(c 5,x 2,x 1):=-df(c 5,x 2,3)$
  155. simpsys()$
  156. result()$
  157. The differential equations
  158. DEQ(1):=u(1,2,2) + u(1,2)*u(1) + u(1,1)
  159. DEQ(2):=u(2,2,2) + u(2,1)
  160. DEQ(3):= - 2*u(2,2) + u(2)*u(1)
  161. 2
  162. DEQ(4):=4*u(2,1) + 2*u(2)*u(1,2) + u(2)*u(1)
  163. The symmetry generators are
  164. GEN(1):=dx(1)
  165. GEN(2):=dx(2)
  166. GEN(3):=du(2)*u(2)
  167. GEN(4):=2*dx(2)*x(1) + du(2)*u(2)*x(2) + 2*du(1)
  168. 2
  169. GEN(5):= 4*dx(1)*x(1)
  170. + 4*dx(2)*x(2)*x(1)
  171. 4*du(1)*( - u(1)*x(1) + x(2))
  172. 2
  173. + du(2)*u(2)*(x(2) - 2*x(1))
  174. GEN(6):=4*dx(1)*x(1) + 2*dx(2)*x(2) - du(2)*u(2) - 2*du(1)*u(1)
  175. GEN(7):=du(2)*c(5)*u(2) + du(1)*(2*df(c(5),x(2)) - c(5)*u(1))
  176. The remaining dependencies
  177. c(5) depends on x(1),x(2)
  178. Constraints
  179. df(c(5),x(1)):= - df(c(5),x(2),2)
  180. df(c(5),x(2),x(1)):= - df(c(5),x(2),3)
  181. The non-vanishing commutators of the finite subgroup
  182. COMM(1,4):= 2*dx(2)
  183. COMM(1,5):= 8*dx(1)*x(1) + 4*dx(2)*x(2) - 2*du(2)*u(2) - 4*du(1)*u(1)
  184. COMM(1,6):= 4*dx(1)
  185. COMM(2,4):= du(2)*u(2)
  186. COMM(2,5):= 4*dx(2)*x(1) + 2*du(2)*u(2)*x(2) + 4*du(1)
  187. COMM(2,6):= 2*dx(2)
  188. COMM(4,6):= - 4*dx(2)*x(1) - 2*du(2)*u(2)*x(2) - 4*du(1)
  189. 2
  190. COMM(5,6):= - 16*dx(1)*x(1)
  191. - 16*dx(2)*x(2)*x(1)
  192. + 16*du(1)*(u(1)*x(1) - x(2))
  193. 2
  194. 4*du(2)*u(2)*( - x(2) + 2*x(1))
  195. %The symmetries of the subsystem comprising equation 1 and 3 are
  196. %obtained by
  197. cresys(deq 1,deq 3)$
  198. simpsys()$
  199. result()$
  200. The differential equations
  201. DEQ(1):=u(1,2,2) + u(1,2)*u(1) + u(1,1)
  202. DEQ(3):= - 2*u(2,2) + u(2)*u(1)
  203. The symmetry generators are
  204. GEN(1):=dx(1)
  205. GEN(2):=dx(2)
  206. GEN(3):=du(2)
  207. GEN(4):=2*dx(2)*x(1) + du(2)*x(2) + 2*du(1)
  208. GEN(5):=2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1)
  209. 2
  210. GEN(6):= 4*dx(1)*x(1)
  211. + 4*dx(2)*x(2)*x(1)
  212. 4*du(1)*( - u(1)*x(1) + x(2))
  213. 2
  214. + du(2)*x(2)
  215. GEN(7):=du(2)*c(11)
  216. The remaining dependencies
  217. c(11) depends on x(1)
  218. The non-vanishing commutators of the finite subgroup
  219. COMM(1,4):= 2*dx(2)
  220. COMM(1,5):= 2*dx(1)
  221. COMM(1,6):= 8*dx(1)*x(1) + 4*dx(2)*x(2) - 4*du(1)*u(1)
  222. COMM(2,4):= du(2)
  223. COMM(2,5):= dx(2)
  224. COMM(2,6):= 4*dx(2)*x(1) + 2*du(2)*x(2) + 4*du(1)
  225. COMM(4,5):= - 2*dx(2)*x(1) - du(2)*x(2) - 2*du(1)
  226. 2
  227. COMM(5,6):= 8*dx(1)*x(1)
  228. + 8*dx(2)*x(2)*x(1)
  229. 8*du(1)*( - u(1)*x(1) + x(2))
  230. 2
  231. + 2*du(2)*x(2)
  232. %The result for all possible subsystems is discussed in detail in
  233. %''Symmetries and Involution Systems: Some Experiments in Computer
  234. %Algebra'', contribution to the Proceedings of the Oberwolfach
  235. %Meeting on Nonlinear Evolution Equations, Summer 1986, to appear.
  236. end;
  237. Time for test: 29568 ms, plus GC time: 371 ms