liepde.rlg 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163
  1. Sun Aug 18 16:53:04 2002 run on Windows
  2. off echo, dfprint$
  3. -------------------------------------------------------
  4. The following runs demonstrate the program LIEPDE for the
  5. computation of infinitesimal symmetries. Times given
  6. below refer to a 8 MB session under LINUX on a 133 MHz
  7. Pentium PC with the CRACK version of April 1998.
  8. -------------------------------------------------------
  9. The first example is a single ODE with a parametric
  10. function f=f(x) for which point symmetries are to be
  11. determined.
  12. (Time ~ 6 sec.)
  13. -------------------------------------------------------
  14. The ODE under investigation is :
  15. 2 2 3
  16. df(y,x,2)= - df(f,x)*y - 3*df(y,x)*f - df(y,x)*y - 2*f *y - f*y + y
  17. for the function(s) :
  18. y(x)
  19. The symmetries are:
  20. -------- 1. Symmetry:
  21. int(f,x) 1
  22. xi_x=e *int(-----------,x)
  23. int(f,x)
  24. e
  25. int(f,x) 1
  26. eta_y= - e *int(-----------,x)*f*y - y
  27. int(f,x)
  28. e
  29. -------- 2. Symmetry:
  30. int(f,x)
  31. xi_x= - e
  32. int(f,x)
  33. eta_y=e *f*y
  34. --------
  35. -------------------------------------------------------
  36. The following example demonstrates a number of things.
  37. The Burgers equation is investigated concerning third
  38. order symmetries. The equation is used to substitute
  39. df(u,t) and all derivatives of df(u,t). This computation
  40. also shows that any equations that remain unsolved are
  41. returned, like in this case the heat quation.
  42. (Time ~ 15 sec.)
  43. -------------------------------------------------------
  44. The PDE under investigation is :
  45. 2
  46. df(u,t)=df(u,x,2) + df(u,x)
  47. for the function(s) :
  48. u(x,t)
  49. The symmetries are:
  50. -------- 1. Symmetry:
  51. xi_t=0
  52. xi_x=0
  53. 2
  54. eta_u=df(u,x,2) + df(u,x)
  55. -------- 2. Symmetry:
  56. xi_t=0
  57. xi_x=0
  58. 2 2 2 2
  59. eta_u=4*df(u,x,2)*t + 4*df(u,x) *t + 4*df(u,x)*t*x + 2*t + x
  60. -------- 3. Symmetry:
  61. xi_t=0
  62. xi_x=0
  63. 2
  64. eta_u=4*df(u,x,2)*t + 4*df(u,x) *t + 2*df(u,x)*x - 1
  65. -------- 4. Symmetry:
  66. xi_t=0
  67. xi_x=0
  68. 3
  69. eta_u=df(u,x,3) + 3*df(u,x,2)*df(u,x) + df(u,x)
  70. -------- 5. Symmetry:
  71. xi_t=0
  72. xi_x=0
  73. 2 2 3 2
  74. eta_u=4*df(u,x,3)*t + 12*df(u,x,2)*df(u,x)*t + 4*df(u,x,2)*t*x + 4*df(u,x) *t
  75. 2 2
  76. + 4*df(u,x) *t*x + df(u,x)*x - x
  77. -------- 6. Symmetry:
  78. xi_t=0
  79. xi_x=0
  80. 3 3 2
  81. eta_u=8*df(u,x,3)*t + 24*df(u,x,2)*df(u,x)*t + 12*df(u,x,2)*t *x
  82. 3 3 2 2 2 2
  83. + 8*df(u,x) *t + 12*df(u,x) *t *x + 12*df(u,x)*t + 6*df(u,x)*t*x + 6*t*x
  84. 3
  85. + x
  86. -------- 7. Symmetry:
  87. xi_t=0
  88. xi_x=0
  89. eta_u
  90. 3 2
  91. =2*df(u,x,3)*t + 6*df(u,x,2)*df(u,x)*t + df(u,x,2)*x + 2*df(u,x) *t + df(u,x) *x
  92. -------- 8. Symmetry:
  93. xi_t=0
  94. xi_x=0
  95. eta_u=df(u,x)
  96. -------- 9. Symmetry:
  97. xi_t=0
  98. xi_x=0
  99. eta_u=2*df(u,x)*t + x
  100. -------- 10. Symmetry:
  101. xi_t=0
  102. xi_x=0
  103. eta_u=1
  104. --------
  105. Further symmetries:
  106. xi_t=0
  107. xi_x=0
  108. c_27 + c_32
  109. eta_u=-------------
  110. u
  111. e
  112. with c_27(x,t), c_32(t)
  113. which still have to satisfy:
  114. 0=2*df( - c_27,t) - 2*df( - c_27,x,2) + df( - 2*c_32,t)
  115. -------------------------------------------------------
  116. Now the same equation is investigated, this time only
  117. df(u,x,2) and its derivatives are substituted. As a
  118. consequence less jet-variables (u-derivatives of lower
  119. order) are generated in the process of formulating the
  120. symmetry conditions. Less jet-variables in which the
  121. conditions have to be fulfilled identically means less
  122. overdetermined conditions and more solutions which to
  123. compute takes longer than before.
  124. (Time ~ 85 sec.)
  125. -------------------------------------------------------
  126. The PDE under investigation is :
  127. 2
  128. df(u,x,2)=df(u,t) - df(u,x)
  129. for the function(s) :
  130. u(x,t)
  131. The symmetries are:
  132. -------- 1. Symmetry:
  133. xi_t=0
  134. xi_x=0
  135. eta_u
  136. 2
  137. = - 2*df(u,t,x)*df(u,t) - df(u,t,2,x) - df(u,t,2)*df(u,x) - df(u,t) *df(u,x)
  138. -------- 2. Symmetry:
  139. xi_t=0
  140. xi_x=0
  141. 2 2 2
  142. eta_u= - 16*df(u,t,x)*df(u,t)*t - 2*df(u,t,x)*x - 8*df(u,t,2,x)*t
  143. 2 2 2
  144. - 8*df(u,t,2)*df(u,x)*t - 8*df(u,t,2)*t*x - 8*df(u,t) *df(u,x)*t
  145. 2 2
  146. - 8*df(u,t) *t*x - 2*df(u,t)*df(u,x)*x + 2*df(u,t)*x - df(u,x)
  147. -------- 3. Symmetry:
  148. xi_t=0
  149. xi_x=0
  150. 4 2 2 4
  151. eta_u= - 32*df(u,t,x)*df(u,t)*t - 24*df(u,t,x)*t *x - 16*df(u,t,2,x)*t
  152. 4 3 2 4
  153. - 16*df(u,t,2)*df(u,x)*t - 32*df(u,t,2)*t *x - 16*df(u,t) *df(u,x)*t
  154. 2 3 2 2 2
  155. - 32*df(u,t) *t *x - 24*df(u,t)*df(u,x)*t *x + 24*df(u,t)*t *x
  156. 3 2 2 4 3
  157. - 8*df(u,t)*t*x + 60*df(u,x)*t + 24*df(u,x)*t*x - df(u,x)*x + 36*t*x + 6*x
  158. -------- 4. Symmetry:
  159. xi_t=0
  160. xi_x=0
  161. 5 4 3 2
  162. eta_u= - 64*df(u,t,x)*df(u,t)*t - 160*df(u,t,x)*t - 80*df(u,t,x)*t *x
  163. 5 5 4
  164. - 32*df(u,t,2,x)*t - 32*df(u,t,2)*df(u,x)*t - 80*df(u,t,2)*t *x
  165. 2 5 2 4 4
  166. - 32*df(u,t) *df(u,x)*t - 80*df(u,t) *t *x - 160*df(u,t)*df(u,x)*t
  167. 3 2 3 2 3
  168. - 80*df(u,t)*df(u,x)*t *x - 240*df(u,t)*t *x - 40*df(u,t)*t *x
  169. 3 2 2 4 2 3 5
  170. - 120*df(u,x)*t - 120*df(u,x)*t *x - 10*df(u,x)*t*x - 60*t *x - 20*t*x - x
  171. -------- 5. Symmetry:
  172. xi_t=0
  173. xi_x=0
  174. 3 2 3
  175. eta_u= - 32*df(u,t,x)*df(u,t)*t - 12*df(u,t,x)*t*x - 16*df(u,t,2,x)*t
  176. 3 2 2 3
  177. - 16*df(u,t,2)*df(u,x)*t - 24*df(u,t,2)*t *x - 16*df(u,t) *df(u,x)*t
  178. 2 2 2 3
  179. - 24*df(u,t) *t *x - 12*df(u,t)*df(u,x)*t*x + 12*df(u,t)*t*x - 2*df(u,t)*x
  180. 2
  181. - 6*df(u,x)*t + 6*df(u,x)*x - 9*x
  182. -------- 6. Symmetry:
  183. xi_t=0
  184. xi_x=0
  185. eta_u= - 4*df(u,t,x)*df(u,t)*t - 2*df(u,t,2,x)*t - 2*df(u,t,2)*df(u,x)*t
  186. 2 2
  187. - df(u,t,2)*x - 2*df(u,t) *df(u,x)*t - df(u,t) *x
  188. -------- 7. Symmetry:
  189. xi_t=0
  190. xi_x=0
  191. 3
  192. eta_u= - df(u,t,3) - 3*df(u,t,2)*df(u,t) - df(u,t)
  193. -------- 8. Symmetry:
  194. xi_t=0
  195. xi_x=0
  196. 2
  197. eta_u= - 8*df(u,t,x)*df(u,t)*t*x + df(u,t,x)*x - 4*df(u,t,3)*t
  198. 2
  199. - 4*df(u,t,2,x)*t*x - 12*df(u,t,2)*df(u,t)*t - 4*df(u,t,2)*df(u,x)*t*x
  200. 2 3 2 2 2 2
  201. - df(u,t,2)*x - 4*df(u,t) *t - 4*df(u,t) *df(u,x)*t*x - df(u,t) *x
  202. + df(u,t)*df(u,x)*x
  203. -------- 9. Symmetry:
  204. xi_t=0
  205. xi_x=0
  206. 3 2 3
  207. eta_u= - 64*df(u,t,x)*df(u,t)*t *x + 24*df(u,t,x)*t *x - 8*df(u,t,x)*t*x
  208. 4 3 4
  209. - 16*df(u,t,3)*t - 32*df(u,t,2,x)*t *x - 48*df(u,t,2)*df(u,t)*t
  210. 3 2 2 3 4
  211. - 32*df(u,t,2)*df(u,x)*t *x - 24*df(u,t,2)*t *x - 16*df(u,t) *t
  212. 2 3 2 2 2 2
  213. - 32*df(u,t) *df(u,x)*t *x - 24*df(u,t) *t *x + 24*df(u,t)*df(u,x)*t *x
  214. 3 2 4
  215. - 8*df(u,t)*df(u,x)*t*x + 24*df(u,t)*t*x - df(u,t)*x - 24*df(u,x)*t*x
  216. 3 2
  217. + 6*df(u,x)*x - 30*t - 15*x
  218. -------- 10. Symmetry:
  219. xi_t=0
  220. xi_x=0
  221. 5 4 3 3
  222. eta_u= - 384*df(u,t,x)*df(u,t)*t *x - 960*df(u,t,x)*t *x - 160*df(u,t,x)*t *x
  223. 6 5 6
  224. - 64*df(u,t,3)*t - 192*df(u,t,2,x)*t *x - 192*df(u,t,2)*df(u,t)*t
  225. 5 5 4 2
  226. - 192*df(u,t,2)*df(u,x)*t *x - 480*df(u,t,2)*t - 240*df(u,t,2)*t *x
  227. 3 6 2 5 2 5
  228. - 64*df(u,t) *t - 192*df(u,t) *df(u,x)*t *x - 480*df(u,t) *t
  229. 2 4 2 4 3 3
  230. - 240*df(u,t) *t *x - 960*df(u,t)*df(u,x)*t *x - 160*df(u,t)*df(u,x)*t *x
  231. 4 3 2 2 4 3
  232. - 720*df(u,t)*t - 720*df(u,t)*t *x - 60*df(u,t)*t *x - 720*df(u,x)*t *x
  233. 2 3 5 3 2 2 4 6
  234. - 240*df(u,x)*t *x - 12*df(u,x)*t*x - 120*t - 180*t *x - 30*t*x - x
  235. -------- 11. Symmetry:
  236. xi_t=0
  237. xi_x=0
  238. 4 3 2 3
  239. eta_u= - 160*df(u,t,x)*df(u,t)*t *x + 80*df(u,t,x)*t *x - 40*df(u,t,x)*t *x
  240. 5 4 5
  241. - 32*df(u,t,3)*t - 80*df(u,t,2,x)*t *x - 96*df(u,t,2)*df(u,t)*t
  242. 4 3 2 3 5
  243. - 80*df(u,t,2)*df(u,x)*t *x - 80*df(u,t,2)*t *x - 32*df(u,t) *t
  244. 2 4 2 3 2 3
  245. - 80*df(u,t) *df(u,x)*t *x - 80*df(u,t) *t *x + 80*df(u,t)*df(u,x)*t *x
  246. 2 3 3 2 2
  247. - 40*df(u,t)*df(u,x)*t *x + 360*df(u,t)*t + 120*df(u,t)*t *x
  248. 4 2 3 5 2
  249. - 10*df(u,t)*t*x + 420*df(u,x)*t *x + 60*df(u,x)*t*x - df(u,x)*x + 120*t
  250. 2 4
  251. + 120*t*x + 10*x
  252. -------- 12. Symmetry:
  253. xi_t=0
  254. xi_x=0
  255. 2 3
  256. eta_u= - 48*df(u,t,x)*df(u,t)*t *x + 12*df(u,t,x)*t*x - 2*df(u,t,x)*x
  257. 3 2 3
  258. - 16*df(u,t,3)*t - 24*df(u,t,2,x)*t *x - 48*df(u,t,2)*df(u,t)*t
  259. 2 2 3 3
  260. - 24*df(u,t,2)*df(u,x)*t *x - 12*df(u,t,2)*t*x - 16*df(u,t) *t
  261. 2 2 2 2
  262. - 24*df(u,t) *df(u,x)*t *x - 12*df(u,t) *t*x + 12*df(u,t)*df(u,x)*t*x
  263. 3 2
  264. - 2*df(u,t)*df(u,x)*x + 6*df(u,t)*x - 6*df(u,x)*x + 3
  265. -------- 13. Symmetry:
  266. xi_t=0
  267. xi_x=0
  268. eta_u= - 2*df(u,t,x)*df(u,t)*x - 2*df(u,t,3)*t - df(u,t,2,x)*x
  269. 3
  270. - 6*df(u,t,2)*df(u,t)*t - df(u,t,2)*df(u,x)*x - 2*df(u,t) *t
  271. 2
  272. - df(u,t) *df(u,x)*x
  273. -------- 14. Symmetry:
  274. xi_t=0
  275. xi_x=0
  276. 2
  277. eta_u=df(u,t,2) + df(u,t)
  278. -------- 15. Symmetry:
  279. xi_t=0
  280. xi_x=0
  281. 2 2 2
  282. eta_u= - 8*df(u,t,x)*t*x - 8*df(u,t,2)*t - 8*df(u,t) *t
  283. 2
  284. - 8*df(u,t)*df(u,x)*t*x - 2*df(u,t)*x + 2*df(u,x)*x - 1
  285. -------- 16. Symmetry:
  286. xi_t=0
  287. xi_x=0
  288. 3 4 2 4
  289. eta_u= - 32*df(u,t,x)*t *x - 16*df(u,t,2)*t - 16*df(u,t) *t
  290. 3 3 2 2 2
  291. - 32*df(u,t)*df(u,x)*t *x - 48*df(u,t)*t - 24*df(u,t)*t *x - 48*df(u,x)*t *x
  292. 3 2 2 4
  293. - 8*df(u,x)*t*x - 12*t - 12*t*x - x
  294. -------- 17. Symmetry:
  295. xi_t=0
  296. xi_x=0
  297. 2 3 2 3
  298. eta_u= - 12*df(u,t,x)*t *x - 8*df(u,t,2)*t - 8*df(u,t) *t
  299. 2 2 3
  300. - 12*df(u,t)*df(u,x)*t *x - 6*df(u,t)*t*x + 6*df(u,x)*t*x - df(u,x)*x + 6*t
  301. 2
  302. + 3*x
  303. -------- 18. Symmetry:
  304. xi_t=0
  305. xi_x=0
  306. 2
  307. eta_u= - df(u,t,x)*x - 2*df(u,t,2)*t - 2*df(u,t) *t - df(u,t)*df(u,x)*x
  308. -------- 19. Symmetry:
  309. xi_t=0
  310. xi_x=0
  311. eta_u=df(u,t,x) + df(u,t)*df(u,x)
  312. -------- 20. Symmetry:
  313. xi_t=0
  314. xi_x=0
  315. 2 2
  316. eta_u= - 4*df(u,t,x)*t - 4*df(u,t)*df(u,x)*t - 4*df(u,t)*t*x + 2*df(u,x)*t
  317. 2
  318. - df(u,x)*x + 2*x
  319. -------- 21. Symmetry:
  320. xi_t=0
  321. xi_x=0
  322. 3 3 2 2
  323. eta_u= - 8*df(u,t,x)*t - 8*df(u,t)*df(u,x)*t - 12*df(u,t)*t *x - 12*df(u,x)*t
  324. 2 3
  325. - 6*df(u,x)*t*x - 6*t*x - x
  326. -------- 22. Symmetry:
  327. xi_t=0
  328. xi_x=0
  329. eta_u= - 4*df(u,t,x)*t - 4*df(u,t)*df(u,x)*t - 2*df(u,t)*x + df(u,x)
  330. -------- 23. Symmetry:
  331. xi_t=0
  332. xi_x=0
  333. eta_u=df(u,t)
  334. -------- 24. Symmetry:
  335. xi_t=0
  336. xi_x=0
  337. 2 2
  338. eta_u= - 4*df(u,t)*t - 4*df(u,x)*t*x - 2*t - x
  339. -------- 25. Symmetry:
  340. xi_t=0
  341. xi_x=0
  342. eta_u= - 2*df(u,t)*t - df(u,x)*x + 1
  343. -------- 26. Symmetry:
  344. xi_t=0
  345. xi_x=0
  346. eta_u= - 2*df(u,x)*t - x
  347. -------- 27. Symmetry:
  348. xi_t=0
  349. xi_x=0
  350. eta_u=df(u,x)
  351. -------- 28. Symmetry:
  352. xi_t=0
  353. xi_x=0
  354. eta_u=1
  355. --------
  356. Further symmetries:
  357. xi_t=0
  358. xi_x=0
  359. c_92
  360. eta_u=------
  361. u
  362. e
  363. with c_92(x,t)
  364. which still have to satisfy:
  365. 0=df(c_92,t) - df(c_92,x,2)
  366. -------------------------------------------------------
  367. The following example includes the Karpman equations
  368. for three unknown functions in 4 variables.
  369. If point symmetries are to be computed for a single
  370. equation or a system of equations of higher than first
  371. order then there is the option to formulate at first
  372. preliminary conditions for each equation, have CRACK
  373. solving these conditions before the full set of conditions
  374. is formulated and solved. This strategy is adopted if a
  375. lisp flag prelim_ has the value t. The default value
  376. is nil.
  377. Similarly, if a system of equations is to be investigated
  378. and a flag individual_ has the value t then symmetry
  379. conditions are formulated and investigated for each
  380. individual equation successively. The default value is nil.
  381. It is advantageous to split a large set of conditions
  382. into smaller sets to be investigated successively if
  383. each set is sufficiently overdetermined to be solvable
  384. quickly. Then any substitutions are done in the smaller
  385. set and the next set of conditions is shorter. For
  386. example, for the Karpman equations below the speedup for
  387. prelim_:=t; individual_:=t; is a factor of 10.
  388. (Time ~ 1 min.)
  389. -------------------------------------------------------
  390. Time: 210863 ms plus GC time: 4817 ms
  391. The PDE-system under investigation is :
  392. 2 2 2 2 2
  393. df(v,x,2)=( - 4*df(f,t)*a2*r - 2*df(f,x) *a2*r *s1 - 2*df(f,y) *a2*r *s1
  394. 2 2 2 2
  395. - 2*df(f,z) *a2*r *s2 - 4*df(f,z)*a2*r *w1 - 2*df(r,x) *a2*s1
  396. 2
  397. - 2*df(r,y) *a2*s1 - 2*df(r,z,2)*a2*r*s1 + 2*df(r,z,2)*a2*r*s2
  398. 2 2
  399. - 2*df(r,z) *a2*s1 + df(v,t,2)*s1 - df(v,y,2)*s1*w2
  400. 2 2 2
  401. - df(v,z,2)*s1*w2 - 4*a1*a2*r *v)/(s1*w2 )
  402. 2 2 2
  403. df(r,x,2)=(2*df(f,t)*r + df(f,x) *r*s1 + df(f,y) *r*s1 + df(f,z) *r*s2
  404. + 2*df(f,z)*r*w1 - df(r,y,2)*s1 - df(r,z,2)*s2 + 2*a1*r*v)/s1
  405. df(f,x,2)=( - 2*df(f,x)*df(r,x)*s1 - df(f,y,2)*r*s1 - 2*df(f,y)*df(r,y)*s1
  406. - df(f,z,2)*r*s2 - 2*df(f,z)*df(r,z)*s2 - 2*df(r,t) - 2*df(r,z)*w1)/
  407. (r*s1)
  408. for the function(s) :
  409. r(t,z,y,x), f(t,z,y,x), v(t,z,y,x)
  410. =============== Initializations
  411. time for initializations: 1312 ms GC time : 0 ms
  412. =============== Preconditions for the 1. equation
  413. time to formulate conditions: 7342 ms GC time : 0 ms
  414. CRACK needed : 28442 ms GC time : 0 ms
  415. =============== Preconditions for the 2. equation
  416. =============== Preconditions for the 3. equation
  417. time to formulate conditions: 2814 ms GC time : 0 ms
  418. CRACK needed : 6637 ms GC time : 1152 ms
  419. =============== Full conditions for the 1. equation
  420. time to formulate conditions: 2193 ms GC time : 0 ms
  421. CRACK needed : 54725 ms GC time : 1312 ms
  422. =============== Full conditions for the 2. equation
  423. time to formulate conditions: 691 ms GC time : 0 ms
  424. CRACK needed : 2504 ms GC time : 0 ms
  425. =============== Full conditions for the 3. equation
  426. time to formulate conditions: 1111 ms GC time : 0 ms
  427. CRACK needed : 3545 ms GC time : 0 ms
  428. The symmetries are:
  429. -------- 1. Symmetry:
  430. xi_x=0
  431. xi_y=0
  432. xi_z=0
  433. xi_t=0
  434. eta_r=0
  435. - t
  436. eta_f=-------
  437. s1*s2
  438. 1
  439. eta_v=----------
  440. a1*s1*s2
  441. -------- 2. Symmetry:
  442. xi_x=0
  443. xi_y=0
  444. xi_z=0
  445. xi_t=0
  446. eta_r=0
  447. 2
  448. - t
  449. eta_f=-------
  450. s1*s2
  451. 2*t
  452. eta_v=----------
  453. a1*s1*s2
  454. -------- 3. Symmetry:
  455. xi_x=0
  456. xi_y=0
  457. xi_z=0
  458. xi_t=0
  459. eta_r=0
  460. 1
  461. eta_f=-------
  462. s1*s2
  463. eta_v=0
  464. -------- 4. Symmetry:
  465. xi_x=0
  466. xi_y=0
  467. xi_z=0
  468. xi_t=1
  469. eta_r=0
  470. eta_f=0
  471. eta_v=0
  472. -------- 5. Symmetry:
  473. xi_x=0
  474. xi_y=0
  475. 1
  476. xi_z=----
  477. s1
  478. xi_t=0
  479. eta_r=0
  480. - w1
  481. eta_f=-------
  482. s1*s2
  483. eta_v=0
  484. -------- 6. Symmetry:
  485. xi_x=0
  486. 1
  487. xi_y=-------
  488. s1*s2
  489. xi_z=0
  490. xi_t=0
  491. eta_r=0
  492. eta_f=0
  493. eta_v=0
  494. -------- 7. Symmetry:
  495. y
  496. xi_x=-------
  497. s1*s2
  498. - x
  499. xi_y=-------
  500. s1*s2
  501. xi_z=0
  502. xi_t=0
  503. eta_r=0
  504. eta_f=0
  505. eta_v=0
  506. -------- 8. Symmetry:
  507. 1
  508. xi_x=-------
  509. s1*s2
  510. xi_y=0
  511. xi_z=0
  512. xi_t=0
  513. eta_r=0
  514. eta_f=0
  515. eta_v=0
  516. --------
  517. Time: 118073 ms plus GC time: 2464 ms
  518. -------------------------------------------------------
  519. In the following example a system of two equations (by
  520. V.Sokolov) is investigated concerning a special ansatz for
  521. 4th order symmetries. The ansatz for the symmetries includes
  522. two unknown functions f,g. Because x is the second variable
  523. in the list of variables {t,x}, the name u!`2 stands for
  524. df(u,x).
  525. Because higher order symmetries are investigated we have
  526. to set prelim_:=nil. The symmetries to be calculated are
  527. lengthy and therefore conditions are not very overdetermined.
  528. In that case CRACK can take long to solve a single
  529. subset of conditions. The complete set of conditions would
  530. have been more overdetermined and easier to solve. Therefore
  531. the advantage of first formulating all conditions and then
  532. solving them together with one CRACK call is that having
  533. more equations, the chance of finding short integrable
  534. equations among then is higher, i.e. CRACK has more freedom
  535. in optimizing the computation. Therefore individual_:=nil
  536. is more appropriate in this example.
  537. Because 4th order conditions are to be computed the
  538. `binding stack size' is increased.
  539. (Time ~ 5 min.)
  540. -------------------------------------------------------
  541. The PDE-system under investigation is :
  542. df(u,t)=df(u,x,2) + df(u,x)*u + df(u,x)*v + df(v,x)*u
  543. df(v,t)=df(u,x)*v - df(v,x,2) + df(v,x)*u + df(v,x)*v
  544. for the function(s) :
  545. u(t,x), v(t,x)
  546. The symmetries are:
  547. -------- 1. Symmetry:
  548. xi_t=0
  549. xi_x=0
  550. eta_u=(2*df(u,x,4) + 4*df(u,x,3)*u + 4*df(u,x,3)*v + 10*df(u,x,2)*df(u,x)
  551. 2
  552. + 6*df(u,x,2)*df(v,x) + 3*df(u,x,2)*u + 9*df(u,x,2)*u*v
  553. 2 2 2
  554. + 3*df(u,x,2)*v + 2*df(u,x,2) + 6*df(u,x) *u + 9*df(u,x) *v
  555. + 4*df(u,x)*df(v,x,2) + 9*df(u,x)*df(v,x)*u + 6*df(u,x)*df(v,x)*v
  556. 3 2 2
  557. + df(u,x)*u + 9*df(u,x)*u *v + 9*df(u,x)*u*v + 2*df(u,x)*u
  558. 3 3
  559. + df(u,x)*v + 2*df(u,x)*v + 2*df(v,x,3)*u + 3*df(v,x)*u
  560. 2 2
  561. + 9*df(v,x)*u *v + 3*df(v,x)*u*v + 2*df(v,x)*u)/2
  562. eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
  563. 2
  564. - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v + 3*df(u,x)*u *v
  565. 2 3
  566. + 9*df(u,x)*u*v + 3*df(u,x)*v + 2*df(u,x)*v - 2*df(v,x,4)
  567. 2
  568. + 4*df(v,x,3)*u + 4*df(v,x,3)*v + 10*df(v,x,2)*df(v,x) - 3*df(v,x,2)*u
  569. 2 2
  570. - 9*df(v,x,2)*u*v - 3*df(v,x,2)*v - 2*df(v,x,2) - 9*df(v,x) *u
  571. 2 3 2 2
  572. - 6*df(v,x) *v + df(v,x)*u + 9*df(v,x)*u *v + 9*df(v,x)*u*v
  573. 3
  574. + 2*df(v,x)*u + df(v,x)*v + 2*df(v,x)*v)/2
  575. -------- 2. Symmetry:
  576. xi_t=0
  577. xi_x=0
  578. eta_u=(2*df(u,x,4) + 4*df(u,x,3)*u + 4*df(u,x,3)*v + 10*df(u,x,2)*df(u,x)
  579. 2
  580. + 6*df(u,x,2)*df(v,x) + 4*df(u,x,2)*t + 3*df(u,x,2)*u + 9*df(u,x,2)*u*v
  581. 2 2 2
  582. + 3*df(u,x,2)*v + 6*df(u,x) *u + 9*df(u,x) *v + 4*df(u,x)*df(v,x,2)
  583. + 9*df(u,x)*df(v,x)*u + 6*df(u,x)*df(v,x)*v + 4*df(u,x)*t*u
  584. 3 2 2
  585. + 4*df(u,x)*t*v + df(u,x)*u + 9*df(u,x)*u *v + 9*df(u,x)*u*v
  586. 3
  587. + df(u,x)*v + 2*df(u,x)*x + 2*df(v,x,3)*u + 4*df(v,x)*t*u
  588. 3 2 2
  589. + 3*df(v,x)*u + 9*df(v,x)*u *v + 3*df(v,x)*u*v + 2*u)/2
  590. eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
  591. - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v + 4*df(u,x)*t*v
  592. 2 2 3
  593. + 3*df(u,x)*u *v + 9*df(u,x)*u*v + 3*df(u,x)*v - 2*df(v,x,4)
  594. + 4*df(v,x,3)*u + 4*df(v,x,3)*v + 10*df(v,x,2)*df(v,x) - 4*df(v,x,2)*t
  595. 2 2 2
  596. - 3*df(v,x,2)*u - 9*df(v,x,2)*u*v - 3*df(v,x,2)*v - 9*df(v,x) *u
  597. 2 3
  598. - 6*df(v,x) *v + 4*df(v,x)*t*u + 4*df(v,x)*t*v + df(v,x)*u
  599. 2 2 3
  600. + 9*df(v,x)*u *v + 9*df(v,x)*u*v + df(v,x)*v + 2*df(v,x)*x + 2*v)/2
  601. -------- 3. Symmetry:
  602. xi_t=0
  603. xi_x=0
  604. eta_u=(2*df(u,x,4) + 4*df(u,x,3)*u + 4*df(u,x,3)*v + 8*df(u,x,3)
  605. 2
  606. + 10*df(u,x,2)*df(u,x) + 6*df(u,x,2)*df(v,x) + 3*df(u,x,2)*u
  607. 2
  608. + 9*df(u,x,2)*u*v + 12*df(u,x,2)*u + 3*df(u,x,2)*v + 12*df(u,x,2)*v
  609. 2 2 2
  610. + 6*df(u,x) *u + 9*df(u,x) *v + 12*df(u,x) + 4*df(u,x)*df(v,x,2)
  611. + 9*df(u,x)*df(v,x)*u + 6*df(u,x)*df(v,x)*v + 12*df(u,x)*df(v,x)
  612. 3 2 2 2
  613. + df(u,x)*u + 9*df(u,x)*u *v + 6*df(u,x)*u + 9*df(u,x)*u*v
  614. 3 2
  615. + 24*df(u,x)*u*v + df(u,x)*v + 6*df(u,x)*v + 2*df(v,x,3)*u
  616. 3 2 2 2
  617. + 3*df(v,x)*u + 9*df(v,x)*u *v + 12*df(v,x)*u + 3*df(v,x)*u*v
  618. + 12*df(v,x)*u*v)/2
  619. eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
  620. - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v - 12*df(u,x)*df(v,x)
  621. 2 2 3
  622. + 3*df(u,x)*u *v + 9*df(u,x)*u*v + 12*df(u,x)*u*v + 3*df(u,x)*v
  623. 2
  624. + 12*df(u,x)*v - 2*df(v,x,4) + 4*df(v,x,3)*u + 4*df(v,x,3)*v
  625. 2
  626. + 8*df(v,x,3) + 10*df(v,x,2)*df(v,x) - 3*df(v,x,2)*u - 9*df(v,x,2)*u*v
  627. 2 2
  628. - 12*df(v,x,2)*u - 3*df(v,x,2)*v - 12*df(v,x,2)*v - 9*df(v,x) *u
  629. 2 2 3 2
  630. - 6*df(v,x) *v - 12*df(v,x) + df(v,x)*u + 9*df(v,x)*u *v
  631. 2 2 3
  632. + 6*df(v,x)*u + 9*df(v,x)*u*v + 24*df(v,x)*u*v + df(v,x)*v
  633. 2
  634. + 6*df(v,x)*v )/2
  635. -------- 4. Symmetry:
  636. xi_t=0
  637. xi_x=0
  638. eta_u=(2*df(u,x,4) + 8*df(u,x,3)*t + 4*df(u,x,3)*u + 4*df(u,x,3)*v
  639. + 10*df(u,x,2)*df(u,x) + 6*df(u,x,2)*df(v,x) + 12*df(u,x,2)*t*u
  640. 2 2
  641. + 12*df(u,x,2)*t*v + 3*df(u,x,2)*u + 9*df(u,x,2)*u*v + 3*df(u,x,2)*v
  642. 2 2 2
  643. + 4*df(u,x,2)*x + 12*df(u,x) *t + 6*df(u,x) *u + 9*df(u,x) *v
  644. + 4*df(u,x)*df(v,x,2) + 12*df(u,x)*df(v,x)*t + 9*df(u,x)*df(v,x)*u
  645. 2
  646. + 6*df(u,x)*df(v,x)*v + 6*df(u,x)*t*u + 24*df(u,x)*t*u*v
  647. 2 3 2 2
  648. + 6*df(u,x)*t*v + df(u,x)*u + 9*df(u,x)*u *v + 9*df(u,x)*u*v
  649. 3
  650. + 4*df(u,x)*u*x + df(u,x)*v + 4*df(u,x)*v*x + 16*df(u,x)
  651. 2 3
  652. + 2*df(v,x,3)*u + 12*df(v,x)*t*u + 12*df(v,x)*t*u*v + 3*df(v,x)*u
  653. 2 2 2
  654. + 9*df(v,x)*u *v + 3*df(v,x)*u*v + 4*df(v,x)*u*x + 2*u + 6*u*v)/2
  655. eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
  656. - 12*df(u,x)*df(v,x)*t - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v
  657. 2 2 2
  658. + 12*df(u,x)*t*u*v + 12*df(u,x)*t*v + 3*df(u,x)*u *v + 9*df(u,x)*u*v
  659. 3
  660. + 3*df(u,x)*v + 4*df(u,x)*v*x - 2*df(v,x,4) + 8*df(v,x,3)*t
  661. + 4*df(v,x,3)*u + 4*df(v,x,3)*v + 10*df(v,x,2)*df(v,x)
  662. 2
  663. - 12*df(v,x,2)*t*u - 12*df(v,x,2)*t*v - 3*df(v,x,2)*u - 9*df(v,x,2)*u*v
  664. 2 2 2
  665. - 3*df(v,x,2)*v - 4*df(v,x,2)*x - 12*df(v,x) *t - 9*df(v,x) *u
  666. 2 2 2
  667. - 6*df(v,x) *v + 6*df(v,x)*t*u + 24*df(v,x)*t*u*v + 6*df(v,x)*t*v
  668. 3 2 2
  669. + df(v,x)*u + 9*df(v,x)*u *v + 9*df(v,x)*u*v + 4*df(v,x)*u*x
  670. 3 2
  671. + df(v,x)*v + 4*df(v,x)*v*x + 6*u*v + 2*v )/2
  672. -------- 5. Symmetry:
  673. xi_t=0
  674. xi_x=0
  675. eta_u=(2*df(u,x,4) + 4*df(u,x,3)*u + 4*df(u,x,3)*v + 10*df(u,x,2)*df(u,x)
  676. 2
  677. + 6*df(u,x,2)*df(v,x) + 3*df(u,x,2)*u + 9*df(u,x,2)*u*v
  678. 2 2 2
  679. + 3*df(u,x,2)*v + 6*df(u,x) *u + 9*df(u,x) *v + 4*df(u,x)*df(v,x,2)
  680. 3
  681. + 9*df(u,x)*df(v,x)*u + 6*df(u,x)*df(v,x)*v + df(u,x)*u
  682. 2 2 3
  683. + 9*df(u,x)*u *v + 9*df(u,x)*u*v + df(u,x)*v + 2*df(u,x)
  684. 3 2 2
  685. + 2*df(v,x,3)*u + 3*df(v,x)*u + 9*df(v,x)*u *v + 3*df(v,x)*u*v )/2
  686. eta_v=(2*df(u,x,3)*v + 4*df(u,x,2)*df(v,x) + 6*df(u,x)*df(v,x,2)
  687. 2
  688. - 6*df(u,x)*df(v,x)*u - 9*df(u,x)*df(v,x)*v + 3*df(u,x)*u *v
  689. 2 3
  690. + 9*df(u,x)*u*v + 3*df(u,x)*v - 2*df(v,x,4) + 4*df(v,x,3)*u
  691. 2
  692. + 4*df(v,x,3)*v + 10*df(v,x,2)*df(v,x) - 3*df(v,x,2)*u
  693. 2 2 2
  694. - 9*df(v,x,2)*u*v - 3*df(v,x,2)*v - 9*df(v,x) *u - 6*df(v,x) *v
  695. 3 2 2 3
  696. + df(v,x)*u + 9*df(v,x)*u *v + 9*df(v,x)*u*v + df(v,x)*v + 2*df(v,x))
  697. /2
  698. --------
  699. Time for test: 1062859 ms, plus GC time: 13951 ms