123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 |
- Sun Aug 18 18:24:31 2002 run on Windows
- % Test file for the REDUCE package QSUM
- %
- % Copyright (c) Wolfram Koepf, Harald Boeing, Konrad-Zuse-Zentrum Berlin, 1997
- %
- % Implementation of the q-Gosper and q-Zeilberger algorithms
- %
- % Reference:
- %
- % Koornwinder, T. H.:
- % On Zeilberger's algorithm and its q-analogue: a rigorous description.
- % J. of Comput. and Appl. Math. 48, 1993, 91-111.
- %
- % Some examples are from
- %
- % Koekoek, R. and Swarttouw, R.F.:
- % The Askey-scheme of Hypergeometric Orthogonal Polynomials and its q-analogue.
- % Report 94-05, Technische Universiteit Delft, Faculty of Technical Mathematics
- % and Informatics, Delft, 1994.
- %
- % Gasper, G. and Rahman, M.:
- % Basic Hypergeometric Series.
- % Encyclopedia of Mathematics and its Applications 35.
- % Ed. by G.-C. Rota, Cambridge University Press, London and New York, 1990.
- % Results of manual qsum.tex
- %
- load qsum;
- qgosper(qpochhammer(a,q,k)*q^k/qpochhammer(q,q,k),q,k);
- k
- (q *a - 1)*qpochhammer(a,q,k)
- -------------------------------
- (a - 1)*qpochhammer(q,q,k)
- qgosper(qpochhammer(a,q,k)*qpochhammer(a*q^2,q^2,k)*
- qpochhammer(q^(-n),q,k)*q^(n*k)/(qpochhammer(a,q^2,k)*
- qpochhammer(a*q^(n+1),q,k)*qpochhammer(q,q,k)),q,k);
- k*n k k n 1 2 2
- ( - q *(q *a - 1)*(q - q )*qpochhammer(----,q,k)*qpochhammer(a*q ,q ,k)
- n
- q
- 2*k n n
- *qpochhammer(a,q,k))/((q *a - 1)*(q - 1)*qpochhammer(q *a*q,q,k)
- 2
- *qpochhammer(a,q ,k)*qpochhammer(q,q,k))
- qgosper(qpochhammer(q^(-n),q,k)*z^k/qpochhammer(q,q,k)*z^n,q,k);
- ***** No q-hypergeometric antidifference exists.
- off qgosper_down;
- qgosper(q^k*qbrackets(k,q),q,k);
- k k
- - q *(q + 1 - q )*qbrackets(k,q)
- -----------------------------------
- k
- (q - 1)*(q + 1)*(q - 1)
- on qgosper_down;
- qgosper(q^k,q,k,0,n);
- n
- q *q - 1
- ----------
- q - 1
- qsumrecursion(qpochhammer(q^(-n),q,k)*z^k/qpochhammer(q,q,k),q,k,n);
- n n
- - ((q - z)*summ(n - 1) - q *summ(n))
- on qsumrecursion_certificate;
- proof:=qsumrecursion(qpochhammer(q^(-n),q,k)*z^k/qpochhammer(q,q,k),q,k,n);
- n n
- proof := { - ((q - z)*summ(n - 1) - q *summ(n)),
- k n
- - (q - q )*z
- ----------------,
- n
- q - 1
- k 1
- z *qpochhammer(----,q,k)
- n
- q
- --------------------------,
- qpochhammer(q,q,k)
- k,
- downward_antidifference}
- off qsumrecursion_certificate;
- % proof of statement
- lhside:= qsimpcomb(sub(summ(n)=part(proof,3),
- summ(n-1)=sub(n=n-1,part(proof,3)),part(proof,1)));
- k k n n 1
- z *(q *(q - z) + q *(z - 1))*qpochhammer(----,q,k)
- n
- q
- lhside := -----------------------------------------------------
- n
- (q - 1)*qpochhammer(q,q,k)
- rhside:= qsimpcomb((part(proof,2)*part(proof,3)-
- sub(k=k-1,part(proof,2)*part(proof,3))));
- k k n n k 1
- - z *((q - q )*z - q *(q - 1))*qpochhammer(----,q,k)
- n
- q
- rhside := ---------------------------------------------------------
- n
- (q - 1)*qpochhammer(q,q,k)
- qsimpcomb((rhside-lhside)/part(proof,3));
- 0
- % proof done
- operator qlaguerre, qcharlier;
- % q-Laguerre polynomials, Koekoek, Swarttouw (3.21)
- qsumrecursion(qpochhammer(q^(alpha+1),q,n)/qpochhammer(q,q,n),
- {q^(-n)}, {q^(alpha+1)}, q, -x*q^(n+alpha+1), qlaguerre(n));
- n alpha + n n
- ((q + 1 - q )*q - q *(q *x + q))*qlaguerre(n - 1)
- alpha + n n
- + ((q - q)*qlaguerre(n - 2) + (q - 1)*qlaguerre(n))*q
- % q-Charlier polynomials, Koekoek, Swarttouw (3.23)
- qsumrecursion({q^(-n),q^(-x)},{0},q,-q^(n+1)/a,qcharlier(n));
- x n n 2*n
- - ((q *((q + 1 - q )*a + q )*q - q )*qcharlier(n - 1)
- x n n
- + q *((q + a*q)*(q - q)*qcharlier(n - 2) - qcharlier(n)*a*q))
- % continuous q-Jacobi polynomials, Koekoek, Swarttouw (3.10)
- %% on qsum_nullspace;
- %% term:= qpochhammer(q^(alpha+1),q,n)/qpochhammer(q,q,n)*
- %% qphihyperterm({q^(-n),q^(n+alpha+beta+1),
- %% q^(alpha/2+1/4)*exp(I*theta), q^(alpha/2+1/4)*exp(-I*theta)},
- %% {q^(alpha+1), -q^((alpha+beta+1)/2), -q^((alpha+beta+2)/2)},
- %% q, q, k)$
- %% qsumrecursion(term,q,k,n,2);
- %% off qsum_nullspace;
-
- % Some more qgosper results with proof
- %
- % Gasper, Rahman (2.3.4)
- term:=qpochhammer(a,q,k)*qpochhammer(a*q^2,q^2,k)*qpochhammer(q^(-n),q,k)*
- q^(n*k)/(qpochhammer(a,q^2,k)*qpochhammer(a*q^(n+1),q,k)*qpochhammer(q,q,k));
- k*n 1 2 2
- q *qpochhammer(----,q,k)*qpochhammer(a*q ,q ,k)*qpochhammer(a,q,k)
- n
- q
- term := ----------------------------------------------------------------------
- n 2
- qpochhammer(q *a*q,q,k)*qpochhammer(a,q ,k)*qpochhammer(q,q,k)
- result:=qgosper(qpochhammer(a,q,k)*qpochhammer(a*q^2,q^2,k)*
- qpochhammer(q^(-n),q,k)*q^(n*k)/
- (qpochhammer(a,q^2,k)*qpochhammer(a*q^(n+1),q,k)*qpochhammer(q,q,k)),q,k);
- k*n k k n 1
- result := ( - q *(q *a - 1)*(q - q )*qpochhammer(----,q,k)
- n
- q
- 2 2 2*k n
- *qpochhammer(a*q ,q ,k)*qpochhammer(a,q,k))/((q *a - 1)*(q - 1)
- n 2
- *qpochhammer(q *a*q,q,k)*qpochhammer(a,q ,k)*qpochhammer(q,q,k))
- qsimpcomb(result-sub(k=k-1,result)-term);
- 0
- % Gasper, Rahman (3.8.16)
- term:=(1-a*c*q^(4*k))*(1-b/c*q^(-2*k))*qpochhammer(a,q,k)*qpochhammer(b,q,k)*
- qpochhammer(q^(-3*n),q^3,k)*qpochhammer(a*c^2/b*q^(3*n),q^3,k)*q^(3*k)/
- ((1-a*c)*(1-b/c)*qpochhammer(c*q^3,q^3,k)*qpochhammer(a*c/b*q^3,q^3,k)*
- qpochhammer(a*c*q^(3*n+1),q,k)*qpochhammer(b/c*q^(1-3*n),q,k));
- 3*n 2
- k q *a*c 3 1 3
- term := (q *qpochhammer(-----------,q ,k)*qpochhammer(------,q ,k)
- b 3*n
- q
- *qpochhammer(a,q,k)*qpochhammer(b,q,k)
- 3
- 6*k 2 4*k 2*k a*c*q 3
- *( - q *a*c + q *a*b*c + q *c - b))/(qpochhammer(--------,q ,k)
- b
- b*q 3*n
- *qpochhammer(--------,q,k)*qpochhammer(q *a*c*q,q,k)
- 3*n
- q *c
- 3 3 2
- *qpochhammer(c*q ,q ,k)*(a*b*c - a*c - b + c))
- result:=qgosper((1-a*c*q^(4*k))*(1-b/c*q^(-2*k))*qpochhammer(a,q,k)*
- qpochhammer(b,q,k)*qpochhammer(q^(-3*n),q^3,k)*qpochhammer(a*c^2/
- b*q^(3*n),q^3,k)*q^(3*k)/((1-a*c)*(1-b/c)*qpochhammer(c*q^3,q^3,k)*
- qpochhammer(a*c/b*q^3,q^3,k)*qpochhammer(a*c*q^(3*n+1),q,k)*
- qpochhammer(b/c*q^(1-3*n),q,k)),q,k);
- 3*k + 3*n 2 2*k k + n 2*n k k
- result := ( - (q *a*c - b)*(q + q + q )*(q *a - 1)*(q *b - 1)
- 3*n 2
- k n q *a*c 3 1 3
- *(q - q )*qpochhammer(-----------,q ,k)*qpochhammer(------,q ,k)
- b 3*n
- q
- 3*n
- *qpochhammer(a,q,k)*qpochhammer(b,q,k)*c)/((q *a*c - b)
- 3
- 3*n a*c*q 3
- *(q *c - 1)*(a*c - 1)*(b - c)*qpochhammer(--------,q ,k)
- b
- b*q 3*n
- *qpochhammer(--------,q,k)*qpochhammer(q *a*c*q,q,k)
- 3*n
- q *c
- 3 3
- *qpochhammer(c*q ,q ,k))
- qsimpcomb(result-sub(k=k-1,result)-term);
- 0
- end;
- Time for test: 19807 ms, plus GC time: 290 ms
|