123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695 |
- Sun Aug 18 18:40:08 2002 run on Windows
- % Examples for the algorithmic calculation of formal
- % Puiseux, Laurent and power series,
- %
- % Wolfram Koepf, Freie Universitaet Berlin, Germany
- % (taken from the original paper and adapted to REDUCE
- % form by Winfried Neun, ZIB Berlin)
- % Formal Laurent series
- fps(E^x,x);
- k
- x
- infsum(--------------,k,0,infinity)
- factorial(k)
- fps(E^x/(x^3),x);
- k
- x
- infsum(-----------------,k,0,infinity)
- 3
- factorial(k)*x
- fps(x * e^(x^4),x);
- 4*k
- x *x
- infsum(--------------,k,0,infinity)
- factorial(k)
- fps(sin (x + y),x);
- 2*k k
- x *( - 1) *cos(y)*x
- infsum(-----------------------,k,0,infinity)
- factorial(2*k + 1)
- 2*k k
- x *( - 1) *sin(y)
- + infsum(---------------------,k,0,infinity)
- factorial(2*k)
- simplede (sin x,x);
- df(y,x,2) + y
- %find a DE for sin
- simplede (sin (x)^2,x,w);
- df(w,x,3) + 4*df(w,x)
- % DE in w and x
- fps(asin x,x);
- 2*k
- x *factorial(2*k)*x
- infsum(------------------------------,k,0,infinity)
- 2*k 2
- 2 *factorial(k) *(2*k + 1)
- fps((asin x)^2,x);
- 2*k 2*k 2 2
- x *2 *factorial(k) *x
- infsum(----------------------------,k,0,infinity)
- factorial(2*k + 1)*(k + 1)
- fps(e^(asin x),x);
- 2*k k 2
- x *2 *prod(2*j - 2*j + 1,j,1,k)*x
- infsum(--------------------------------------,k,0,infinity)
- factorial(2*k + 1)
- 2*k 2
- x *prod(4*j - 8*j + 5,j,1,k)
- + infsum(---------------------------------,k,0,infinity)
- factorial(2*k)
- fps(e^(asinh x),x);
- 2*k k
- - x *( - 1) *factorial(2*k)
- infsum(--------------------------------,k,0,infinity) + x
- k 2
- 4 *factorial(k) *(2*k - 1)
- fps((x + sqrt(1+x^2))^A,x);
- 2*k k 2*k - a a
- x *( - 1) *2 *pochhammer(------,k)*pochhammer(---,k)
- 2 2
- infsum(----------------------------------------------------------,k,0,infinity)
- factorial(2*k)
- 2*k k 2*k - a + 1 a + 1
- x *( - 1) *2 *pochhammer(----------,k)*pochhammer(-------,k)*a*x
- 2 2
- + infsum(----------------------------------------------------------------------,
- factorial(2*k + 1)
- k,0,infinity)
- fps(e^(x^2)*erf x,x);
- 2*k 2*k
- 2*x *sqrt(pi)*2 *factorial(k)*x
- infsum(-------------------------------------,k,0,infinity)
- factorial(2*k + 1)*pi
- fps(e^x - 2 e^(-x/2) * cos(sqrt(3) * x/2 -pi/3),x);
- 3*k 2
- 9*x *x *(k + 1)
- infsum(--------------------,k,0,infinity)
- factorial(3*k + 3)
- % fps(int(e^(-a^2*t^2) * cos(2*x*t),t,0,infinity),x) % not yet
- % fps(4/x * int(e^(t^2)*erf(t),t,0,sqrt(x)/2),x);
- fps(sin x * e^x,x);
- k k/2 k*pi
- x *2 *sin(------)
- 4
- infsum(---------------------,k,0,infinity)
- factorial(k)
- fps(cos x * e^(2*x),x);
- k k/2 1
- x *5 *cos(atan(---)*k)
- 2
- infsum(--------------------------,k,0,infinity)
- factorial(k)
- fps(1/(x-x^3),x);
- k k k
- x *( - 1) - x
- infsum(-----------------,k,0,infinity)*x + 1
- k
- 2*( - 1)
- ----------------------------------------------
- x
- fps(1/(x^2 + 3 x + 2),x);
- k k k
- 2*x *2 - x
- infsum(--------------,k,0,infinity)
- k k
- 2*( - 1) *2
- fps(x/(1-x-x^2),x);
- x
- fps(--------------,x,0)
- 2
- (1 - x) - x
- % Logarithmic singularities and Puisieux series
- fps(sin sqrt x,x);
- (2*k + 1)/2 k
- x *( - 1)
- infsum(----------------------,k,0,infinity)
- factorial(2*k + 1)
- fps(((1 + sqrt x)/x)^(1/3),x);
- (6*k + 1)/6 2
- x *pochhammer(---,2*k)
- 3
- infsum(----------------------------------,k,0,infinity)
- 3*factorial(2*k + 1)
- k - 1
- x *pochhammer(------,2*k)
- 3
- + infsum(---------------------------,k,0,infinity)
- 1/3
- x *factorial(2*k)
- fps(asech x,x);
- % some more (Wolfram Koepf, priv. comm.)
- fps((1+x)^alpha,x);
- k k
- x *( - 1) *pochhammer( - alpha,k)
- infsum(-----------------------------------,k,0,infinity)
- factorial(k)
- fps((1+sqrt(1+x))^beta,x);
- k k beta
- x *( - 1) *2 *pochhammer( - beta,2*k)
- infsum(---------------------------------------------,k,0,infinity)
- 2*k
- 2 *factorial(k)*pochhammer( - beta + 1,k)
- fps(sin(x)^2+cos(x)^2,x);
- 1
- fps(sin(x)^2*cos(x)^2,x);
- 2*k k 4*k 2
- x *( - 1) *2 *x
- infsum(----------------------------,k,0,infinity)
- factorial(2*k + 1)*(k + 1)
- fps(sin(x)*cos(x^2),x);
- 2
- fps(sin(x)*cos(x ),x,0)
- fps((x-1)^(-1),x);
- k
- infsum( - x ,k,0,infinity)
- fps(atan(x+y),x);
- fps(atan(x + y),x,0)
- fps((1-x^5)^6,x);
- 30 25 20 15 10 5
- x - 6*x + 15*x - 20*x + 15*x - 6*x + 1
- fps(asec x,x);
- fps(besseli(0,x),x);
- 2*k
- x
- infsum(--------------------,k,0,infinity)
- 2*k 2
- 2 *factorial(k)
- fps(besseli(1,x),x);
- 2*k
- x *x
- infsum(--------------------------------------,k,0,infinity)
- 2*k
- 2*2 *factorial(k + 1)*factorial(k)
- fps(exp(x^(1/3)),x);
- (3*k + 1)/3
- x
- infsum(--------------------,k,0,infinity)
- factorial(3*k + 1)
- k
- x
- + infsum(----------------,k,0,infinity)
- factorial(3*k)
- (3*k + 2)/3
- 3*x *(k + 1)
- + infsum(------------------------,k,0,infinity)
- factorial(3*k + 3)
- fps(log(1-x),x);
- k
- - x *x
- infsum(---------,k,0,infinity)
- k + 1
- fps(exp x*sinh x,x);
- k k
- x *2 *x
- infsum(------------------,k,0,infinity)
- factorial(k + 1)
- fps(atan x,x);
- 2*k k
- x *( - 1) *x
- infsum(----------------,k,0,infinity)
- 2*k + 1
- fps(sin x+sinh x,x);
- 4*k
- 2*x *x
- infsum(--------------------,k,0,infinity)
- factorial(4*k + 1)
- fps(sin x*sinh x,x);
- 4*k k 2*k 2
- x *( - 1) *2 *x
- infsum(------------------------------,k,0,infinity)
- factorial(4*k + 1)*(2*k + 1)
- fps(int(erf(x),x),x);
- *** ci already defined as operator
- *** si already defined as operator
- 2*k k
- - x *sqrt(pi)*( - 1)
- infsum(---------------------------,k,0,infinity)
- factorial(k)*pi*(2*k - 1)
- fps(sqrt(2-x),x);
- k
- - x *sqrt(2)*factorial(2*k)
- infsum(------------------------------,k,0,infinity)
- k 2
- 8 *factorial(k) *(2*k - 1)
- fps(sqrt(1+x)+sqrt(1-x),x);
- 2*k
- - 2*x *factorial(4*k)
- infsum(--------------------------------,k,0,infinity)
- 2*k 2
- 4 *factorial(2*k) *(4*k - 1)
- fps(exp(a+b*x)*exp(c+d*x),x);
- k a + c k
- x *e *(b + d)
- infsum(--------------------,k,0,infinity)
- factorial(k)
- fps(1/cos(asin x),x);
- 2*k
- x *factorial(2*k)
- infsum(---------------------,k,0,infinity)
- 2*k 2
- 2 *factorial(k)
- fps(sqrt(1-x^2)+x*asin x,x);
- 2*k
- x *factorial(2*k)
- infsum(-----------------------------------,k,0,infinity)
- k 2 2
- 4 *factorial(k) *(4*k - 4*k + 1)
- fps(sqrt(1-sqrt(x)),x);
- (2*k + 1)/2
- - x *factorial(4*k)
- infsum(------------------------------------------,k,0,infinity)
- 4*k
- 2*2 *factorial(2*k + 1)*factorial(2*k)
- k
- - x *factorial(4*k)
- + infsum(--------------------------------,k,0,infinity)
- 2*k 2
- 4 *factorial(2*k) *(4*k - 1)
- fps(cos(n*acos x),x);
- 2*k 2*k n*pi - n n
- x *2 *cos(------)*pochhammer(------,k)*pochhammer(---,k)
- 2 2 2
- infsum(--------------------------------------------------------------,k,0,
- factorial(2*k)
- infinity) + infsum(
- 2*k 2*k - n + 1 n + 1 n*pi
- x *2 *pochhammer(----------,k)*pochhammer(-------,k)*sin(------)*n*x
- 2 2 2
- --------------------------------------------------------------------------,k,
- factorial(2*k + 1)
- 0,infinity)
- fps(cos x+I*sin x,x);
- k k
- x *i
- infsum(--------------,k,0,infinity)
- factorial(k)
- fps(cos(3*asinh x),x);
- 2*k k 2
- x *( - 1) *prod(4*j - 8*j + 13,j,1,k)
- infsum(------------------------------------------,k,0,infinity)
- factorial(2*k)
- fps(cos(n*asinh x),x);
- 2*k k 2*k - i*n i*n
- x *( - 1) *2 *pochhammer(--------,k)*pochhammer(-----,k)
- 2 2
- infsum(--------------------------------------------------------------,k,0,
- factorial(2*k)
- infinity)
- fps(sin(n*log(x+sqrt(1+x^2))),x);
- 2*k k 2*k - i*n + 1 i*n + 1
- infsum((x *( - 1) *2 *pochhammer(------------,k)*pochhammer(---------,k)*n*x
- 2 2
- )/factorial(2*k + 1),k,0,infinity)
- fps(sqrt(1+x^2)*asinh x-x,x);
- 2*k k 2*k 3
- 2*x *( - 1) *2 *factorial(k + 1)*factorial(k)*x
- infsum(------------------------------------------------------,k,0,infinity)
- factorial(2*k + 3)
- fps(int(erf(x)/x,x),x);
- 2*k k
- 2*x *sqrt(pi)*( - 1) *x
- infsum(----------------------------------,k,0,infinity)
- 2
- factorial(k)*pi*(4*k + 4*k + 1)
- erf(x)
- + sub(x=0,int(--------,x))
- x
- fps(asin(x)^2/x^4,x);
- 2*k 2*k 2
- x *2 *factorial(k)
- infsum(-------------------------------,k,0,infinity)
- 2
- factorial(2*k + 1)*x *(k + 1)
- % we had problems here:
- fps(cos(asin x),x);
- 2*k
- - x *factorial(2*k)
- infsum(----------------------------,k,0,infinity)
- k 2
- 4 *factorial(k) *(2*k - 1)
- fps(sinh(log x),x);
- fps(sinh(log(x)),x,0)
- fps(atan(cot x),x);
- Could not find the limit of: atan(cot(x)),x,0
-
- % we can cure this one by defining the limit:
- let limit(atan(cot ~x),x,0) => pi/2;
- fps(atan(cot x),x);
- pi - 2*x
- ----------
- 2
- fps(exp(nnn*x)*cos(mmm*x),x);
- k 2 2
- infsum((x *((impart(mmm) + 2*impart(mmm)*repart(nnn) + impart(nnn)
- 2 2 k
- - 2*impart(nnn)*repart(mmm) + repart(mmm) + repart(nnn) )**---
- 2
- impart(nnn) - repart(mmm) 2
- *cos(atan(---------------------------)*k) + (impart(mmm)
- impart(mmm) + repart(nnn)
- 2
- - 2*impart(mmm)*repart(nnn) + impart(nnn)
- 2 2 k
- + 2*impart(nnn)*repart(mmm) + repart(mmm) + repart(nnn) )**---
- 2
- impart(nnn) + repart(mmm) 2
- *cos(atan(---------------------------)*k) - (impart(mmm)
- impart(mmm) - repart(nnn)
- 2
- - 2*impart(mmm)*repart(nnn) + impart(nnn)
- 2 2 k
- + 2*impart(nnn)*repart(mmm) + repart(mmm) + repart(nnn) )**---
- 2
- impart(nnn) + repart(mmm) 2
- *sin(atan(---------------------------)*k)*i + (impart(mmm)
- impart(mmm) - repart(nnn)
- 2
- + 2*impart(mmm)*repart(nnn) + impart(nnn)
- 2 2 k
- - 2*impart(nnn)*repart(mmm) + repart(mmm) + repart(nnn) )**---
- 2
- impart(nnn) - repart(mmm)
- *sin(atan(---------------------------)*k)*i))/(2*factorial(k)),k,0,
- impart(mmm) + repart(nnn)
- infinity)
- fps(sqrt(2-x^2),x);
- 2*k
- - 2*x *factorial(2*k)
- infsum(------------------------------------,k,0,infinity)
- k 2
- sqrt(2)*8 *factorial(k) *(2*k - 1)
- fps(ci x,x);
- 2*k k
- x *( - 1) *infinity*x
- ci(0) + infsum(------------------------------,k,0,infinity)
- factorial(2*k + 1)*(2*k + 1)
- fps(log(1-2*x*y+x^2),x);
- 2
- fps(log(1 - 2*x*y + x ),x,0)
- FPS(sin x,x,pi);
- 2*k k
- ( - pi + x) *( - 1) *( - pi + x)
- infsum(------------------------------------,k,0,infinity)
- factorial(2*k + 1)
- % This one takes ages :
- %fps(acos(cos(x)),x);
- fps_search_depth := 7;
- fps_search_depth := 7
- % does not find aa DE with the default
- fps(sin(x^(1/3)),x);
- 2*k k k k
- infsum(( - x *( - 1) *108 *factorial(k)*x)/(6*46656 *factorial(3*k + 1)
- 7 5
- *factorial(2*k + 1)*pochhammer(---,k)*pochhammer(---,k)),k,0,infinity)
- 6 6
- (6*k + 2)/3 k 2*k 3*k k
- + infsum((x *( - 1) *2 *3 *factorial(k + 1)*x)/(20*46656
- 11
- *factorial(3*k + 3)*factorial(2*k + 1)*pochhammer(----,k)
- 6
- 7
- *pochhammer(---,k)),k,0,infinity) + infsum(
- 6
- (6*k + 1)/3 k 2*k 3*k
- x *( - 1) *2 *3 *factorial(k)
- --------------------------------------------------------------------------,k,
- k 7 5
- 46656 *factorial(3*k)*factorial(2*k)*pochhammer(---,k)*pochhammer(---,k)
- 6 6
- 0,infinity)
- end;
- Time for test: 447053 ms, plus GC time: 9435 ms
|