12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751 |
- \section{General Switches}
- \begin{Introduction}{SWITCHES}
- Switches are set on or off using the commands \nameref{on} or
- \nameref{off}, respectively.
- The default setting of the switches described in this section is
- \nameref{off} unless stated otherwise.
- \end{Introduction}
- \begin{Switch}{ALGINT}
- \index{integration}
- When the \name{algint} switch is on, the algebraic integration module (which
- must be loaded from the REDUCE library) is used for integration.
- \begin{Comments}
- Loading \name{algint} from the library automatically turns on the
- \name{algint} switch. An error message will be given if \name{algint} is
- turned on when the \name{algint} has not been loaded from the library.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{ALLBRANCH}
- When \name{allbranch} is on, the operator \nameref{solve} selects all
- branches of solutions.
- When \name{allbranch} is off, it selects only the principal
- branches. Default is \name{on}.
- \begin{Examples}
- solve(log(sin(x+3)),x); &
- \begin{multilineoutput}{6cm}
- \{X=2*ARBINT(1)*PI - ASIN(1) - 3,
- X=2*ARBINT(1)*PI + ASIN(1) + PI - 3\}
- \end{multilineoutput}\\
- off allbranch; \\
- solve(log(sin(x+3)),x); &
- {X=ASIN(1) - 3}
- \end{Examples}
- \begin{Comments}
- \nameref{arbint}(1) indicates an arbitrary integer, which is given a
- unique identifier by REDUCE, showing that there are infinitely many
- solutions of this type. When \name{allbranch} is off, the single
- canonical solution is given.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{ALLFAC}
- \index{output}
- The \name{allfac} switch, when on, causes REDUCE to factor out automatically
- common products in the output of expressions. Default is \name{on}.
- \begin{Examples}
- x + x*y**3 + x**2*cos(z); & X*(COS(Z)*X + Y^{3} + 1) \\
- off allfac; \\
- x + x*y**3 + x**2*cos(z); & COS(Z)*X^{2} + X*Y^{3} + X
- \end{Examples}
- \begin{Comments}
- The \name{allfac} switch has no effect when \name{pri} is off. Although the
- switch setting stays as it was, printing behavior is as if it were off.
- \end{Comments}
- \end{Switch}
- % \begin{Switch}{ALLPREC}
- %
- % \end{Switch}
- %
- %
- \begin{Switch}{ARBVARS}
- \index{solve}
- When \name{arbvars} is on, the solutions of singular or underdetermined
- systems of equations are presented in terms of arbitrary complex variables
- (see \nameref{arbcomplex}). Otherwise, the solution is parametrized in
- terms of some of the input variables. Default is \name{on}.
- \begin{Examples}
- solve({2x + y,4x + 2y},{x,y}); &
- \{\{x= - \rfrac{arbcomplex(1)}{2},y=arbcomplex(1)\}\} \\
- solve({sqrt(x)+ y**3-1},{x,y}); &
- \{\{y=arbcomplex(2),x=y^6 - 2*y^3 + 1\}\} \\
- off arbvars; \\
- solve({2x + y,4x + 2y},{x,y}); &
- \{\{x= - \rfrac{y}{2}\}\} \\
- solve({sqrt(x)+ y**3-1},{x,y}); &
- \{\{x=y^6 - 2*y^3 + 1\}\} \\
- \end{Examples}
- \begin{Comments}
- With \name{arbvars} off, the return value \name{\{\{\}\}} means that the
- equations given to \nameref{solve} imply no relation among the input
- variables.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{BALANCED\_MOD}
- \index{modular}
- \nameref{modular} numbers are normally produced in the range [0,...\meta{n}),
- where
- \meta{n} is the current modulus. With \name{balanced\_mod} on, the range
- [-\meta{n}/2,\meta{n}/2] is used instead.
- \begin{Examples}
- setmod 7; & 1 \\
- on modular; \\
- 4; & 4 \\
- on balanced_mod; \\
- 4; & -3
- \end{Examples}
- \end{Switch}
- \begin{Switch}{BFSPACE}
- \index{output}\index{floating point}
- Floating point numbers are normally printed in a compact notation (either
- fixed point or in scientific notation if \nameref{SCIENTIFIC\_NOTATION}
- has been used). In some (but not all) cases, it helps comprehensibility
- if spaces are inserted in the number at regular intervals. The switch
- \name{bfspace}, if on, will cause a blank to be inserted in the number after
- every five characters.
- \begin{Examples}
- on rounded; \\
- 1.2345678; & 1.2345678 \\
- on bfspace; \\
- 1.2345678; & 1.234 5678
- \end{Examples}
- \begin{Comments}
- \name{bfspace} is normally off.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{COMBINEEXPT}
- \index{exponent simplification}
- REDUCE is in general poor at surd simplification. However, when the
- switch \name{combineexpt} is on, the system attempts to combine
- exponentials whenever possible.
- \begin{TEX}
- \begin{Examples}
- 3^(1/2)*3^(1/3)*3^(1/6); & SQRT(3)*3^{\rfrac{1}{3}}*3^{\rfrac{1}{6}} \\
- on combineexpt; \\
- ws; & 1
- \end{Examples}
- \end{TEX}
- \begin{INFO}
- {\begin{Examples}
- 3^(1/2)*3^(1/3)*3^(1/6); & SQRT(3)*3^{1/3}*3^{1/6} \\
- on combineexpt; \\
- ws; & 1
- \end{Examples}}
- \end{INFO}
- \end{Switch}
- \begin{Switch}{COMBINELOGS}
- \index{logarithm}
- In many cases it is desirable to expand product arguments of logarithms,
- or collect a sum of logarithms into a single logarithm. Since these are
- inverse operations, it is not possible to provide rules for doing both at
- the same time and preserve the REDUCE concept of idempotent evaluation.
- As an alternative, REDUCE provides two switches \nameref{expandlogs} and
- \name{combinelogs} to carry out these operations.
- \begin{Examples}
- on expandlogs; \\
- log(x*y); & LOG(X) + LOG(Y) \\
- on combinelogs; \\
- ws; & LOG(X*Y)
- \end{Examples}
- \begin{Comments}
- At the present time, it is possible to have both switches on at once,
- which could lead to infinite recursion. However, an expression is
- switched from one form to the other in this case. Users should not rely
- on this behavior, since it may change in the next release.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{COMP}
- \index{compiler}
- When \name{comp} is on, any succeeding function definitions are compiled
- into a faster-running form. Default is \name{off}.
- \begin{Examples}
- \explanation{The following procedure finds Fibonacci numbers recursively.
- Create a new file ``refib" in your current directory with the following
- lines in it:} \\[6mm]
- \begin{multilineinput}
- procedure refib(n);
- if fixp n and n >= 0 then
- if n <= 1 then 1
- else refib(n-1) + refib(n-2)
- else rederr "nonnegative integer only";
- end;
- \end{multilineinput}\\
- \explanation{Now load REDUCE and run the following:}\\
- on time; & Time: 100 ms \\
- in "refib"$ & Time: 0 ms \\
- & REFIB \\
- & Time: 260 ms \\
- & Time: 20 ms \\
- refib(80); & 37889062373143906 \\
- & Time: 14840 ms \\
- on comp; & Time: 80 ms \\
- in "refib"$ & Time: 20 ms \\
- & REFIB \\
- & Time: 640 ms \\
- refib(80); & 37889062373143906 \\
- & Time: 10940 ms
- \end{Examples}
- \begin{Comments}
- Note that the compiled procedure runs faster. Your time messages will
- differ depending upon which system you have. Compiled functions remain so
- for the duration of the REDUCE session, and are then lost. They must be
- recompiled if wanted in another session. With the switch \nameref{time} on
- as shown above, the CPU time used in executing the command is returned in
- milliseconds. Be careful not to leave \name{comp} on unless you want it,
- as it makes the processing of procedures much slower.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{COMPLEX}
- \index{complex}
- When the \name{complex} switch is on, full complex arithmetic is used in
- simplification, function evaluation, and factorization. Default is \name{off}.
- \begin{Examples}
- factorize(a**2 + b**2); & \{A^{2} + B^{2} \} \\
- on complex; \\
- factorize(a**2 + b**2); & \{A - I*B,A + I*B\} \\
- (x**2 + y**2)/(x + i*y); & X - I*Y \\
- on rounded; &
- *** Domain mode COMPLEX changed to COMPLEX\_FLOAT \\
- sqrt(-17); & 4.12310562562*I \\
- log(7*i); & 1.94591014906 + 1.57079632679*I
- \end{Examples}
- \begin{Comments}
- Complex floating-point can be done by turning on \nameref{rounded} in
- addition to \name{complex}. With \name{complex} off however, REDUCE knows
- that \IFTEX{$i$}{i} is the square root of \IFTEX{$-1$}{-1} but will not
- carry out more complicated complex operations. If you want complex
- denominators cleared by multiplication by their conjugates, turn on the
- switch \nameref{rationalize}.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{CREF}
- \index{cross reference}
- The switch \name{cref} invokes the CREF cross-reference program that
- processes a set of procedure definitions to produce a summary of their
- entry points, undefined procedures, non-local variables and so on. The
- program will also check that procedures are called with a consistent
- number of arguments, and print a diagnostic message otherwise.
- The output is alphabetized on the first seven characters of each function
- name.
- To invoke the cross-reference program, \name{cref} is first turned on.
- This causes the program to load and the cross-referencing process to
- begin. After all the required definitions are loaded, turning \name{cref}
- off will cause a cross-reference listing to be produced.
- \begin{Comments}
- Algebraic procedures in REDUCE are treated as if they were symbolic, so
- that algebraic constructs will actually appear as calls to symbolic
- functions, such as \name{aeval}.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{CRAMER}
- \index{matrix}\index{linear system}\index{solve}
- When the \name{cramer} switch is on, \nameref{matrix} inversion
- and linear equation
- solving (operator \nameref{solve}) is done by Cramer's rule, through exterior
- multiplication. Default is \name{off}.
- \begin{Examples}
- on time; & Time: 80 ms \\
- off output; & Time: 100 ms \\[4mm]
- \begin{multilineinput}
- mm := mat((a,b,c,d,f),(a,a,c,f,b),(b,c,a,c,d), (c,c,a,b,f),
- (d,a,d,e,f));
- \end{multilineinput} & Time: 300 ms \\
- inverse := 1/mm; & Time: 18460 ms \\
- on cramer; & Time: 80 ms \\
- cramersinv := 1/mm; & Time: 9260 ms
- \end{Examples}
- \begin{Comments}
- Your time readings will vary depending on the REDUCE version you use.
- After you invert the matrix, turn on \nameref{output} and ask for one of
- the elements of the inverse matrix, such as \name{cramersinv(3,2)}, so that
- you can see the size of the expressions produced.
- Inversion of matrices and the solution of linear equations with dense
- symbolic entries in many variables is generally considerably faster with
- \name{cramer} on. However, inversion of numeric-valued matrices is
- slower. Consider the matrices you're inverting before deciding whether to
- turn \name{cramer} on or off. A substantial portion of the time in matrix
- inversion is given to formatting the results for printing. To save this
- time, turn \name{output} off, as shown in this example or terminate the
- expression with a dollar sign instead of a semicolon. The results are
- still available to you in the workspace associated with your prompt
- number, or you can assign them to an identifier for further use.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{DEFN}
- \index{lisp}
- When the switch \name{defn} is on, the Standard Lisp equivalent of the
- input statement or procedure is printed, but not evaluated. Default is
- \name{off}.
- \begin{Examples}
- on defn; \\
- 17/3; & (AEVAL (LIST 'QUOTIENT 17 3)) \\
- df(sin(x),x,2);
- & (AEVAL (LIST 'DF (LIST 'SIN 'X) 'X 2)) \\
- \begin{multilineinput}
- procedure coshval(a);
- begin scalar g;
- g := (exp(a) + exp(-a))/2;
- return g
- end;
- \end{multilineinput} &
- \begin{multilineoutput}{7cm}
- (AEVAL
- (PROGN
- (FLAG '(COSHVAL) 'OPFN)
- (DE COSHVAL (A)
- (PROG (G)
- (SETQ G
- (AEVAL
- (LIST
- 'QUOTIENT
- (LIST
- 'PLUS
- (LIST 'EXP A)
- (LIST 'EXP (LIST 'MINUS A)))
- 2)))
- (RETURN G)))) )
- \end{multilineoutput} \\
- coshval(1); & (AEVAL (LIST 'COSHVAL 1)) \\
- off defn; \\
- coshval(1); & Declare COSHVAL operator? (Y or N) \\
- n \\
- \begin{multilineinput}
- procedure coshval(a);
- begin scalar g;
- g := (exp(a) + exp(-a))/2;
- return g
- end;
- \end{multilineinput} & COSHVAL \\
- on rounded; \\
- coshval(1); & 1.54308063482
- \end{Examples}
- \begin{Comments}
- The above function \name{coshval} finds the hyperbolic cosine (cosh) of its
- argument. When \name{defn} is on, you can see the Standard Lisp equivalent
- of the function, but it is not entered into the system as shown by the
- message \name{Declare COSHVAL operator?}. It must be reentered with
- \name{defn} off to be recognized. This procedure is used as an example; a
- more efficient procedure would eliminate the unnecessary local variable
- with
- \begin{verbatim}
- procedure coshval(a);
- (exp(a) + exp(-a))/2;
- \end{verbatim}
- \end{Comments}
- \end{Switch}
- \begin{Switch}{DEMO}
- \index{interactive}\index{output}
- The \name{demo} switch is used for interactive files, causing the system
- to pause after each command in the file until you type a \key{Return}.
- Default is \name{off}.
- \begin{Comments}
- The switch \name{demo} has no effect on top level interactive
- statements. Use it when you want to slow down operations in a file so
- you can see what is happening.
- You can either include the \name{on demo} command in the file, or enter
- it from the top level before bringing in any file. Unlike the
- \nameref{pause} command, \name{on demo} does not permit you to interrupt
- the file for questions of your own.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{DFPRINT}
- \index{output}\index{derivative}
- When \name{dfprint} is on, expressions in the differentiation operator
- \nameref{df} are printed in a more ``natural'' notation, with the
- differentiation variables appearing as subscripts. In addition, if the
- switch \nameref{noarg} is on (the default), the arguments of the
- differentiated operator are suppressed.
- \begin{Examples}
- operator f; \\
- df(f x,x); & DF(F(X),X); \\
- on dfprint; \\
- ws; & F_{X} \\
- df(f(x,y),x,y); & F_{X}_{,}_{Y} \\
- off noarg; \\
- ws; & F(X,Y)_{X}
- \end{Examples}
- \end{Switch}
- \begin{Switch}{DIV}
- \index{output}
- When \name{div} is on, the system divides any simple factors found in
- the denominator of an expression into the numerator. Default is \name{off}.
- \begin{Examples}
- on div; \\
- a := x**2/y**2; & A := X^{2} *Y^{-2} \\
- b := a/(3*z); & B := \rfrac{1}{3}*X^{2} *Y^{-2} *Z^{-1} \\
- off div; \\
- a; & \rfrac{X^{2}}{Y^{2}}\\
- b; & \rfrac{X^{2}}{3*Y^{2} *Z}
-
- \end{Examples}
- \begin{Comments}
- The \name{div} switch only has effect when the \nameref{pri} switch is on.
- When \name{pri} is off, regardless of the setting of \name{div}, the
- printing behavior is as if \name{div} were off.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{ECHO}
- \index{output}
- The \name{echo} switch is normally off for top-level entry, and on when files
- are brought in. If \name{echo} is turned on at the top level, your input
- statements are echoed to the screen (thus appearing twice). Default
- \name{off} (but note default \name{on} for files).
- \begin{Comments}
- If you want to display certain portions of a file and not others, use the
- commands \name{off echo} and \name{on echo} inside the file. If you want
- no display of the file, use the input command
- \name{in} {\em filename}\name{\$}
- rather than using the semicolon delimiter.
- Be careful when you use commands within a file to generate another file.
- Since \name{echo} is on for files, the output file echoes input statements
- (unlike its behavior from the top level). You should explicitly turn off
- \name{echo} when writing output, and turn it back on when you're done.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{ERRCONT}
- \index{error handling}
- When the \name{errcont} switch is on, error conditions do not stop file
- execution. Error messages will be printed whether \name{errcont} is on or
- off.
- Default is \name{off}.
- \begin{Comments}
- \begin{TEX}
- The table below shows REDUCE behavior under the settings of \name{errcont} and
- \name{int} :
- \begin{center}
- \begin{tabular}{|l|l|p{9.5cm}|}
- \hline
- \multicolumn{3}{|c|}{Behavior in Case of Error in Files}\\
- \hline
- \multicolumn{1}{|c|}{errcont} &
- \multicolumn{1}{c|}{int} &
- \multicolumn{1}{c|}{Behavior when errors in files are encountered}\\
- \hline
- off & off &
- Message is printed and parsing continues, but no further statements are
- executed; no commands from keyboard accepted except \verb|bye| or
- \verb|end| \\
- off & on &
- Message is printed, and you are asked if you wish to continue. (This is the
- default behavior) \\
- on & off &
- Message is printed, and file continues to execute without pause \\
- on & on &
- Message is printed, and file continues to execute without pause\\
- \hline
- \end{tabular}
- \end{center}
- \end{TEX}
- \begin{INFO}
- The following describes what happens when an error occurs in a file under
- each setting of \name{errcont} and \name{int}:
- Both off: Message is printed and parsing continues, but no further
- statements are executed; no commands from keyboard accepted except bye or
- end;
- \name{errcont} off, \name{int} on: Message is printed, and you are asked
- if you wish to continue. (This is the default behavior);
- \name{errcont} on, \name{int} off: Message is printed, and file continues
- to execute without pause;
- Both on: Message is printed, and file continues to execute without pause.
- \end{INFO}
- \end{Comments}
- \end{Switch}
- \begin{Switch}{EVALLHSEQP}
- \index{equation}
- Under normal circumstances, the right-hand-side of an \nameref{equation}
- is evaluated but not the left-hand-side. This also applies to any
- substitutions made by the \nameref{sub} operator. If both sides are to be
- evaluated, the switch \name{evallhseqp} should be turned on.
- \end{Switch}
- \begin{Switch}{EXP}
- \index{simplification}
- When the \name{exp} switch is on, powers and products of expressions are
- expanded. Default is \name{on}.
- \begin{Examples}
- (x+1)**3; & X^{3} + 3*X^{2} + 3*X + 1 \\
- (a + b*i)*(c + d*i); & A*C + A*D*I + B*C*I - B*D \\
- off exp; \\
- (x+1)**3; & (X + 1)^{3} \\
- (a + b*i)*(c + d*i); & (A + B*I)*(C + D*I) \\
- length((x+1)**2/(y+1)); & 2
- \end{Examples}
- \begin{Comments}
- Note that REDUCE knows that \IFTEX{$i^2 = -1$}{i^2 = -1}.
- When \name{exp} is off, equivalent expressions may not simplify to the same
- form, although zero expressions still simplify to zero. Several operators
- that expect a polynomial argument behave differently when \name{exp} is
- off, such as \nameref{length}. Be cautious about leaving \name{exp} off.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{EXPANDLOGS}
- \index{logarithm}
- In many cases it is desirable to expand product arguments of logarithms,
- or collect a sum of logarithms into a single logarithm. Since these are
- inverse operations, it is not possible to provide rules for doing both at
- the same time and preserve the REDUCE concept of idempotent evaluation.
- As an alternative, REDUCE provides two switches \name{expandlogs} and
- \nameref{combinelogs} to carry out these operations. Both are off by default.
- \begin{Examples}
- on expandlogs; \\
- log(x*y); & LOG(X) + LOG(Y) \\
- on combinelogs; \\
- ws; & LOG(X*Y)
- \end{Examples}
- \begin{Comments}
- At the present time, it is possible to have both switches on at once,
- which could lead to infinite recursion. However, an expression is
- switched from one form to the other in this case. Users should not rely
- on this behavior, since it may change in the next release.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{EZGCD}
- \index{greatest common divisor}\index{polynomial}
- When \name{ezgcd} and \nameref{gcd} are on, greatest common divisors are
- computed using the EZ GCD algorithm that uses modular arithmetic (and is
- usually faster). Default is \name{off}.
- \begin{Comments}
- As a side effect of the gcd calculation, the expressions involved are
- factored, though not the heavy-duty factoring of \nameref{factorize}. The
- EZ GCD algorithm was introduced in a paper by J. Moses and D.Y.Y. Yun in
- \meta{Proceedings of the ACM}, 1973, pp. 159-166.
- Note that the \nameref{gcd} switch must also be on for \name{ezgcd} to have
- effect.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{FACTOR}
- \index{output}
- When the \name{factor} switch is on, input expressions and results are
- automatically factored.
- \begin{Examples}
- on factor; \\
- aa := 3*x**3*a + 6*x**2*y*a + 3*x**3*b + 6*x**2*y*b\\
- + x*y*a + 2*y**2*a + x*y*b + 2*y**2*b;
- & AA := (A + B)*(3*X^{2} + Y)*(X + 2*Y) \\
- off factor; \\
- aa; &
- 3*A*X^{3} + 6*A*X^{2}*Y + A*X*Y + 2*A*Y^{2} + 3*B*X^{3} + 6*B*X^{2}*Y\\
- + B*X*Y + 2*B*Y^{2} \\
- on factor; \\
- ab := x**2 - 2; & AB := X^{2} - 2
- \end{Examples}
- \begin{Comments}
- REDUCE factors univariate and multivariate polynomials with
- integer coefficients, finding any factors that also have integer coefficients.
- The factoring is done by reducing multivariate problems to univariate
- ones with symbolic coefficients, and then solving the univariate ones modulo
- small primes. The results of these calculations are merged to
- determine the factors of the original polynomial. The factorizer normally
- selects evaluation points and primes using a random number generator.
- Thus, the detailed factoring behavior may be different each time any
- particular problem is tackled.
- When the \name{factor} switch is turned on, the \nameref{exp} switch is
- turned off, and when the \name{factor} switch is turned off, the
- \nameref{exp} switch is turned on, whether it was on previously or not.
- When the switch \nameref{trfac} is on, informative messages are generated at
- each call to the factorizer. The \nameref{trallfac} switch causes the
- production of a more verbose trace message. It takes precedence over
- \name{trfac} if they are both on.
- To factor a polynomial explicitly and store the results, use the operator
- \nameref{factorize}.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{FAILHARD}
- \index{integration}
- When the \name{failhard} switch is on, the integration operator \nameref{int}
- terminates with an error message if the integral cannot be done in closed
- terms.
- Default is off.
- \begin{Comments}
- Use the \name{failhard} switch when you are dealing with complicated integrals
- and want to know immediately if REDUCE was unable to handle them. The
- integration operator sometimes returns a formal integration form that is
- more complicated than the original expression, when it is unable to
- complete the integration.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{FORT}
- \index{FORTRAN}
- When \name{fort} is on, output is given Fortran-compatible syntax. Default
- is \name{off}.
- \begin{Examples}
- on fort; \\
- df(sin(7*x + y),x); & ANS=7.*COS(7*X+Y) \\
- on rounded; \\
- b := log(sin(pi/5 + n*pi)); &
- B=LOG(SIN(3.14159265359*N+0.628318530718))
- \end{Examples}
- \begin{Comments}
- REDUCE results can be written to a file (using \nameref{out}) and used as data
- by Fortran programs when \name{fort} is in effect. \name{fort} knows about
- correct statement length, continuation characters, defining a symbol when
- it is first used, and other Fortran details.
- The \nameref{GENTRAN} package offers many more possibilities than the
- \name{fort} switch. It produces Fortran (or C or Ratfor) code from REDUCE
- procedures or structured specifications, including facilities for producing
- double precision output.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{FORTUPPER}
- \index{FORTRAN}
- When \name{fortupper} is on, any Fortran-style output appears in upper case.
- Default is \name{off}.
- \begin{Examples}
- on fort; \\
- df(sin(7*x + y),x); & ans=7.*cos(7*x+y) \\
- on fortupper; \\
- df(sin(7*x + y),x); & ANS=7.*COS(7*X+Y) \\
- \end{Examples}
- \end{Switch}
- \begin{Switch}{FULLPREC}
- \index{precision}\index{rounded}
- Trailing zeroes of rounded numbers to the full system precision are
- normally not printed. If this information is needed, for example to get a
- more understandable indication of the accuracy of certain data, the switch
- \name{fullprec} can be turned on.
- \begin{Examples}
- on rounded; \\
- 1/2; & 0.5 \\
- on fullprec; \\
- ws; & 0.500000000000
- \end{Examples}
- \begin{Comments}
- This is just an output options which neither influences
- the accuracy of the computation nor does it give additional
- information about the precision of the results.
- See also \nameref{scientific_notation}.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{FULLROOTS}
- \index{solve}\index{polynomial}
- Since roots of cubic and quartic polynomials can often be very
- messy, a switch \name{fullroots} controls the production
- of results in closed form. \nameref{solve} will apply the
- formulas for explicit forms for degrees 3 and 4 only if
- \name{fullroots} is \name{on}. Otherwise the result forms
- are built using \nameref{root\_of}. Default is \name{off}.
- \end{Switch}
- \begin{Switch}{GC}
- \index{memory}
- With the \name{gc} switch, you can turn the garbage collection messages on
- or off. The form of the message depends on the particular Lisp used for
- the REDUCE implementation.
- \begin{Comments}
- See \nameref{reclaim} for an explanation of garbage collection. REDUCE does
- garbage collection when needed even if you have turned the notices off.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{GCD}
- \index{greatest common divisor}\index{rational expression}
- When \name{gcd} is on, common factors in numerators and denominators of
- expressions are canceled. Default is \name{off}.
- \begin{Examples}
- \begin{multilineinput}
- (2*(f*h)**2 - f**2*g*h - (f*g)**2 - f*h**3 + f*h*g**2
- - h**4 + g*h**3)/(f**2*h - f**2*g - f*h**2 + 2*f*g*h
- - f*g**2 - g*h**2 + g**2*h);
- \end{multilineinput} &
- \rfrac{F^{2}*G^{2} + F^{2}*G*H - 2*F^{2}*H^{2} - F*G^{2}*H + F*H^{3} - G*H^{3} +
- H^{4}}
- {F^{2}*G - F^{2}*H + F*G^{2} - 2*F*G*H + F*H^{2} - G^{2}*H + G*H^{2}} \\
- on gcd; \\
- ws; & \rfrac{F*G + 2*F*H + H^{2}}{F + G} \\
- e2 := a*c + a*d + b*c + b*d; & E2 := A*C + A*D + B*C + B*D \\
- off exp; \\
- e2; & (A + B)*(C + D)
- \end{Examples}
- \begin{Comments}
- Even with \name{gcd} off, a check is automatically made for common variable
- and numerical products in the numerators and denominators of expression,
- and the appropriate cancellations made. Thus the example demonstrating the
- use of \name{gcd} is somewhat complicated. Note when \nameref{exp} is off,
- \name{gcd} has the side effect of factoring the expression.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{HORNER}
- \index{output}\index{polynomial}
- When the \name{horner} switch is on, polynomial expressions are printed
- in Horner's form for faster and safer numerical evaluation. Default
- is \name{off}. The leading variable of the expression is selected as
- Horner variable. To select the Horner variable explicitly use the
- \nameref{korder} declaration.
- \begin{Examples}
- on horner;\\
- (13p-4q)^3;&
- ( - 64)*q^3 + p*(624*q^2 + p*(( - 2028)*q + p*2197))\\
- korder q;\\
- ws;&
- 2197*p^3 + q*(( - 2028)*p^2 + q*(624*p + q*(-64)))
- \end{Examples}
- \end{Switch}
- \begin{Switch}{IFACTOR}
- \index{integer}\index{factorize}
- When the \name{ifactor} switch is on, any integer terms appearing as a result
- of the \nameref{factorize} command are factored themselves into primes. Default
- is \name{off}. If the argument of \name{factorize} is an integer,
- \name{ifactor} has no effect, since the integer is always factored.
- \begin{Examples}
- factorize(4*x**2 + 28*x + 48); & \{4,X + 3,X + 4\} \\
- factorize(22587); & \{3,7529\} \\
- on ifactor; \\
- factorize(4*x**2 + 28*x + 48); & \{2,2,X + 4,X + 3\} \\
- factorize(22587); & \{3,7529\}
- \end{Examples}
- \begin{Comments}
- Constant terms that appear within nonconstant
- polynomial factors are not factored.
- The \name{ifactor} switch affects only factoring done specifically
- with \nameref{factorize}, not on factoring done automatically when the
- \nameref{factor} switch is on.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{INT}
- \index{interactive}
- The \name{int} switch specifies an interactive mode of operation. Default
- \name{on}.
- \begin{Comments}
- There is no reason to turn \name{int} off during interactive calculations,
- since there are no benefits to be gained. If you do have \name{int} off
- while inputting a file, and REDUCE finds an error, it prints the message
- ``Continuing with parsing only." In this state, REDUCE accepts only
- \nameref{end}\name{;} or \nameref{bye}\name{;} from the keyboard;
- everything else is ignored, even the command \name{on int}.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{INTSTR}
- \index{output}
- If \name{intstr} (for ``internal structure'') is on, arguments of an
- operator are printed in a more structured form.
- \begin{Examples}
- operator f; \\
- f(2x+2y); & F(2*X + 2*Y) \\
- on intstr; \\
- ws; & F(2*(X + Y))
- \end{Examples}
- \end{Switch}
- \begin{Switch}{LCM}
- \index{rational expression}
- The \name{lcm} switch instructs REDUCE to compute the least common multiple
- of denominators whenever rational expressions occur. Default is \name{on}.
- \begin{Examples}
- off lcm; \\
- z := 1/(x**2 - y**2) + 1/(x-y)**2;
- & Z := \rfrac{2*X*(X - Y)}{X^{4} - 2*X^{3}*Y +
- 2*X*Y^{3} - Y^{4}} \\
- on lcm; \\
- z; & \rfrac{2*X*(X - Y)}{X^{4} - 2*X^{3}*Y + 2*X*Y
- ^{3} - Y^{4}} \\
- zz := 1/(x**2 - y**2) + 1/(x-y)**2;
- & ZZ := \rfrac{2*X}{X^{3} - X^{2}*Y - X*Y^{2} +
- Y^{3}} \\
- on gcd; \\
- z; & \rfrac{2*X}{X^{3} - X^{2}*Y - X*Y^{2} + Y^{3}
- }
- \end{Examples}
- \begin{Comments}
- Note that \name{lcm} has effect only when rational expressions are first
- combined. It does not examine existing structures for simplifications on
- display. That is shown above when \IFTEX{$z$}{z} is entered with
- \name{lcm} off. It remains unsimplified even after \name{lcm} is turned
- back on. However, a new variable containing the same expression is
- simplified on entry. The switch \nameref{gcd} does examine existing
- structures, as shown in the last example line above.
- Full greatest common divisor calculations become expensive if work with
- large rational expressions is required. A considerable savings of time
- can be had if a full gcd check is made only when denominators are combined,
- and only a partial check for numerators. This is the effect of the \name{lcm}
- switch.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{LESSSPACE}
- \index{output}
- You can turn on the switch \name{lessspace} if you want fewer
- blank lines in your output.
- \end{Switch}
- \begin{Switch}{LIMITEDFACTORS}
- \index{factorize}\index{polynomial}
- To get limited factorization in cases where it is too expensive to use
- full multivariate polynomial factorization, the switch
- \name{limitedfactors} can be turned on. In that case, only ``inexpensive''
- factoring operations, such as square-free factorization, will be used
- when \nameref{factorize} is called.
- \begin{Examples}
- a := (y-x)^2*(y^3+2x*y+5)*(y^2-3x*y+7)$ \\
- factorize a; &
- \begin{multilineoutput}{7cm}
- \{ - X + Y,
- X - Y,
- 2*X*Y + Y^{3} + 5,
- 3*X*Y - Y^{2} - 7\}
- \end{multilineoutput} \\
- on limitedfactors; \\
- factorize a; &
- \begin{multilineoutput}{7cm}
- \{ - X + Y,
- X - Y,
- 6*X^{2}*Y^{2} + 3*X*Y^{4} - 2*X*Y^{3} + X*Y - Y^{5} - 7*Y^{3} - 5*Y^{2} - 35\}
- \end{multilineoutput}
- \end{Examples}
- \end{Switch}
- \begin{Switch}{LIST}
- The \name{list} switch causes REDUCE to print each term in any sum on
- separate lines.
- \begin{Examples}
- x**2*(y**2 + 2*y) + x*(y**2 + z)/(2*a);
- & \rfrac{X*(2*A*X*Y^{2} + 4*A*X*Y + Y^{2} +
- Z)}{2*A} \\
- on list; \\
- ws; &
- \begin{multilineoutput}{6cm}
- (X*(2*A*X*Y^{2}
- + 4*A*X*Y
- + Y^{2}
- + Z))/(2*A)
- \end{multilineoutput}
- \end{Examples}
- \end{Switch}
- \begin{Switch}{LISTARGS}
- \index{list}\index{argument}\index{operator}
- If an operator other than those specifically defined for lists is given a
- single argument that is a list, then the result of this operation will be
- a list in which that operator is applied to each element of the list.
- This process can be inhibited globally by turning on the switch
- \name{listargs}.
- \begin{Examples}
- log {a,b,c}; & {LOG(A),LOG(B),LOG(C)} \\
- on listargs; \\
- log {a,b,c}; & LOG({A,B,C})
- \end{Examples}
- \begin{Comments}
- It is possible to inhibit such distribution for a specific operator by
- using the declaration \nameref{listargp}. In addition, if an operator has
- more than one argument, no such distribution occurs, so \name{listargs}
- has no effect.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{MCD}
- \index{rational expression}
- When \name{mcd} is on, sums and differences of rational expressions are put
- on a common denominator. Default is \name{on}.
- \begin{Examples}
- a/(x+1) + b/5; & \rfrac{5*A + B*X + B}{5*(X + 1)} \\
- off mcd; \\
- a/(x+1) + b/5; & (X + 1)^{-1}*A + 1/5*B \\
- 1/6 + 1/7; & 13/42
- \end{Examples}
- \begin{Comments}
- Even with \name{mcd} off, rational expressions involving only numbers are still
- put over a common denominator.
- Turning \name{mcd} off is useful when explicit negative powers are needed,
- or if no greatest common divisor calculations are desired, or when
- differentiating complicated rational expressions. Results when \name{mcd}
- is off are no longer in canonical form, and expressions equivalent to zero
- may not simplify to 0. Some operations, such as factoring cannot be done
- while \name{mcd} is off. This option should therefore be used with some
- caution. Turning \name{mcd} off is most valuable in intermediate parts of
- a complicated calculation, and should be turned back on for the last stage.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{MODULAR}
- \index{modular}
- When \name{modular} is on, polynomial coefficients are reduced by the
- modulus set by \nameref{setmod}. If no modulus has been set, \name{modular}
- has no effect.
- \begin{Examples}
- setmod 2; & 1 \\
- on modular; \\
- (x+y)**2; & X^{2} + Y^{2} \\
- 145*x**2 + 20*x**3 + 17 + 15*x*y;
- & X^{2} + X*Y + 1
- \end{Examples}
- \begin{Comments}
- Modular operations are only conducted on the coefficients, not the
- exponents. The modulus is not restricted to being prime. When the modulus
- is prime, division by a number not relatively prime to the modulus results
- in a \meta{Zero divisor} error message. When the modulus is a composite
- number, division by a power of the modulus results in an error message, but
- division by an integer which is a factor of the modulus does not.
- The representation of modular number can be influenced by
- \nameref{balanced\_mod}.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{MSG}
- \index{output}
- When \name{msg} is off, the printing of warning messages is suppressed. Error
- messages are still printed.
- \begin{Comments}
- Warning messages include those about redimensioning an \nameref{array}
- or declaring an \nameref{operator} where one is expected.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{MULTIPLICITIES}
- \index{solve}
- When \nameref{solve} is applied to a set of equations with multiple roots,
- solution multiplicities are normally stored in the global variable
- \nameref{root\_multiplicities} rather than the solution list. If you want
- the multiplicities explicitly displayed, the switch \name{multiplicities}
- should be turned on. In this case, \name{root_multiplicities} has no value.
- \begin{Examples}
- solve(x^2=2x-1,x); & {X=1} \\
- root_multiplicities; & {2} \\
- on multiplicities; \\
- solve(x^2=2x-1,x); & {X=1,X=1} \\
- root_multiplicities; &
- \end{Examples}
- \end{Switch}
- \begin{Switch}{NAT}
- \index{output}
- When \name{nat} is on, output is printed to the screen in natural form, with
- raised exponents. \name{nat} should be turned off when outputting expressions
- to a file for future input. Default is \name{on}.
- \begin{Examples}
- (x + y)**3; & X^{3} + 3*X^{2}*Y + 3*X*Y^{2} + Y^{3} \\
- off nat; \\
- (x + y)**3; & X**3 + 3*X**2*Y + 3*X*Y**2 + Y**3\$ \\
- on fort; \\
- (x + y)**3; & ANS=X**3+3.*X**2*Y+3.*X*Y**2+Y**3
- \end{Examples}
- \begin{Comments}
- With \name{nat} off, a dollar sign is printed at the end of each expression.
- An output file written with \name{nat} off is ready to be read into REDUCE
- using the command \nameref{in}.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{NERO}
- \index{output}
- When \name{nero} is on, zero assignments (such as matrix elements) are not
- printed.
- \begin{Examples}
- matrix a;
- a := mat((1,0),(0,1)); & \begin{multilineoutput}{6cm}
- A(1,1) := 1
- A(1,2) := 0
- A(2,1) := 0
- A(2,2) := 1
- \end{multilineoutput}\\
- on nero; \\
- a; & \begin{multilineoutput}{6cm}
- MAT(1,1) := 1
- MAT(2,2) := 1
- \end{multilineoutput}\\
- a(1,2); & \explanationo{nothing is printed.} \\
- b := 0; & \explanationo{nothing is printed.} \\
- off nero; \\
- b := 0; & B := 0
- \end{Examples}
- \begin{Comments}
- \name{nero} is often used when dealing with large sparse matrices, to avoid
- being overloaded with zero assignments.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{NOARG}
- \index{output}\index{derivative}
- When \nameref{dfprint} is on, expressions in the differentiation operator
- \nameref{df} are printed in a more ``natural'' notation, with the
- differentiation variables appearing as subscripts. When \name{noarg}
- is on (the default), the arguments of the differentiated operator are also
- suppressed.
- \begin{Examples}
- operator f; \\
- df(f x,x); & DF(F(X),X); \\
- on dfprint; \\
- ws; & F_{X} \\
- off noarg; \\
- ws; & F(X)_{X}
- \end{Examples}
- \end{Switch}
- \begin{Switch}{NOLNR}
- \index{integration}
- When \name{nolnr} is on, the linear properties of the integration operator
- \nameref{int} are suppressed if the integral cannot be found in closed terms.
- \begin{Comments}
- REDUCE uses the linear properties of integration to attempt to break down
- an integral into manageable pieces. If an integral cannot be found in
- closed terms, these pieces are returned. When the \name{nolnr} switch is off,
- as many of the pieces as possible are integrated. When it is on, if any piece
- fails, the rest of them remain unevaluated.
- \end{Comments}
- \end{Switch}
- %\begin{Switch}{NORNDBF}
- %
- %***** To be added *****
- %
- %\end{Switch}
- \begin{Switch}{NOSPLIT}
- \index{output}
- Under normal circumstances, the printing routines try to break an expression
- across lines at a natural point. This is a fairly expensive process. If
- you are not overly concerned about where the end-of-line breaks come, you
- can speed up the printing of expressions by turning off the switch
- \name{nosplit}. This switch is normally on.
- \end{Switch}
- \begin{Switch}{NUMVAL}
- \index{rounded}
- With \nameref{rounded} on, elementary functions with numerical arguments
- will return a numerical answer where appropriate. If you wish to inhibit
- this evaluation, \name{numval} should be turned off. It is normally on.
- \begin{Examples}
- on rounded; \\
- cos 3.4; & - 0.966798192579 \\
- off numval; \\
- cos 3.4; & COS(3.4)
- \end{Examples}
- \end{Switch}
- \begin{Switch}{OUTPUT}
- \index{output}
- When \name{output} is off, no output is printed from any REDUCE calculation.
- The calculations have their usual effects other than printing. Default is
- \name{on}.
- \begin{Comments}
- Turn output \name{off} if you do not wish to see output when executing
- large files, or to save the time REDUCE spends formatting large expressions
- for display. Results are still available with \nameref{ws}, or in their
- assigned variables.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{OVERVIEW}
- \index{factorize}
- When \name{overview} is on, the amount of detail reported by the factorizer
- switches \nameref{trfac} and \nameref{trallfac} is reduced.
- \end{Switch}
- \begin{Switch}{PERIOD}
- \index{output}\index{integer}
- When \name{period} is on, periods are added after integers in
- Fortran-compatible output (when \nameref{fort} is on). There is no effect
- when \name{fort} is off. Default is \name{on}.
- \end{Switch}
- \begin{Switch}{PRECISE}
- \index{simplification}\index{square root}
- When the \name{precise} switch is on, simplification of roots of even
- powers returns absolute values, a more precise answer mathematically.
- Default is \name{on}.
- \begin{Examples}
- sqrt(x**2); & X \\
- (x**2)**(1/4); & SQRT(X) \\
- on precise; \\
- sqrt(x**2); & ABS(X) \\
- (x**2)**(1/4); & SQRT(ABS(X))
- \end{Examples}
- \begin{Comments}
- In many types of mathematical work, simplification of powers and surds can
- proceed by the fastest means of simplifying the exponents arithmetically.
- When it is important to you that the positive root be returned, turn
- \name{precise} on. One situation where this is important is when graphing
- square-root expressions such as \IFTEX{$\sqrt{x^2+y^2}$}{sqrt(x^2+y^2)} to
- avoid a spike caused by REDUCE simplifying
- \IFTEX{$\sqrt{y^2}$}{sqrt(y^2)} to \IFTEX{$y$}{y} when \IFTEX{$x$}{x} is
- zero.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{PRET}
- \index{output}
- When \name{pret} is on, input is printed in standard REDUCE format and then
- evaluated.
- \begin{Examples}
- on pret; \\
- (x+1)^3; &
- \begin{multilineoutput}{6cm}
- (x + 1)**3;
- X^{3} + 3*X^{2} + 3*X + 1
- \end{multilineoutput} \\
- \begin{multilineinput}
- procedure fac(n);
- if not (fixp(n) and n>=0)
- then rederr "Choose nonneg. integer only"
- else for i := 0:n-1 product i+1;
- \end{multilineinput} &
- \begin{multilineoutput}{8cm}
- procedure fac n;
- if not (fixp n and n>=0)
- then rederr "Choose nonneg. integer only"
- else for i := 0:n - 1 product i + 1;
- FAC
- \end{multilineoutput}\\
- fac 5; & \begin{multilineoutput}{6cm}
- fac 5;
- 120
- \end{multilineoutput}
- \end{Examples}
- \begin{Comments}
- Note that all input is converted to lower case except strings (which keep
- the same case) all operators with a single argument have had the
- parentheses removed, and all infix operators have had a space added on each
- side. In addition, syntactical constructs like
- \name{if}\ldots\name{then}\ldots\name{else} are printed in a standard format.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{PRI}
- \index{output}
- When \name{pri} is on, the declarations \nameref{order} and \nameref{factor} can
- be used, and the switches \nameref{allfac}, \nameref{div}, \nameref{rat},
- and \nameref{revpri} take effect when they are on. Default is \name{on}.
- \begin{Comments}
- Printing of expressions is faster with \name{pri} off. The expressions are
- then returned in one standard form, without any of the display options that
- can be used to feature or display various parts of the expression. You can
- also gain insight into REDUCE's representation of expressions with
- \name{pri} off.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{RAISE}
- \index{input}\index{character}
- When \name{raise} is on, lower case letters are automatically converted to
- upper case on input. \name{raise} is normally on.
- \begin{Comments}
- This conversion affects the internal representation of the letter, and is
- independent of the case with which a letter is printed, which is normally
- lower case.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{RAT}
- \index{output}
- When the \name{rat} switch is on, and kernels have been selected to display
- with the \nameref{factor} declaration, the denominator is printed with each
- term rather than one common denominator at the end of an expression.
- \begin{Examples}
- (x+1)/x + x**2/sin y;
- & \rfrac{SIN(Y)*X + SIN(Y) + X^{3}}{SIN(Y)*X} \
- \
- factor x; \\
- (x+1)/x + x**2/sin y;
- & \rfrac{X^{3} + X*SIN(Y) + SIN(Y)}{X*SIN(Y)} \
- \
- on rat; \\
- (x+1)/x + x**2/sin y;
- & \rfrac{X^{2}}{SIN(Y)} + 1 + X^{-1}
- \end{Examples}
- \begin{Comments}
- The \name{rat} switch only has effect when the \nameref{pri} switch is on.
- When \name{pri} is off, regardless of the setting of \name{rat}, the
- printing behavior is as if \name{rat} were off. \name{rat} only has
- effect upon the display of expressions, not their internal form.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{RATARG}
- \index{rational expression}\index{polynomial}
- When \name{ratarg} is on, rational expressions can be given to operators
- such as \nameref{coeff} and \nameref{lterm} that normally require
- polynomials in one of their arguments. When \name{ratarg} is off, rational
- expressions cause an error message.
- \begin{Examples}
- aa := x/y**2 + 1/x + y/x**2;
- & AA := \rfrac{X^{3} + X*Y^{2} + Y^{3}}{X^{2}*Y^{2}} \\
- coeff(aa,x); &
- ***** \rfrac{X^{3} + X*Y^{2} + Y^{3}}{X^{2}*Y^{2}} invalid as POLYNOMIAL\\
- on ratarg; \\
- coeff(aa,x);
- & \{\rfrac{Y}{X^{2}},\rfrac{1}{X^{2}},0,\rfrac{1}{X^{2}*Y^{2}}\}
- \end{Examples}
- \end{Switch}
- \begin{Switch}{RATIONAL}
- \index{rational expression}\index{polynomial}
- When \name{rational} is on, polynomial expressions with rational coefficients
- are produced.
- \begin{Examples}
- x/2 + 3*y/4; & \rfrac{2*X + 3*Y}{4} \\
- (x**2 + 5*x + 17)/2; & \rfrac{X^{2} + 5*X + 17}{2} \\
- on rational; \\
- x/2 + 3y/4; & \rfrac{1}{2}*(X + \rfrac{3}{2}*Y) \\
- (x**2 + 5*x + 17)/2; & \rfrac{1}{2}*(X^{2} + 5*X + 17)
- \end{Examples}
- \begin{Comments}
- By using \name{rational}, polynomial expressions with rational
- coefficients can be used in some commands that expect polynomials. With
- \name{rational} off, such a polynomial becomes a rational expression, with
- denominator the least common multiple of the denominators of the rational
- number coefficients. % The \nameref{factorize} command does not accept
- % polynomials with rational coefficients.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{RATIONALIZE}
- \index{rational expression}\index{simplification}\index{complex}
- When the \name{rationalize} switch is on, denominators of rational expressions
- that contain complex numbers or root expressions are simplified by
- multiplication by their conjugates.
- \begin{Examples}
- qq := (1+sqrt(3))/(sqrt(3)-7); & QQ := \rfrac{SQRT(3) + 1}{SQRT(3) - 7} \\
- on rationalize; \\
- qq; & \rfrac{- 4*SQRT(3) - 5}{23} \\
- 2/(4 + 6**(1/3)); & \rfrac{6^{2/3} - 4*6^{1/3} + 16}{35} \\
- (i-1)/(i+3); & \rfrac{2*I - 1}{5} \\
- off rationalize; \\
- (i-1)/(i+3); & \rfrac{I - 1}{I + 3}
- \end{Examples}
- \end{Switch}
- \begin{Switch}{RATPRI}
- \index{output}\index{rational expression}
- When the \name{ratpri} switch is on, rational expressions and fractions are
- printed as two lines separated by a fraction bar, rather than in a linear
- style. Default is \name{on}.
- \begin{Examples}
- 3/17; & \rfrac{3}{17} \\
- 2/b + 3/y; & \rfrac{3*B + 2*Y}{B*Y} \\
- off ratpri; \\
- 3/17; & 3/17 \\
- 2/b + 3/y; & (3*B + 2*Y)/(B*Y)
- \end{Examples}
- \end{Switch}
- \begin{Switch}{REVPRI}
- \index{output}
- When the \name{revpri} switch is on, terms are printed in reverse order from
- the normal printing order.
- \begin{Examples}
- x**5 + x**2 + 18 + sqrt(y); & SQRT(Y) + X^{5} + X^{2} + 18 \\
- a + b + c + w; & A + B + C + W \\
- on revpri; \\
- x**5 + x**2 + 18 + sqrt(y); & 17 + X^{2} + X^{5} + SQRT(Y) \\
- a + b + c + w; & W + C + B + A
- \end{Examples}
- \begin{Comments}
- Turn \name{revpri} on when you want to display a polynomial in ascending
- rather than descending order.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{RLISP88}
- \index{lisp}
- Rlisp '88 is a superset of the Rlisp that has been traditionally used for
- the support of REDUCE. It is fully documented in the book Marti, J.B.,
- ``{RLISP} '88: An Evolutionary Approach to Program Design and Reuse'',
- World Scientific, Singapore (1993). It supports different looping
- constructs from the traditional Rlisp, and treats ``-'' as a letter unless
- separated by spaces. Turning on the switch \name{rlisp88} converts to
- Rlisp '88 parsing conventions in symbolic mode, and enables the use of
- Rlisp '88 extensions. Turning off the switch reverts to the traditional
- Rlisp and the previous mode ( (\nameref{symbolic} or \nameref{algebraic})
- in force before \name{rlisp88} was turned on.
- \end{Switch}
- \begin{Switch}{ROUNDALL}
- \index{rounded}\index{rational expression}\index{floating point}
- In \nameref{rounded} mode, rational numbers are normally converted to a
- floating point representation. If \name{roundall} is off, this conversion
- does not occur. \name{roundall} is normally \name{on}.
- \begin{Examples}
- on rounded; \\
- 1/2; & 0.5 \\
- off roundall; \\
- 1/2; \rfrac{1}{2}
- \end{Examples}
- \end{Switch}
- \begin{Switch}{ROUNDBF}
- When \nameref{rounded} is on, the normal defaults cause underflows to be
- converted to zero. If you really want the small number that results in
- such cases, \name{roundbf} can be turned on.
- \begin{Examples}
- on rounded; \\
- exp(-100000.1^2); & 0 \\
- on roundbf; \\
- exp(-100000.1^2); & 1.18441281937E-4342953505
- \end{Examples}
- \begin{Comments}
- If a polynomial is input in \nameref{rounded} mode at the default
- precision into any \nameref{roots} function, and it is not possible to
- represent any of the coefficients of the polynomial precisely in the
- system floating point representation, the switch \name{roundbf} will be
- automatically turned on. All rounded computation will use the internal
- bigfloat representation until the user subsequently turns \name{roundbf}
- off. (A message is output to indicate that this condition is in effect.)
- \end{Comments}
- \end{Switch}
- \begin{Switch}{ROUNDED}
- \index{floating point}
- When \name{rounded} is on, floating-point arithmetic is enabled, with
- precision initially at a system default value, which is usually 12 digits.
- The precise number can be found by the command \nameref{precision}(0).
- \begin{Examples}
- pi; & PI \\
- 35/217; & \rfrac{5}{31} \\
- on rounded; \\
- pi; & 3.14159265359 \\
- 35/217; & 0.161 \\
- sqrt(3); & 1.73205080756
- \end{Examples}
- \begin{Comments}
- If more than the default number of decimal places are required, use the
- \nameref{precision} command to set the required number.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{SAVESTRUCTR}
- \index{STRUCTR OPERATOR}
- When \name{savestructr} is on, results of the \nameref{structr} command are
- returned as a list whose first element is the representation for the
- expression and the remaining elements are equations showing the
- relationships of the generated variables.
- \begin{Examples}
- off exp; \\
- structr((x+y)^3 + sin(x)^2); &
- \begin{multilineoutput}{6cm}
- ANS3
- where
- ANS3 := ANS1^{3} + ANS2^{2}
- ANS2 := SIN(X)
- ANS1 := X + Y
- \end{multilineoutput}\\
- ans3; & ANS3 \\
- on savestructr; \\
- structr((x+y)^{3} + sin(x)^{2}); &
- {ANS3,ANS3=ANS1^{3} + ANS2^{2},ANS2=SIN(X),ANS1=X + Y} \\
- ans3 where rest ws; &
- (X + Y)^{3} + SIN(X)^{2}
- \end{Examples}
- \begin{Comments}
- In normal operation, \nameref{structr} is only a display command. With
- \name{savestructr} on, you can access the various parts of the expression
- produced by \name{structr}.
- The generic system names use the stem \name{ANS}. You can change this to your
- own stem by the command \nameref{varname}. REDUCE adds integers to this stem
- to make unique identifiers.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{SOLVESINGULAR}
- \index{solve}
- When \name{solvesingular} is on, singular or underdetermined systems of
- linear equations are solved, using arbitrary real, complex or integer
- variables in the answer. Default is \name{on}.
- \begin{Examples}
- solve({2x + y,4x + 2y},{x,y}); &
- \{\{X= - \rfrac{ARBCOMPLEX(1)}{2},Y=ARBCOMPLEX(1)\}\} \\
- solve({7x + 15y - z,x - y - z},{x,y,z}); &
- \begin{multilineoutput}{6cm}
- \{\{X=\rfrac{8*ARBCOMPLEX(3)}{11}
- Y= - \rfrac{3*ARBCOMPLEX(3)}{11}
- Z=ARBCOMPLEX(3)\}\}
- \end{multilineoutput}\\
- off solvesingular; \\
- solve({2x + y,4x + 2y},{x,y}); &
- ***** SOLVE given singular equations \\
- solve({7x + 15y - z,x - y - z},{x,y,z}); &
- ***** SOLVE given singular equations
- \end{Examples}
- \begin{Comments}
- The integer following the identifier \nameref{arbcomplex} above is assigned by
- the system, and serves to identify the variable uniquely. It has no other
- significance.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{TIME}
- \index{time}
- When \name{time} is on, the system time used in executing each REDUCE
- statement is printed after the answer is printed.
- \begin{Examples}
- on time; & Time: 4940 ms \\
- df(sin(x**2 + y),y); &
- \begin{multilineoutput}{6cm}
- COS(X + Y^{2})
- Time: 180 ms
- \end{multilineoutput}\\
- solve(x**2 - 6*y,x); &
- \begin{multilineoutput}{6cm}
- \{X= - SQRT(Y)*SQRT(6),
- X=SQRT(Y)*SQRT(6)\}
- Time: 320 ms
- \end{multilineoutput}
- \end{Examples}
- \begin{Comments}
- When \name{time} is first turned on, the time since the beginning of the
- REDUCE session is printed. After that, the time used in computation,
- (usually in milliseconds, though this is system dependent) is printed after
- the results of each command. Idle time or time spent typing in commands is
- not counted. If \name{time} is turned off, the first reading after it is
- turned on again gives the time elapsed since it was turned off. The time
- printed is CPU or wall clock time, depending on the system.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{TRALLFAC}
- \index{factorize}
- When \name{trallfac} is on, a more detailed trace of factorizer calls is
- generated.
- \begin{Comments}
- The \name{trallfac} switch takes precedence over \nameref{trfac} if they are
- both on. \name{trfac} gives a factorization trace with less detail in it.
- When the \nameref{factor} switch is on also, all input polynomials are sent to
- the factorizer automatically and trace information is generated. The
- \nameref{out} command saves the results of the factoring, but not the trace.
- % You need to use the \name{dribble} command to save the trace text to a file.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{TRFAC}
- \index{factorize}
- When \name{trfac} is on, a narrative trace of any calls to the factorizer is
- generated. Default is \name{off}.
- \begin{Comments}
- When the switch \nameref{factor} is on, and \name{trfac} is on, every input
- polynomial is sent to the factorizer, and a trace generated. With
- \name{factor} off, only polynomials that are explicitly factored with the
- command \nameref{factorize} generate trace information.
- % Use the \name{dribble} or \name{logfile} command to save the trace text to
- % a file.
- The \nameref{out} command saves the results of the factoring, but not
- the trace. The \nameref{trallfac} switch gives trace information to a
- greater level of detail.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{TRIGFORM}
- \index{solve}\index{polynomial}
- When \nameref{fullroots} is on, \nameref{solve} will compute the
- roots of a cubic or quartic polynomial is closed form. When
- \name{trigform} is on, the roots will be expressed by trigonometric
- forms. Otherwise nested surds are used. Default is \name{on}.
- \end{Switch}
- \begin{Switch}{TRINT}
- \index{integration}
- When \name{trint} is on, a narrative tracing various steps in the
- integration process is produced.
- \begin{Comments}
- %Use the \name{dribble} or \name{logfile} command to save this text to a file.
- The \nameref{out} command saves the results of the integration, but not the
- trace.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{TRNONLNR}
- \index{solve}
- When \name{trnonlnr} is on, a narrative tracing various steps in
- the process for solving non-linear equations is produced.
- \begin{Comments}
- \name{trnonlnr} can only be used after the solve package has been loaded
- (e.g., by an explicit call of \nameref{load\_package}). The \nameref{out}
- command saves the results of the equation solving, but not the trace.
- \end{Comments}
- \end{Switch}
- \begin{Switch}{VAROPT}
- \index{solve}
- When \name{varopt} is on, the sequence of variables is optimized by
- \nameref{solve} with respect to execution speed. Otherwise, the sequence
- given in the call to \nameref{solve} is preserved. Default is \name{on}.
- In combination with the switch \nameref{arbvars}, \name{varopt} can be used
- to control variable elimination.
- \begin{Examples}
- off arbvars; \\
- solve({x+2z,x-3y},{x,y,z}); &
- \{\{y=\rfrac{x}{3},z= - \rfrac{x}{2}\}\} \\
- solve({x*y=1,z=x},{x,y,z}); &
- \{\{z=x,y=\rfrac{1}{x}\}\} \\
- off varopt; \\
- solve({x+2z,x-3y},{x,y,z}); &
- \{\{x= - 2*z,y= - \rfrac{2*z}{3}\}\} \\
- solve({x*y=1,z=x},{x,y,z}); &
- \{\{y=\rfrac{1}{z},x=z\}\} \\
- \end{Examples}
- \end{Switch}
|