123456789101112131415161718192021222324252627282930313233343536373839404142 |
- \section{CONTINUED\_FRACTION Operator}
- \index{approximation}\index{rational number}
- The operator CONTINUED\_FRACTION approximates the real number
- ( \nameref{rational} number, \nameref{rounded} number)
- into a continued fraction. CONTINUE_FRACTION has one or
- two arguments, the number to be converted and an optional
- precision:
- \begin{verbatim}
- continued\_fraction(<num>)
- or
- continued\_fraction(<num>,<size>)
- \end{verbatim}
- The result is a list of two elements: the
- first one is the rational value of the approximation, the second one
- is the list of terms of the continued fraction which represents the
- same value according to the definition \verb&t0 +1/(t1 + 1/(t2 + ...))&.
- Precision: the second optional parameter \meta{size} is an upper bound
- for the absolute value of the result denominator. If omitted, the
- approximation is performed up to the current system precision.
- {\tt Examples:}
- \begin{verbatim}
- continued_fraction pi;
- ->
- 1146408
- {---------,{3,7,15,1,292,1,1,1,2,1}}
- 364913
- continued_fraction(pi,100);
- ->
- 22
- {----,{3,7}}
- 7
- \end{verbatim}
|