1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453 |
- Sun Aug 18 17:32:46 2002 run on Windows
- off echo, dfprint$
- If you want to see more details of the following calculation then
- change in the file `conlaw.tst' the line
- lisp(print_:=nil)$
- into
- lisp(print_:=10)$
- **************************************************************************
- The following example calculates all conservation laws of the KdV-
- equation with a characteristic function of order not higher than two
- --------------------------------------------------------------------------
- This is CONLAW3 - a program for calculating conservation laws of DEs
- The DE under investigation is :
- df(u,t)=df(u,x,3) + df(u,x)*u
- for the function(s): {u}
- ======================================================
- Currently conservation laws with characteristic
- function(s) of order 0 are determined
- ======================================================
- Conservation law:
- ( 1 ) * ( df(u,t) - df(u,x,3) - df(u,x)*u )
- =
- df( u, t )
- +
- 2
- - 2*df(u,x,2) - u
- df( ---------------------, x )
- 2
- ======================================================
- Conservation law:
- ( t*u + x ) * ( df(u,t) - df(u,x,3) - df(u,x)*u )
- =
- 2
- t*u + 2*u*x
- df( --------------, t )
- 2
- +
- 2 3
- df( ( - 6*df(u,x,2)*t*u - 6*df(u,x,2)*x + 3*df(u,x) *t + 6*df(u,x) - 2*t*u
- 2
- - 3*u *x)/6, x )
- ======================================================
- Conservation law:
- ( u ) * ( df(u,t) - df(u,x,3) - df(u,x)*u )
- =
- 2
- u
- df( ----, t )
- 2
- +
- 2 3
- - 6*df(u,x,2)*u + 3*df(u,x) - 2*u
- df( --------------------------------------, x )
- 6
- ======================================================
- Currently conservation laws with characteristic
- function(s) of order 1 are determined
- ======================================================
- There is no conservation law of this order.
- ======================================================
- Currently conservation laws with characteristic
- function(s) of order 2 are determined
- ======================================================
- Conservation law:
- 2
- ( - 2*df(u,x,2) - u ) * ( df(u,t) - df(u,x,3) - df(u,x)*u )
- =
- 2 3
- 3*df(u,x) - u
- df( -----------------, t )
- 3
- +
- 2 2 4
- - 8*df(u,t)*df(u,x) + 4*df(u,x,2) + 4*df(u,x,2)*u + u
- df( -----------------------------------------------------------, x )
- 4
- ======================================================
- **************************************************************************
- The next example demonstrates that one can specify an ansatz
- for the characteristic function of one or more equations of the
- PDE-system. In this example all conservation laws of the wave
- equation which is written as a first order system are calculated
- such that the characteristic functions of the first of both
- equations is proportional to df(u,x,2). (This will include zero
- as it is a multiple of df(u,x,2) too.)
- --------------------------------------------------------------------------
- This is CONLAW2 - a program for calculating conservation laws of DEs
- The DEs under investigation are :
- df(u,t)=df(v,x)
- df(v,t)=df(u,x)
- for the function(s): {u,v}
- ======================================================
- A special ansatz of order 2 for the characteristic
- function(s) is investigated.
- Conservation law:
- (df(u,x,2)) * (df(u,t) - df(v,x))
- +
- (df(v,x,2)) * ( - df(u,x) + df(v,t))
- =
- 2 2
- - df(u,x) - df(v,x)
- df( ------------------------, t )
- 2
- +
- df( df(u,t)*df(u,x) - df(u,x)*df(v,x) + df(v,t)*df(v,x), x )
- ======================================================
- **************************************************************************
- For the Burgers equation the following example finds all conservation
- laws of zero'th order in the characteristic function up to the solution
- of the linear heat equation. This is an example for what happens when not
- all conditions could be solved, but it is also an example which shows
- that not only characteristic functions of polynomial or rational form
- can be found.
- --------------------------------------------------------------------------
- This is CONLAW1 - a program for calculating conservation laws of DEs
- The DE under investigation is :
- 2
- 2*df(u,x,2) + df(u,x)
- df(u,t)=------------------------
- 2
- for the function(s): {u}
- ======================================================
- Currently conservation laws with a conserved density
- of order 0 are determined
- ======================================================
- The function c_132(x,t) is not constant!
- There are remaining conditions: {df(c_132,t) + df(c_132,x,2)}
- for the functions: c_132(x,t)
- Corresponding CLs might not be shown below as they
- could be of too low order.
- ======================================================
- Conservation law:
- 2
- u/2 2*df(u,t) - 2*df(u,x,2) - df(u,x)
- ( e *c_132 ) * ( ------------------------------------ )
- 2
- =
- u/2
- df( 2*e *c_132, t )
- +
- u/2 u/2
- df( 2*e *df(c_132,x) - e *df(u,x)*c_132, x )
- ======================================================
- **************************************************************************
- In this example all conservation laws of the Ito system are calculated
- that have a conserved density of order not higher than one.
- This is a further example of non-polynomial conservation laws.
- --------------------------------------------------------------------------
- This is CONLAW1 - a program for calculating conservation laws of DEs
- The DEs under investigation are :
- df(u,t)=df(u,x,3) + 6*df(u,x)*u + 2*df(v,x)*v
- df(v,t)=2*df(u,x)*v + 2*df(v,x)*u
- for the function(s): {u,v}
- ======================================================
- Currently conservation laws with a conserved density
- of order 0 are determined
- ======================================================
- Conservation law:
- ( 0 ) * ( - 2*df(u,x)*v + df(v,t) - 2*df(v,x)*u )
- +
- ( 1 ) * ( df(u,t) - df(u,x,3) - 6*df(u,x)*u - 2*df(v,x)*v )
- =
- df( u, t )
- +
- 2 2
- df( - df(u,x,2) - 3*u - v , x )
- ======================================================
- Conservation law:
- ( 2*v ) * ( - 2*df(u,x)*v + df(v,t) - 2*df(v,x)*u )
- +
- ( 2*u ) * ( df(u,t) - df(u,x,3) - 6*df(u,x)*u - 2*df(v,x)*v )
- =
- 2 2
- df( u + v , t )
- +
- 2 3 2
- df( - 2*df(u,x,2)*u + df(u,x) - 4*u - 4*u*v , x )
- ======================================================
- Conservation law:
- ( -1 ) * ( - 2*df(u,x)*v + df(v,t) - 2*df(v,x)*u )
- +
- ( 0 ) * ( df(u,t) - df(u,x,3) - 6*df(u,x)*u - 2*df(v,x)*v )
- =
- df( - v, t )
- +
- df( 2*u*v, x )
- ======================================================
- Currently conservation laws with a conserved density
- of order 1 are determined
- ======================================================
- Conservation law:
- 2 2
- - 2*df(v,x,2)*v + 3*df(v,x) + 4*u*v
- ( ---------------------------------------- ) * ( - 2*df(u,x)*v + df(v,t)
- 4
- v
- - 2*df(v,x)*u )
- +
- - 4
- ( ------ ) * ( df(u,t) - df(u,x,3) - 6*df(u,x)*u - 2*df(v,x)*v )
- v
- =
- 2 2
- df(v,x) - 4*u*v
- df( -------------------, t )
- 3
- v
- +
- 2 2
- df( (4*df(u,x,2)*v + 4*df(u,x)*df(v,x)*v - 2*df(v,t)*df(v,x) + 2*df(v,x) *u
- 2 2 4 3
- + 8*u *v + 8*v )/v , x )
- ======================================================
- Conservation law:
- ( - 4*u*v ) * ( - 2*df(u,x)*v + df(v,t) - 2*df(v,x)*u )
- +
- 2 2
- ( - 2*df(u,x,2) - 6*u - 2*v ) * ( df(u,t) - df(u,x,3) - 6*df(u,x)*u
- - 2*df(v,x)*v )
- =
- 2 3 2
- df( df(u,x) - 2*u - 2*u*v , t )
- +
- 2 2 2 4
- df( - 2*df(u,t)*df(u,x) + df(u,x,2) + 6*df(u,x,2)*u + 2*df(u,x,2)*v + 9*u
- 2 2 4
- + 10*u *v + v , x )
- ======================================================
- **************************************************************************
- In the next example the 5th order Korteweg - de Vries equation is
- investigated concerning conservation laws of order 0 and 1 in the
- conserved density P_t. Parameters a,b,c in the PDE are determined
- such that conservation laws exist. This complicates the problem by
- making it non-linear with a number of cases to be considered.
- Some of the subcases below can be combined to reduce their number
- which currently is not done automatically.
- --------------------------------------------------------------------------
- This is CONLAW1 - a program for calculating conservation laws of DEs
- The DE under investigation is :
- 2
- df(u,t)= - df(u,x,5) - df(u,x,3)*c*u - df(u,x,2)*df(u,x)*b - df(u,x)*a*u
- for the function(s): {u}
- ======================================================
- Currently conservation laws with a conserved density
- of order 0 are determined
- ======================================================
- Conservation law:
- b
- c=---,
- 2
- ( - 4*u ) * ( (2*df(u,t) + 2*df(u,x,5) + df(u,x,3)*b*u + 2*df(u,x,2)*df(u,x)*b
- 2
- + 2*df(u,x)*a*u )/2 )
- =
- 2
- df( - 2*u , t )
- +
- 2 2
- df( - 4*df(u,x,4)*u + 4*df(u,x,3)*df(u,x) - 2*df(u,x,2) - 2*df(u,x,2)*b*u
- 4
- - a*u , x )
- ======================================================
- Conservation law:
- b
- c=---,
- 2
- ( -12 ) * ( (2*df(u,t) + 2*df(u,x,5) + df(u,x,3)*b*u + 2*df(u,x,2)*df(u,x)*b
- 2
- + 2*df(u,x)*a*u )/2 )
- =
- df( - 12*u, t )
- +
- 2 3
- df( - 12*df(u,x,4) - 6*df(u,x,2)*b*u - 3*df(u,x) *b - 4*a*u , x )
- ======================================================
- Conservation law:
- ( -6 ) * ( df(u,t) + df(u,x,5) + df(u,x,3)*c*u + df(u,x,2)*df(u,x)*b
- 2
- + df(u,x)*a*u )
- =
- df( - 6*u, t )
- +
- 2 2 3
- df( - 6*df(u,x,4) - 6*df(u,x,2)*c*u - 3*df(u,x) *b + 3*df(u,x) *c - 2*a*u , x )
- ======================================================
- The function c_320(x,t) is not constant!
- The function c_328(t) is not constant!
- There are remaining conditions: {df(c_320,t) + df(c_320,x,5) - c_328}
- for the functions: c_328(t), c_320(x,t)
- Corresponding CLs might not be shown below as they
- could be of too low order.
- ======================================================
- Conservation law:
- a=0,
- b=0,
- c=0,
- ( - 2*u ) * ( df(u,t) + df(u,x,5) )
- =
- 2
- df( - u , t )
- +
- 2
- df( - 2*df(u,x,4)*u + 2*df(u,x,3)*df(u,x) - df(u,x,2) , x )
- ======================================================
- Conservation law:
- a=0,
- b=0,
- c=0,
- ( - df(c_320,x) ) * ( df(u,t) + df(u,x,5) )
- =
- df( - df(c_320,x)*u, t )
- +
- df( df(c_320,t)*u + df(c_320,x,4)*df(u,x) - df(c_320,x,3)*df(u,x,2)
- + df(c_320,x,2)*df(u,x,3) - df(c_320,x)*df(u,x,4) + c_328*u, x )
- ======================================================
- The function c_303(x,t) is not constant!
- The function c_313(t) is not constant!
- There are remaining conditions: {df(c_303,t) + df(c_303,x,5) - c_313}
- for the functions: c_313(t), c_303(x,t)
- Corresponding CLs might not be shown below as they
- could be of too low order.
- ======================================================
- Conservation law:
- a=0,
- b=0,
- c=0,
- ( - df(c_303,x) ) * ( df(u,t) + df(u,x,5) )
- =
- df( - df(c_303,x)*u, t )
- +
- df( df(c_303,t)*u + df(c_303,x,4)*df(u,x) - df(c_303,x,3)*df(u,x,2)
- + df(c_303,x,2)*df(u,x,3) - df(c_303,x)*df(u,x,4) + c_313*u, x )
- ======================================================
- Conservation law:
- a=0,
- b
- c=---,
- 3
- 2
- - 3*x
- ( --------- ) * (
- b
- 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b
- ----------------------------------------------------------------- )
- 3
- =
- 2
- - 3*u*x
- df( -----------, t )
- b
- +
- 2 2
- df( ( - 3*df(u,x,4)*x + 6*df(u,x,3)*x - df(u,x,2)*b*u*x - 6*df(u,x,2)
- 2 2 2
- - df(u,x) *b*x + 2*df(u,x)*b*u*x - b*u )/b, x )
- ======================================================
- Conservation law:
- a=0,
- b
- c=---,
- 3
- 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b
- ( - 3*x ) * ( -----------------------------------------------------------------
- 3
- )
- =
- df( - 3*u*x, t )
- +
- 2
- df( - 3*df(u,x,4)*x + 3*df(u,x,3) - df(u,x,2)*b*u*x - df(u,x) *b*x
- + df(u,x)*b*u, x )
- ======================================================
- Conservation law:
- a=0,
- b
- c=---,
- 3
- 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b
- ( -3 ) * ( ----------------------------------------------------------------- )
- 3
- =
- df( - 3*u, t )
- +
- 2
- df( - 3*df(u,x,4) - df(u,x,2)*b*u - df(u,x) *b, x )
- ======================================================
- Currently conservation laws with a conserved density
- of order 1 are determined
- ======================================================
- The function c_408(t) is not constant!
- The function c_372(t,x) is not constant!
- There are remaining conditions: {30*df(c_372,t) + 30*df(c_372,x,5) - c_408}
- for the functions: c_372(t,x), c_408(t)
- Corresponding CLs might not be shown below as they
- could be of too low order.
- ======================================================
- Conservation law:
- a=0,
- b=0,
- c=0,
- ( - 2*df(u,x,2) ) * ( df(u,t) + df(u,x,5) )
- =
- 2
- df( df(u,x) , t )
- +
- 2
- df( - 2*df(u,t)*df(u,x) - 2*df(u,x,4)*df(u,x,2) + df(u,x,3)
- 2 2 2
- - 2*df(u,x,3)*df(u,x)*c*u - 2*df(u,x,2)*df(u,x) *b - 2*df(u,x) *a*u , x )
- ======================================================
- Conservation law:
- a=0,
- b
- c=---,
- 3
- 2
- ( - 18*df(u,x,2) - 3*b*u ) * (
- 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b
- ----------------------------------------------------------------- )
- 3
- =
- 2 3
- df( 9*df(u,x) - b*u , t )
- +
- 2
- df( - 18*df(u,t)*df(u,x) - 18*df(u,x,4)*df(u,x,2) - 3*df(u,x,4)*b*u
- 2
- + 9*df(u,x,3) + 12*df(u,x,3)*df(u,x)*b*u - 18*df(u,x,3)*df(u,x)*c*u
- 2 2 2 3
- - 6*df(u,x,2) *b*u - 6*df(u,x,2)*df(u,x) *b - df(u,x,2)*b *u
- 2 2
- - 18*df(u,x) *a*u , x )
- ======================================================
- Conservation law:
- a=0,
- b
- c=---,
- 3
- 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b
- ( 6*x ) * ( ----------------------------------------------------------------- )
- 3
- =
- 2
- df( - 3*df(u,x)*x , t )
- +
- 2 2 2
- df( 3*df(u,t)*x + 6*df(u,x,4)*x - df(u,x,3)*b*u*x + 3*df(u,x,3)*c*u*x
- 2 2 2
- - 6*df(u,x,3) + 2*df(u,x,2)*b*u*x + 2*df(u,x) *b*x + 3*df(u,x)*a*u *x
- - 2*df(u,x)*b*u, x )
- ======================================================
- Conservation law:
- a=0,
- b
- c=---,
- 3
- 2
- 9*x 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b
- ( ------ ) * ( -----------------------------------------------------------------
- b 3
- )
- =
- 3
- - 3*df(u,x)*x
- df( -----------------, t )
- b
- +
- 3 2 3 3
- df( (3*df(u,t)*x + 9*df(u,x,4)*x - df(u,x,3)*b*u*x + 3*df(u,x,3)*c*u*x
- 2 2 2
- - 18*df(u,x,3)*x + 3*df(u,x,2)*b*u*x + 18*df(u,x,2) + 3*df(u,x) *b*x
- 2 3 2
- + 3*df(u,x)*a*u *x - 6*df(u,x)*b*u*x + 3*b*u )/b, x )
- ======================================================
- Conservation law:
- 2 2
- - 2*b + 7*b*c - 3*c
- a=------------------------,
- 10
- 2 2
- ( - 1500*df(u,x,2) - 300*b*u + 150*c*u ) * ( (10*df(u,t) + 10*df(u,x,5)
- 2 2
- + 10*df(u,x,3)*c*u + 10*df(u,x,2)*df(u,x)*b - 2*df(u,x)*b *u
- 2 2 2
- + 7*df(u,x)*b*c*u - 3*df(u,x)*c *u )/10 )
- =
- 2 3 3
- df( 750*df(u,x) - 100*b*u + 50*c*u , t )
- +
- 2
- df( - 1500*df(u,t)*df(u,x) - 1500*df(u,x,4)*df(u,x,2) - 300*df(u,x,4)*b*u
- 2 2
- + 150*df(u,x,4)*c*u + 750*df(u,x,3) + 600*df(u,x,3)*df(u,x)*b*u
- 2 2
- - 300*df(u,x,3)*df(u,x)*c*u - 300*df(u,x,2) *b*u - 600*df(u,x,2) *c*u
- 2 2 3
- - 600*df(u,x,2)*df(u,x) *b + 300*df(u,x,2)*df(u,x) *c - 300*df(u,x,2)*b*c*u
- 2 3 2 2 2 2 2
- + 150*df(u,x,2)*c *u - 1500*df(u,x) *a*u - 300*df(u,x) *b *u
- 2 2 2 2 2 3 5 2 5
- + 1050*df(u,x) *b*c*u - 450*df(u,x) *c *u + 12*b *u - 48*b *c*u
- 2 5 3 5
- + 39*b*c *u - 9*c *u , x )
- ======================================================
- Conservation law:
- 2 2
- - 2*b + 7*b*c - 3*c
- a=------------------------,
- 10
- 2 2 2
- ( ( - 1500*df(u,x,2)*b*t + 4500*df(u,x,2)*c*t - 300*b *t*u + 1050*b*c*t*u
- 2 2
- - 450*c *t*u - 1500*x)/(b - 3*c) ) * ( (10*df(u,t) + 10*df(u,x,5)
- 2 2
- + 10*df(u,x,3)*c*u + 10*df(u,x,2)*df(u,x)*b - 2*df(u,x)*b *u
- 2 2 2
- + 7*df(u,x)*b*c*u - 3*df(u,x)*c *u )/10 )
- =
- 2 2 2 3 3
- df( (750*df(u,x) *b*t - 2250*df(u,x) *c*t - 100*b *t*u + 350*b*c*t*u
- 2 3
- - 150*c *t*u - 1500*u*x)/(b - 3*c), t )
- +
- df( ( - 1500*df(u,t)*df(u,x)*b*t + 4500*df(u,t)*df(u,x)*c*t
- - 1500*df(u,x,4)*df(u,x,2)*b*t + 4500*df(u,x,4)*df(u,x,2)*c*t
- 2 2 2 2 2
- - 300*df(u,x,4)*b *t*u + 1050*df(u,x,4)*b*c*t*u - 450*df(u,x,4)*c *t*u
- 2 2
- - 1500*df(u,x,4)*x + 750*df(u,x,3) *b*t - 2250*df(u,x,3) *c*t
- 2
- + 600*df(u,x,3)*df(u,x)*b *t*u - 2100*df(u,x,3)*df(u,x)*b*c*t*u
- 2 2 2
- + 900*df(u,x,3)*df(u,x)*c *t*u + 1500*df(u,x,3) - 300*df(u,x,2) *b *t*u
- 2 2 2
- + 300*df(u,x,2) *b*c*t*u + 1800*df(u,x,2) *c *t*u
- 2 2 2
- - 600*df(u,x,2)*df(u,x) *b *t + 2100*df(u,x,2)*df(u,x) *b*c*t
- 2 2 2 3
- - 900*df(u,x,2)*df(u,x) *c *t - 300*df(u,x,2)*b *c*t*u
- 2 3 3 3
- + 1050*df(u,x,2)*b*c *t*u - 450*df(u,x,2)*c *t*u - 1500*df(u,x,2)*c*u*x
- 2 2 2 2 2 3 2
- - 1500*df(u,x) *a*b*t*u + 4500*df(u,x) *a*c*t*u - 300*df(u,x) *b *t*u
- 2 2 2 2 2 2 2
- + 1950*df(u,x) *b *c*t*u - 3600*df(u,x) *b*c *t*u - 750*df(u,x) *b*x
- 2 3 2 2 2 2
- + 1350*df(u,x) *c *t*u + 750*df(u,x) *c*x - 750*df(u,x)*a*u *x
- 2 2 2 2 2 2 2 2
- - 150*df(u,x)*b *u *x + 525*df(u,x)*b*c*u *x - 225*df(u,x)*c *u *x
- 4 5 3 5 2 2 5
- + 1500*df(u,x)*c*u + 12*b *t*u - 84*b *c*t*u + 183*b *c *t*u
- 2 3 3 5 3 4 5 2 3
- + 100*b *u *x - 126*b*c *t*u - 350*b*c*u *x + 27*c *t*u + 150*c *u *x)/(
- b - 3*c), x )
- ======================================================
- Conservation law:
- a=0,
- b
- c=---,
- 3
- 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b
- ( 6*x ) * ( ----------------------------------------------------------------- )
- 3
- =
- 2
- df( - 3*df(u,x)*x , t )
- +
- 2 2 2
- df( 3*df(u,t)*x + 6*df(u,x,4)*x - df(u,x,3)*b*u*x + 3*df(u,x,3)*c*u*x
- 2 2 2
- - 6*df(u,x,3) + 2*df(u,x,2)*b*u*x + 2*df(u,x) *b*x + 3*df(u,x)*a*u *x
- - 2*df(u,x)*b*u, x )
- ======================================================
- Conservation law:
- a=0,
- b
- c=---,
- 3
- 2
- 9*x 3*df(u,t) + 3*df(u,x,5) + df(u,x,3)*b*u + 3*df(u,x,2)*df(u,x)*b
- ( ------ ) * ( -----------------------------------------------------------------
- b 3
- )
- =
- 3
- - 3*df(u,x)*x
- df( -----------------, t )
- b
- +
- 3 2 3 3
- df( (3*df(u,t)*x + 9*df(u,x,4)*x - df(u,x,3)*b*u*x + 3*df(u,x,3)*c*u*x
- 2 2 2
- - 18*df(u,x,3)*x + 3*df(u,x,2)*b*u*x + 18*df(u,x,2) + 3*df(u,x) *b*x
- 2 3 2
- + 3*df(u,x)*a*u *x - 6*df(u,x)*b*u*x + 3*b*u )/b, x )
- ======================================================
- The function c_392(t) is not constant!
- The function c_372(t,x) is not constant!
- There are remaining conditions: {df(c_372,t) + df(c_372,x,5) - c_392}
- for the functions: c_372(t,x), c_392(t)
- Corresponding CLs might not be shown below as they
- could be of too low order.
- ======================================================
- The function c_443(t) is not constant!
- The function c_372(t,x) is not constant!
- There are remaining conditions: {20*df(c_372,t) + 20*df(c_372,x,5) - c_443}
- for the functions: c_372(t,x), c_443(t)
- Corresponding CLs might not be shown below as they
- could be of too low order.
- ======================================================
- Conservation law:
- a=0,
- b=0,
- c=0,
- ( - 2*df(u,x,2) ) * ( df(u,t) + df(u,x,5) )
- =
- 2
- df( df(u,x) , t )
- +
- 2
- df( - 2*df(u,t)*df(u,x) - 2*df(u,x,4)*df(u,x,2) + df(u,x,3)
- 2 2 2
- - 2*df(u,x,3)*df(u,x)*c*u - 2*df(u,x,2)*df(u,x) *b - 2*df(u,x) *a*u , x )
- ======================================================
- Conservation law:
- 2
- 3*b
- a=------,
- 40
- b
- c=---,
- 2
- 2
- ( - 4000*df(u,x,2) - 600*b*u ) * ( (40*df(u,t) + 40*df(u,x,5)
- 2 2
- + 20*df(u,x,3)*b*u + 40*df(u,x,2)*df(u,x)*b + 3*df(u,x)*b *u )/40 )
- =
- 2 3
- df( 2000*df(u,x) - 200*b*u , t )
- +
- 2
- df( - 4000*df(u,t)*df(u,x) - 4000*df(u,x,4)*df(u,x,2) - 600*df(u,x,4)*b*u
- 2
- + 2000*df(u,x,3) + 3200*df(u,x,3)*df(u,x)*b*u - 4000*df(u,x,3)*df(u,x)*c*u
- 2 2 2 3
- - 1600*df(u,x,2) *b*u - 1200*df(u,x,2)*df(u,x) *b - 300*df(u,x,2)*b *u
- 2 2 2 2 2 3 5
- - 4000*df(u,x) *a*u + 300*df(u,x) *b *u - 9*b *u , x )
- ======================================================
- Conservation law:
- 2
- 3*b
- a=------,
- 40
- b
- c=---,
- 2
- 2 2
- - 4000*df(u,x,2)*b*t - 600*b *t*u + 8000*x
- ( ---------------------------------------------- ) * ( (40*df(u,t)
- b
- 2 2
- + 40*df(u,x,5) + 20*df(u,x,3)*b*u + 40*df(u,x,2)*df(u,x)*b + 3*df(u,x)*b *u
- )/40 )
- =
- 2 2 3
- 2000*df(u,x) *b*t - 200*b *t*u + 8000*u*x
- df( --------------------------------------------, t )
- b
- +
- df( ( - 4000*df(u,t)*df(u,x)*b*t - 4000*df(u,x,4)*df(u,x,2)*b*t
- 2 2 2
- - 600*df(u,x,4)*b *t*u + 8000*df(u,x,4)*x + 2000*df(u,x,3) *b*t
- 2
- + 3200*df(u,x,3)*df(u,x)*b *t*u - 4000*df(u,x,3)*df(u,x)*b*c*t*u
- 2 2
- - 2000*df(u,x,3)*b*u*x + 4000*df(u,x,3)*c*u*x - 8000*df(u,x,3)
- 2 2 2 2
- - 1600*df(u,x,2) *b *t*u - 1200*df(u,x,2)*df(u,x) *b *t
- 3 3 2 2
- - 300*df(u,x,2)*b *t*u + 4000*df(u,x,2)*b*u*x - 4000*df(u,x) *a*b*t*u
- 2 3 2 2 2 2
- + 300*df(u,x) *b *t*u + 2000*df(u,x) *b*x + 4000*df(u,x)*a*u *x
- 2 2 2 4 5 2 3
- - 300*df(u,x)*b *u *x - 4000*df(u,x)*b*u - 9*b *t*u + 200*b *u *x)/b, x
- )
- ======================================================
- Conservation law:
- b=0,
- c=0,
- 3 2
- ( --- ) * ( df(u,t) + df(u,x,5) + df(u,x)*a*u )
- a
- =
- - 3*df(u,x)*x
- df( ----------------, t )
- a
- +
- df(
- 3
- 3*df(u,t)*x + 3*df(u,x,4) + 3*df(u,x,3)*c*u*x + 3*df(u,x,2)*df(u,x)*b*x + a*u
- --------------------------------------------------------------------------------
- a
- , x )
- ======================================================
- The function c_425(t) is not constant!
- The function c_372(t,x) is not constant!
- There are remaining conditions: {2*df(c_372,t) + 2*df(c_372,x,5) - c_425}
- for the functions: c_372(t,x), c_425(t)
- Corresponding CLs might not be shown below as they
- could be of too low order.
- ======================================================
- **************************************************************************
- CONLAWi can also be used to determine first integrals of ODEs.
- The generality of the ansatz is not just specified by the order.
- For example, the Lorentz system below is a first order system
- therefore any first integrals are zero order expressions.
- The ansatz to be investigated below looks for first integrals of
- the form a1(x,1)+a2(y,t)+a3(x,t)=const. and determines parameters
- s,b,r such that first integrals exist.
- --------------------------------------------------------------------------
- This is CONLAW1 - a program for calculating conservation laws of DEs
- The DEs under investigation are :
- df(x,t)= - s*x + s*y
- df(y,t)=r*x + x*z - y
- df(z,t)= - b*z + x*y
- for the function(s): {x,y,z}
- ======================================================
- A special ansatz of order 0 for the conserved current is investigated.
- The function c_584(x) is not constant!
- ======================================================
- Conservation law:
- s=0,
- r=0,
- b=1,
- 2*t
- ( - 2*e *z ) * ( df(z,t) - x*y + z )
- +
- 2*t
- ( 2*e *y ) * ( df(y,t) - x*z + y )
- +
- ( 0 ) * ( df(x,t) )
- =
- 2*t 2 2*t 2
- df( e *y - e *z , t )
- ======================================================
- Conservation law:
- s=0,
- r=0,
- b=1,
- ( 0 ) * ( df(z,t) - x*y + z )
- +
- ( 0 ) * ( df(y,t) - x*z + y )
- +
- ( df(c_584,x) ) * ( df(x,t) )
- =
- df( c_584, t )
- ======================================================
- The function c_584(x) is not constant!
- ======================================================
- Conservation law:
- s=0,
- r=0,
- ( 0 ) * ( df(z,t) + b*z - x*y )
- +
- ( 0 ) * ( df(y,t) - x*z + y )
- +
- ( df(c_584,x) ) * ( df(x,t) )
- =
- df( c_584, t )
- ======================================================
- The function c_586(x) is not constant!
- ======================================================
- Conservation law:
- s=0,
- ( 0 ) * ( df(z,t) + b*z - x*y )
- +
- ( 0 ) * ( df(y,t) - r*x - x*z + y )
- +
- ( df(c_586,x) ) * ( df(x,t) )
- =
- df( c_586, t )
- ======================================================
- Conservation law:
- 1
- s=---,
- 2
- r=0,
- b=1,
- t
- ( - e ) * ( df(z,t) - x*y + z )
- +
- ( 0 ) * ( df(y,t) - x*z + y )
- +
- t 2*df(x,t) + x - y
- ( 2*e *x ) * ( ------------------- )
- 2
- =
- t 2 t
- df( e *x - e *z, t )
- ======================================================
- Conservation law:
- 1
- s=---,
- 2
- r=0,
- b=1,
- 2*t
- ( - 2*e *z ) * ( df(z,t) - x*y + z )
- +
- 2*t
- ( 2*e *y ) * ( df(y,t) - x*z + y )
- +
- 2*df(x,t) + x - y
- ( 0 ) * ( ------------------- )
- 2
- =
- 2*t 2 2*t 2
- df( e *y - e *z , t )
- ======================================================
- Conservation law:
- r=0,
- b=1,
- 2*t
- ( - 2*e *z ) * ( df(z,t) - x*y + z )
- +
- 2*t
- ( 2*e *y ) * ( df(y,t) - x*z + y )
- +
- ( 0 ) * ( df(x,t) + s*x - s*y )
- =
- 2*t 2 2*t 2
- df( e *y - e *z , t )
- ======================================================
- Conservation law:
- s=1,
- b=1,
- 2*t
- ( - 2*e *z ) * ( df(z,t) - x*y + z )
- +
- 2*t
- ( 2*e *y ) * ( df(y,t) - r*x - x*z + y )
- +
- 2*t
- ( - 2*e *r*x ) * ( df(x,t) + x - y )
- =
- 2*t 2 2*t 2 2*t 2
- df( - e *r*x + e *y - e *z , t )
- ======================================================
- Conservation law:
- b=2*s,
- 2*s*t
- ( - 2*e ) * ( df(z,t) + 2*s*z - x*y )
- +
- ( 0 ) * ( df(y,t) - r*x - x*z + y )
- +
- 2*s*t
- 2*e *x
- ( ------------ ) * ( df(x,t) + s*x - s*y )
- s
- =
- 2*s*t 2*s*t 2
- - 2*e *s*z + e *x
- df( -----------------------------, t )
- s
- ======================================================
- Time for test: 921304 ms, plus GC time: 21570 ms
|