1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714 |
- \section{Algebraic Operators}
- \begin{Operator}{APPEND}
- \index{list}
- The \name{append} operator constructs a new \nameref{list}
- from the elements of its two arguments (which must be lists).
- \begin{Syntax}
- \name{append}\(\meta{list},\meta{list}\)
- \end{Syntax}
- \meta{list} must be a list, though it may be the empty list (\name{\{\}}).
- Any arguments beyond the first two are ignored.
- \begin{Examples}
- alist := \{1,2,\{a,b\}\}; & ALIST := \{1,2,\{A,B\}\} \\
- blist := \{3,4,5,sin(y)\}; & BLIST := \{3,4,5,SIN(Y)\} \\
- append(alist,blist); & \{1,2,\{A,B\},3,4,5,SIN(Y)\} \\
- append(alist,\{\}); & \{1,2,\{A,B\}\} \\
- append(list z,blist); & \{Z,3,4,5,SIN(Y)\}
- \end{Examples}
- \begin{Comments}
- The new list consists of the elements of the second list appended to the
- elements of the first list. You can \name{append} new elements to the
- beginning or end of an existing list by putting the new element in a
- list (use curly braces or the operator \name{list}). This is
- particularly helpful in an iterative loop.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ARBINT}
- \index{arbitrary value}
- The operator \name{arbint} is used to express arbitrary integer parts
- of an expression, e.g. in the result of \nameref{solve} when
- \nameref{allbranch} is on.
- \begin{Examples}
- solve(log(sin(x+3)),x); &
- \begin{multilineoutput}{6cm}
- \{X=2*ARBINT(1)*PI - ASIN(1) - 3,
- X=2*ARBINT(1)*PI + ASIN(1) + PI - 3\}
- \end{multilineoutput}
- \end{Examples}
- \end{Operator}
- \begin{Operator}{ARBCOMPLEX}
- \index{arbitrary value}
- The operator \name{arbcomplex} is used to express arbitrary scalar parts
- of an expression, e.g. in the result of \nameref{solve} when
- the solution is parametric in one of the variable.
- \begin{Examples}
- solve({x+3=y-2z,y-3x=0},{x,y,z}); &
- \begin{multilineoutput}{6cm}
- \{X=\rfrac{2*ARBCOMPLEX(1) + 3}{2},
- Y=\rfrac{3*ARBCOMPLEX(1) + 3}{2},
- Z=ARBCOMPLEX(1)\}
- \end{multilineoutput}
- \end{Examples}
- \end{Operator}
- \begin{Operator}{ARGLENGTH}
- \index{argument}
- The operator \name{arglength} returns the number of arguments of the top-level
- operator in its argument.
- \begin{Syntax}
- \name{arglength}\(\meta{expression}\)
- \end{Syntax}
- \meta{expression} can be any valid REDUCE algebraic expression.
- \begin{Examples}
- arglength(a + b + c + d); & 4 \\
- arglength(a/b/c); & 2 \\
- arglength(log(sin(df(r**3*x,x)))); & 1
- \end{Examples}
- \begin{Comments}
- In the first example, \name{+} is an n-ary operator, so the number of terms
- is returned. In the second example, since \name{/} is a binary operator, the
- argument is actually (a/b)/c, so there are two terms at the top level. In
- the last example, no matter how deeply the operators are nested, there is
- still only one argument at the top level.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{COEFF}
- \index{coefficient}
- The \name{coeff} operator returns the coefficients of the powers of the
- specified variable in the given expression, in a \nameref{list}.
- \begin{Syntax}
- \name{coeff}\(\meta{expression}\name{,}\meta{variable}\)
- \end{Syntax}
- \meta{expression} is expected to be a polynomial expression, not a rational
- expression. Rational expressions are accepted when the switch
- \nameref{ratarg} is on. \meta{variable} must be a kernel. The results are
- returned in a list.
- \begin{Examples}
- coeff((x+y)**3,x); & \{Y^{3} ,3*Y^{2} ,3*Y,1\} \\
- coeff((x+2)**4 + sin(x),x); & \{SIN(X) + 16,32,24,8,1\} \\
- high_pow; & 4 \\
- low_pow; & 0 \\
- ab := x**9 + sin(x)*x**7 + sqrt(y);
- & AB := SQRT(Y) + SIN(X)*X^{7} + X^{9}\\
- coeff(ab,x); & \{SQRT(Y),0,0,0,0,0,0,SIN(X),0,1\}
- \end{Examples}
- \begin{Comments}
- The variables \nameref{high\_pow} and \nameref{low\_pow} are set to the
- highest and lowest powers of the variable, respectively, appearing in the
- expression.
- The coefficients are put into a list, with the coefficient of the lowest
- (constant) term first. You can use the usual list access methods
- (\name{first}, \name{second}, \name{third}, \name{rest}, \name{length}, and
- \name{part}) to extract them. If a power does not appear in the
- expression, the corresponding element of the list is zero. Terms involving
- functions of the specified variable but not including powers of it (for
- example in the expression \name{x**4 + 3*x**2 + tan(x)}) are placed in the
- constant term.
- Since the \name{coeff} command deals with the expanded form of the expression,
- you may get unexpected results when \nameref{exp} is off, or when
- \nameref{factor} or \nameref{ifactor} are on.
- If you want only a specific coefficient rather than all of them, use the
- \nameref{coeffn} operator.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{COEFFN}
- \index{coefficient}
- The \name{coeffn} operator takes three arguments: an expression, a kernel, and
- a non-negative integer. It returns the coefficient of the kernel to that
- integer power, appearing in the expression.
- \begin{Syntax}
- \name{coeffn}\(\meta{expression},\meta{kernel},\meta{integer}\)
- \end{Syntax}
- \meta{expression} must be a polynomial, unless \nameref{ratarg} is on which
- allows rational expressions. \meta{kernel} must be a kernel, and
- \meta{integer} must be a non-negative integer.
- \begin{Examples}
- ff := x**7 + sin(y)*x**5 + y**4 + x + 7; &
- FF := SIN(Y)*X^{5} + X^{7} + X + Y^{4} + 7 \\
- coeffn(ff,x,5); & SIN(Y) \\
- coeffn(ff,z,3); & 0 \\
- coeffn(ff,y,0); & SIN(Y)*X^{5} + X^{7} + X + 7 \\
- rr := 1/y**2+y**3+sin(y); &
- RR := \rfrac{SIN(Y)*Y^{2} + Y^{5} + 1}{Y^{2}} \\
- on ratarg; \\
- coeffn(rr,y,-2); & ***** -2 invalid as COEFFN index \\
- coeffn(rr,y,5); & \rfrac{1}{Y^{2}}\\
-
- \end{Examples}
- \begin{Comments}
- If the given power of the kernel does not appear in the expression,
- \name{coeffn} returns 0. Negative powers are never detected, even if
- they appear in the expression and \nameref{ratarg} are on. \name{coeffn}
- with an integer argument of 0 returns any terms in the expression that
- do {\em not} contain the given kernel.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{CONJ}
- \index{conjugate}\index{complex}
- \begin{Syntax}
- \name{conj}\(\meta{expression}\) or \name{conj} \meta{simple\_expression}
- \end{Syntax}
- This operator returns the complex conjugate of an expression, if that
- argument has an numerical value. A non-numerical argument is returned as
- an expression in the operators \nameref{repart} and \nameref{impart}.
- \begin{Examples}
- conj(1+i); & 1-I \\
- conj(a+i*b); & REPART(A) - REPART(B)*I - IMPART(A)*I - IMPART(B)
- \end{Examples}
- \end{Operator}
- \begin{Operator}{CONTINUED_FRACTION}
- \index{approximation}\index{rational numbers}
- \begin{Syntax}
- \name{continued\_fraction}\(\meta{num}\)
- or \name{continued\_fraction}\( \meta{num},\meta{size}\)
- \end{Syntax}
- This operator approximates the real number \meta{num}
- ( \nameref{rational} number, \nameref{rounded} number)
- into a continued fraction. The result is a list of two elements: the
- first one is the rational value of the approximation, the second one
- is the list of terms of the continued fraction which represents the
- same value according to the definition \name{t0 +1/(t1 + 1/(t2 + ...))}.
- Precision: the second optional parameter \meta{size} is an upper bound
- for the absolute value of the result denominator. If omitted, the
- approximation is performed up to the current system precision.
- \begin{Examples}
- continued_fraction pi;
- & \{\rfrac{1146408},{364913},\{3,7,15,1,292,1,1,1,2,1\}\} \\
- continued_fraction(pi,100);
- & \{\rfrac{22},{7},\{3,7\}\} \\
- \end{Examples}
- \end{Operator}
- \begin{Operator}{DECOMPOSE}
- \index{decomposition}\index{polynomial}
- The \name{decompose} operator takes a multivariate polynomial as argument,
- and returns an expression and a \nameref{list} of
- \nameref{equation}s from which the
- original polynomial can be found by composition.
- \begin{Syntax}
- \name{decompose}\(\meta{expression}\) or \name{decompose}
- \meta{simple\_expression}
- \end{Syntax}
- \begin{Examples}
- \begin{multilineinput}
- decompose(x^8-88*x^7+2924*x^6-43912*x^5+263431*x^4-
- 218900*x^3+65690*x^2-7700*x+234)
- \end{multilineinput}
- & {U^{2} + 35*U + 234, U=V^{2} + 10*V, V=X^{2} - 22*X} \\
- decompose(u^2+v^2+2u*v+1) & {W^{2} + 1, W=U + V}
- \end{Examples}
- \begin{Comments}
- Unlike factorization, this decomposition is not unique. Further
- details can be found in V.S. Alagar, M.Tanh, \meta{Fast Polynomial
- Decomposition}, Proc. EUROCAL 1985, pp 150-153 (Springer) and J. von zur
- Gathen, \meta{Functional}
- \meta{Decomposition of Polynomials: the Tame Case}, J.
- Symbolic Computation (1990) 9, 281-299.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{DEG}
- \index{degree}\index{polynomial}
- The operator \name{deg} returns the highest degree of its variable argument
- found in its expression argument.
- \begin{Syntax}
- \name{deg}\(\meta{expression},\meta{kernel}\)
- \end{Syntax}
- \meta{expression} is expected to be a polynomial expression, not a rational
- expression. Rational expressions are accepted when the switch
- \nameref{ratarg} is on. \meta{variable} must be a \nameref{kernel}. The
- results are returned in a list.
- \begin{Examples}
- deg((x+y)**5,x); & 5 \\
- deg((a+b)*(c+2*d)**2,d); & 2 \\
- deg(x**2 + cos(y),sin(x)); \\
- deg((x**2 + sin(x))**5,sin(x)); & 5
- \end{Examples}
- \end{Operator}
- \begin{Operator}{DEN}
- \index{denominator}\index{rational expression}
- The \name{den} operator returns the denominator of its argument.
- \begin{Syntax}
- \name{den}\(\meta{expression}\)
- \end{Syntax}
- \meta{expression} is ordinarily a rational expression, but may be any valid
- scalar REDUCE expression.
- \begin{Examples}
- a := x**3 + 3*x**2 + 12*x; & A := X*(X^{2} + 3*X + 12) \\
- b := 4*x*y + x*sin(x); & B := X*(SIN(X) + 4*Y) \\
- den(a/b); & SIN(X) + 4*Y \\
- den(aa/4 + bb/5); & 20 \\
- den(100/6); & 3 \\
- den(sin(x)); & 1
- \end{Examples}
- \begin{Comments}
- \name{den} returns the denominator of the expression after it has been
- simplified by REDUCE. As seen in the examples, this includes putting
- sums of rational expressions over a common denominator, and reducing
- common factors where possible. If the expression does not have any
- other denominator, 1 is returned.
- Switch settings, such as \nameref{mcd} or \nameref{rational}, have an
- effect on the denominator of an expression.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{DF}
- \index{derivative}\index{partial derivative}
- The \name{df} operator finds partial derivatives with respect to one or
- more variables.
- \begin{TEX}
- \begin{Syntax}
- \name{df}\(\meta{expression}\name{,}\meta{var}
- \&optional\(\name{,}\meta{number}\)
- \{\name{,}\meta{var}\&option\(\name{,}\meta{number}\)\}\optional\)
- \end{Syntax}
- \end{TEX}
- \begin{INFO}{
- \begin{Syntax}
- \name{df}\(\meta{expression}\name{,}\meta{var}
- [\name{,}\meta{number}\]
- \{\name{,}\meta{var} [ \name{,}\meta{number}] \} \)
- \end{Syntax}
- }\end{INFO}
- \meta{expression} can be any valid REDUCE algebraic expression. \meta{var}
- must be a \nameref{kernel}, and is the differentiation variable.
- \meta{number} must be a non-negative integer.
- \begin{Examples}
- df(x**2,x); & 2*X \\
- df(x**2*y + sin(y),y); & COS(Y) + X^{2} \\
- df((x+y)**10,z); & 0 \\
- df(1/x**2,x,2); & \rfrac{6}{X^{4}}\\
- df(x**4*y + sin(y),y,x,3); & 24*X \\
- for all x let df(tan(x),x) = sec(x)**2; \\
- df(tan(3*x),x); & 3*SEC(3*X)^{2}
- \end{Examples}
- \begin{Comments}
- An error message results if a non-kernel is entered as a differentiation
- operator. If the optional number is omitted, it is assumed to be 1.
- See the declaration \nameref{depend} to establish dependencies for implicit
- differentiation.
- You can define your own differentiation rules, expanding REDUCE's
- capabilities, using the \nameref{let} command as shown in the last example
- above. Note that once you add your own rule for differentiating a
- function, it supersedes REDUCE's normal handling of that function for the
- duration of the REDUCE session. If you clear the rule
- (\nameref{clearrules}), you don't get back
- to the previous rule.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{EXPAND\_CASES}
- \index{solve}
- When a \nameref{root\_of} form in a result of \nameref{solve}
- has been converted to a \nameref{one\_of} form, \name{expand\_cases}
- can be used to convert this into form corresponding to the
- normal explicit results of \nameref{solve}. See \nameref{root\_of}.
- \end{Operator}
- \begin{Operator}{EXPREAD}
- \index{input}
- \begin{Syntax}
- \name{expread}\(\)
- \end{Syntax}
- \name{expread} reads one well-formed expression from the current input
- buffer and returns its value.
- \begin{Examples}
- expread(); a+b; & A + B
- \end{Examples}
- \end{Operator}
- \begin{Operator}{FACTORIZE}
- \index{factorize}\index{polynomial}
- The \name{factorize} operator factors a given expression.
- \begin{Syntax}
- \name{factorize}\(\meta{expression}\)
- \end{Syntax}
- \meta{expression} should be a polynomial, otherwise an error will result.
- \begin{Examples}
- fff := factorize(x^3 - y^3); &
- \{X - Y,X^{2} + X*Y + Y^{2}\} \\
- fac1 := first fff; & FAC1 := X - Y \\
- factorize(x^15 - 1); &
- \begin{multilineoutput}{5cm}
- \{X - 1,
- X^{2} + X + 1,
- X^{4} + X^{3} + X^{2} + X + 1,
- X^{8} - X^{7} + X^{6} - X^{5} + X^{4} - X + 1\}
- \end{multilineoutput}\\
- lastone := part(ws,length ws); &
- LASTONE := X^{8} - X^{7} + X^{6} - X^{5} + X^{4} - X + 1 \\
- setmod 2; & 1 \\
- on modular; \\
- factorize(x^15 - 1); &
- \begin{multilineoutput}{5cm}
- \{X + 1,
- X^{2} + X + 1,
- X^{4} + X + 1,
- X^{4} + X^{3} + 1,
- X^{4} + X^{3} + X^{2} + X + 1\}
- \end{multilineoutput}
- \end{Examples}
- \begin{Comments}
- The \name{factorize} command returns the factors it finds as a \nameref{list}.
- You can therefore use the usual list access methods (\nameref{first},
- \nameref{second}, \nameref{third}, \nameref{rest}, \nameref{length} and
- \nameref{part}) to extract the factors.
- If the \meta{expression} given to \name{factorize} is an integer, it will be
- factored into its prime components. To factor any integer factor of a
- non-numerical expression, the switch \nameref{ifactor} should be turned on.
- Its default is off. \nameref{ifactor} has effect only when factoring is
- explicitly done by \name{factorize}, not when factoring is automatically
- done with the \nameref{factor} switch. If full factorization is not
- needed the switch \nameref{limitedfactors} allows you to reduce the
- computing time of calls to \name{factorize}.
- Factoring can be done in a modular domain by calling \name{factorize} when
- \nameref{modular} is on. You can set the modulus with the \nameref{setmod}
- command. The last example above shows factoring modulo 2.
- For general comments on factoring, see comments under the switch
- \nameref{factor}.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{HYPOT}
- \begin{Syntax}
- hypot(\meta{expression},\meta{expression})
- \end{Syntax}
- If \name{rounded} is on, and the two arguments evaluate to numbers, this
- operator returns the square root of the sums of the squares of the
- arguments in a manner that avoids intermediate overflow. In other cases,
- an expression in the original operator is returned.
- \begin{Examples}
- hypot(3,4); & HYPOT(3,4) \\
- on rounded; \\
- ws; & 5.0 \\
- hypot(a,b); & HYPOT(A,B)
- \end{Examples}
- \end{Operator}
- \begin{Operator}{IMPART}
- \index{imaginary part}\index{complex}
- \begin{Syntax}
- \name{impart}\(\meta{expression}\) or \name{impart} \meta{simple\_expression}
- \end{Syntax}
- This operator returns the imaginary part of an expression, if that
- argument has an numerical value. A non-numerical argument is returned as
- an expression in the operators \nameref{repart} and \name{impart}.
- \begin{Examples}
- impart(1+i); & 1 \\
- impart(a+i*b); & REPART(B) + IMPART(A)
- \end{Examples}
- \end{Operator}
- \begin{Operator}{INT}
- \index{integration}
- The \name{int} operator performs analytic integration on a variety of
- functions.
- \begin{Syntax}
- \name{int}\(\meta{expression},\meta{kernel}\)
- \end{Syntax}
- \meta{expression} can be any scalar expression. involving polynomials, log
- functions, exponential functions, or tangent or arctangent expressions.
- \name{int} attempts expressions involving error functions, dilogarithms
- and other trigonometric expressions. Integrals involving algebraic
- extensions (such as square roots) may not succeed. \meta{kernel} must be a
- REDUCE \nameref{kernel}.
- \begin{Examples}
- int(x**3 + 3,x); & \rfrac{X*(X^{3} + 12)}{4} \\\\
- int(sin(x)*exp(2*x),x);
- & - \rfrac{E^{2*X}*(COS(X) - 2*SIN(X))}{5} \\
- int(1/(x^2-2),x);
- & \rfrac{SQRT(2)*(LOG( - SQRT(2) + X) - LOG(SQRT(2) + X))}{4} \\
- int(sin(x)/(4 + cos(x)**2),x);
- & - \rfrac{ATAN(\rfrac{COS(X)}{2})}{2} \\\\
- int(1/sqrt(x^2-x),x); & INT(\rfrac{SQRT(X)*SQRT(X - 1)}{X^{2}-X},X)
- \end{Examples}
- \begin{Comments}
- Note that REDUCE couldn't handle the last integral with its default
- integrator, since the integrand involves a square root. However,
- the integral can be found using the \nameref{algint} package.
- Alternatively, you could add a rule using the \nameref{let} statement
- to evaluate this integral.
- The arbitrary constant of integration is not shown. Definite integrals can
- be found by evaluating the result at the limits of integration (use
- \nameref{rounded}) and subtracting the lower from the higher. Evaluation can
- be easily done by the \nameref{sub} operator.
- When \name{int} cannot find an integral it returns an expression
- involving formal \name{int} expressions unless the switch
- \nameref{failhard} has been set. If not all of the expression
- can be integrated, the switch \nameref{nolnr} controls whether a partially
- integrated result should be returned or not.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{INTERPOL}
- \index{interpolation}\index{polynomial}\index{approximation}
- \name{interpol} generates an interpolation polynomial.
- \begin{Syntax}
- interpol(\meta{values},\meta{variable},\meta{points})
- \end{Syntax}
- \meta{values} and \meta{points} are \nameref{list}s of equal length and
- \meta{variable} is an algebraic expression (preferably a \nameref{kernel}).
- The interpolation polynomial is generated in the given variable of degree
- length(\meta{values})-1. The unique polynomial \name{f} is defined by the
- property that for corresponding elements \name{v} of \meta{values} and
- \name{p} of \meta{points} the relation \name{f(p)=v} holds.
- \begin{Examples}
- f := for i:=1:4 collect(i**3-1); & F := {0,7,26,63} \\
- p := {1,2,3,4}; & P := {1,2,3,4} \\
- interpol(f,x,p); & X^{3} - 1
- \end{Examples}
- \begin{Comments}
- The Aitken-Neville interpolation algorithm is used which guarantees a
- stable result even with rounded numbers and an ill-conditioned problem.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{LCOF}
- \index{coefficient}\index{polynomial}
- The \name{lcof} operator returns the leading coefficient of a given expression
- with respect to a given variable.
- \begin{Syntax}
- \name{lcof}\(\meta{expression},\meta{kernel}\)
- \end{Syntax}
- \meta{expression} is ordinarily a polynomial. If \nameref{ratarg} is on,
- a rational expression may also be used, otherwise an error results.
- \meta{kernel} must be a \nameref{kernel}.
- \begin{Examples}
- lcof((x+2*y)**5,y); & 32 \\
- lcof((x + y*sin(x))**2 + cos(x)*sin(x)**2,sin(x));
- & COS(X)^{2} + Y \\
- lcof(x**2 + 3*x + 17,y); & X^{2} + 3*X + 17
- \end{Examples}
- \begin{Comments}
- If the kernel does not appear in the expression, \name{lcof} returns the
- expression.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{LENGTH}
- \index{list}
- The \name{length} operator returns the number of items in a \nameref{list}, the
- number of
- terms in an expression, or the dimensions of an array or matrix.
- \begin{Syntax}
- \name{length}\(\meta{expr}\) or \name{length} \meta{expr}
- \end{Syntax}
- \meta{expr} can be a list structure, an array, a matrix, or a scalar expression.
- \begin{Examples}
- alist := \{a,b,\{ww,xx,yy,zz\}\}; &
- ALIST := \{A,B,\{WW,XX,YY,ZZ\}\} \\
- length alist; & 3 \\
- length third alist; & 4 \\
- dlist := \{d\}; & DLIST := \{D\} \\
- length rest dlist; & 0 \\
- matrix mmm(4,5); \\
- length mmm; & \{4,5\} \\
- array aaa(5,3,2); \\
- length aaa; & \{6,4,3\} \\
- eex := (x+3)**2/(x-y); & EEX := \rfrac{X^{2} + 6*X + 9}{X - Y} \\
- length eex; & 5
- \end{Examples}
- \begin{Comments}
- An item in a list that is itself a list only counts as one item. An error
- message will be printed if \name{length} is called on a matrix which has
- not had its dimensions set. The \name{length} of an array includes the
- zeroth element of each dimension, showing the full number of elements
- allocated. (Declaring an array \IFTEX{$A$}{A} with \IFTEX{$n$}{n} elements
- allocates \IFTEX{$ A(0),A(1),\ldots,A(n)$}{A(0),A(1),...,A(n)}.) The
- \name{length} of an expression is the total number of additive terms
- appearing in the numerator and denominator of the expression. Note that
- subtraction of a term is represented internally as addition of a negative
- term.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{LHS}
- \index{left-hand side}\index{equation}
- The \name{lhs} operator returns the left-hand side of an \nameref{equation},
- such as those
- returned in a list by \nameref{solve}.
- \begin{Syntax}
- \name{lhs}\(\meta{equation}\) or \name{lhs} \meta{equation}
- \end{Syntax}
- \meta{equation} must be an equation of the form \\
- \name{left-hand side} \name{=} \name{right-hand side}.
- \begin{Examples}
- polly := (x+3)*(x^4+2x+1); &
- POLLY := X^{5} + 3*X^{4} + 2*X^{2} + 7*X + 3 \\
- pollyroots := solve(polly,x); &
- \begin{multilineoutput}{1cm}
- POLLYROOTS := \{X=ROOT_OF(X_^{3} - X_^{2} + X_ + 1,X_),
- X=-1,
- X=-3\}
- \end{multilineoutput} \\
- variable := lhs first pollyroots; &
- VARIABLE := X
- \end{Examples}
- \end{Operator}
- \begin{Operator}{LIMIT}
- \index{limit}\index{l'Hopital's rule}
- LIMITS is a fast limit package for REDUCE for functions which are
- continuous except for computable poles and singularities, based on
- some earlier work by Ian Cohen and John P. Fitch. The Truncated
- Power Series package is used for non-critical points, at which
- the value of the function is the constant term in the expansion
- around that point. l'Hopital's rule is used in critical cases,
- with preprocessing of 1-1 forms and reformatting of product forms
- in order to apply l'Hopital's rule. A limited amount of bounded
- arithmetic is also employed where applicable.
- \begin{Syntax}
- \name{limit}\(\meta{expr},\meta{var},\meta{limpoint}\) or \\
- \name{limit!+}\(\meta{expr},\meta{var},\meta{limpoint}\) or \\
- \name{limit!-}\(\meta{expr},\meta{var},\meta{limpoint}\)
- \end{Syntax}
- where \meta{expr} is an expression depending of the variable \meta{var}
- (a \nameref{kernel}) and \meta{limpoint} is the limit point.
- If the limit depends upon the direction of approach to the \meta{limpoint},
- the operators \name{limit!+} and \name{limit!-} may be used.
- \begin{Examples}
- limit(x*cot(x),x,0);&0\\
- limit((2x+5)/(3x-2),x,infinity);&\rfrac{2}{3}\\
- \end{Examples}
- \end{Operator}
- \begin{Operator}{LPOWER}
- \index{leading power}\index{polynomial}
- The \name{lpower} operator returns the leading power of an expression with
- respect to a kernel. 1 is returned if the expression does not depend on
- the kernel.
- \begin{Syntax}
- \name{lpower}\(\meta{expression},\meta{kernel}\)
- \end{Syntax}
- \meta{expression} is ordinarily a polynomial. If \nameref{ratarg} is on,
- a rational expression may also be used, otherwise an error results.
- \meta{kernel} must be a \nameref{kernel}.
- \begin{Examples}
- lpower((x+2*y)**6,y); & Y^{6} \\
- lpower((x + cos(x))**8 + df(x**2,x),cos(x));
- & COS(X)^{8} \\
- lpower(x**3 + 3*x,y); & 1
- \end{Examples}
- \end{Operator}
- \begin{Operator}{LTERM}
- \index{leading term}\index{polynomial}
- The \name{lterm} operator returns the leading term of an expression with
- respect to a kernel. The expression is returned if it does not depend on
- the kernel.
- \begin{Syntax}
- \name{lterm}\(\meta{expression},\meta{kernel}\)
- \end{Syntax}
- \meta{expression} is ordinarily a polynomial. If \nameref{ratarg} is on,
- a rational expression may also be used, otherwise an error results.
- \meta{kernel} must be a \nameref{kernel}.
- \begin{Examples}
- lterm((x+2*y)**6,y); & 64*Y^{6} \\
- lterm((x + cos(x))**8 + df(x**2,x),cos(x));
- & COS(X)^{8} \\
- lterm(x**3 + 3*x,y); & X^{3} + 3X
- \end{Examples}
- \end{Operator}
- \begin{Operator}{MAINVAR}
- \index{main variable}\index{polynomial}
- The \name{mainvar} operator returns the main variable (in the system's
- internal representation) of its argument.
- \begin{Syntax}
- \name{mainvar}\(\meta{expression}\)
- \end{Syntax}
- \meta{expression} is usually a polynomial, but may be any valid REDUCE
- scalar expression. In the case of a rational function, the main variable
- of the numerator is returned. The main variable returned is a
- \nameref{kernel}.
- \begin{Examples}
- test := (a + b + c)**2; &
- TEST := A^{2} + 2*A*B + 2*A*C + B^{2} + 2*B*C + C^{2} \\
- mainvar(test); & A \\
- korder c,b,a; \\
- mainvar(test); & C \\
- mainvar(2*cos(x)**2); & COS(X) \\
- mainvar(17); & 0
- \end{Examples}
- \begin{Comments}
- The main variable is the first variable in the canonical ordering of
- kernels. Generally, alphabetically ordered functions come first, then
- alphabetically ordered identifiers (variables). Numbers come last, and as
- far as \name{mainvar} is concerned belong in the family \name{0}. The
- canonical ordering can be changed by the declaration \nameref{korder}, as
- shown above.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{MAP}
- \index{map}\index{composite structure}
- The \name{map} operator applies a uniform evaluation pattern
- to all members of a composite structure: a \nameref{matrix},
- a \nameref{list} or the arguments of an \nameref{operator} expression.
- The evaluation pattern can be a
- unary procedure, an operator, or an algebraic expression with
- one free variable.
- \begin{Syntax}
- \name{map}\(\meta{function},\meta{object}\)
- \end{Syntax}
- \meta{object} is a list, a matrix or an operator expression.
- \meta{function} is
- the name of an operator for a single argument: the operator
- is evaluated once with each element of \meta{object} as its single argument,
- or an algebraic expression with exactly one \nameref{free variable}, that is
- a variable preceded by the tilde symbol: the expression
- is evaluated for each element of \meta{object} where the element is
- substituted for the free variable,
- or a replacement \nameref{rule} of the form
- \begin{Syntax}
- \name{var} => \name{rep}
- \end{Syntax}
- where \meta{var} is a variable (a \meta{kernel} without subscript)
- and \meta{rep} is an expression which contains \meta{var}.
- Here \name{rep} is evaluated for each element of \meta{object} where
- the element is substituted for \name{var}. \name{var} may be
- optionally preceded by a tilde.
- The rule form for \meta{function} is needed when more than
- one free variable occurs.
- \begin{Examples}
- map(abs,{1,-2,a,-a}); & {1,2,abs(a),abs(a)} \\
- map(int(~w,x), mat((x^2,x^5),(x^4,x^5))); &
- \begin{multilineoutput}{1cm}
- [ 3 6 ]
- [ x x ]
- [---- ----]
- [ 3 6 ]
- [ ]
- [ 5 6 ]
- [ x x ]
- [---- ----]
- [ 5 6 ]
- \end{multilineoutput}\\
- map(~w*6, x^2/3 = y^3/2 -1); & 2*x^2=3*(y^3-2)\\
- \end{Examples}
- \begin{Comments}
- You can use \name{map} in nested expressions. It is not allowed to
- apply \name{map} for a non-composed object, e.g. an identifier or a number.
- \end{Comments}
- \end{Operator}
- \begin{Command}{MKID}
- \index{identifier}
- The \name{mkid} command constructs an identifier, given a stem and an identifier
- or an integer.
- \begin{Syntax}
- \name{mkid}\(\meta{stem},\meta{leaf}\)
- \end{Syntax}
- \meta{stem} can be any valid REDUCE identifier that does not include escaped
- special characters. \meta{leaf} may be an integer, including one given by a
- local variable in a \nameref{for} loop, or any other legal group of
- characters.
- \begin{Examples}
- mkid(x,3); & X3 \\
- factorize(x^15 - 1); & \begin{multilineoutput}{6cm}
- \{X - 1,
- X^{2} + X + 1,
- X^{4} + X^{3} + X^{2} + X + 1,
- X^{8} - X^{7} + X^{5} - X^{4} + X^{3} - X + 1\}
- \end{multilineoutput}\\
- for i := 1:length ws do write set(mkid(f,i),part(ws,i));
- & \begin{multilineoutput}{6cm}
- X^{8} - X^{7} + X^{5} - X^{4} + X^{3} - X + 1
- X^{4} + X^{3} + X^{2} + X + 1
- X^{2} + X + 1
- X - 1
- \end{multilineoutput} \\
- \end{Examples}
- \begin{Comments}
- You can use \name{mkid} to construct identifiers from inside procedures. This
- allows you to handle an unknown number of factors, or deal with variable
- amounts of data. It is particularly helpful to attach identifiers to the
- answers returned by \name{factorize} and \name{solve}.
- \end{Comments}
- \end{Command}
- \begin{Operator}{NPRIMITIVE}
- \index{primitive part}\index{polynomial}
- \begin{Syntax}
- \name{nprimitive}\(\meta{expression}\) or \name{nprimitive}
- \meta{simple\_expression}
- \end{Syntax}
- This operator returns the numerically-primitive part of any scalar
- expression. In other words, any overall integer factors in the expression
- are removed.
- \begin{Examples}
- nprimitive((2x+2y)^2); & X^{2} + 2*X*Y + Y^{2} \\
- nprimitive(3*a*b*c); & 3*A*B*C
- \end{Examples}
- \end{Operator}
- \begin{Operator}{NUM}
- \index{numerator}\index{rational expression}
- The \name{num} operator returns the numerator of its argument.
- \begin{Syntax}
- \name{num}\(\meta{expression}\) or \name{num} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} can be any valid REDUCE scalar expression.
- \begin{Examples}
- num(100/6); & 50 \\
- num(a/5 + b/6); & 6*A + 5*B \\
- num(sin(x)); & SIN(X)
- \end{Examples}
- \begin{Comments}
- \name{num} returns the numerator of the expression after it has been simplified
- by REDUCE. As seen in the examples, this includes putting sums of rational
- expressions over a common denominator, and reducing common factors where
- possible. If the expression is not a rational expression, it is returned
- unchanged.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ODESOLVE}
- \index{differential equation}\index{solve}
- The \name{odesolve} package is a solver for ordinary differential
- equations. At the present time it has still limited capabilities:
- 1. it can handle only a single scalar equation presented as an
- algebraic expression or equation, and
- 2. it can solve only first-order equations of simple types, linear
- equations with constant coefficients and Euler equations.
- These solvable types are exactly those for which Lie symmetry
- techniques give no useful information.
- \begin{Syntax}
- \name{odesolve}\(\meta{expr},\meta{var1},\meta{var2}\)
- \end{Syntax}
- \meta{expr} is a single scalar expression such that \meta{expr}=0
- is the ordinary differential equation (ODE for short) to be solved, or
- is an equivalent \nameref{equation}.
- \meta{var1} is the name of the dependent variable,
- \meta{var2} is the name of the independent variable.
- A differential in \meta{expr} is expressed using the \nameref{df}
- operator. Note that in most cases you must declare explicitly
- \meta{var1} to depend of \meta{var2} using a \nameref{depend}
- declaration -- otherwise the derivative might be evaluated to
- zero on input to \name{odesolve}.
- The returned value is a list containing the equation giving the general
- solution of the ODE (for simultaneous equations this will be a
- list of equations eventually). It will contain occurrences of
- the operator \name{arbconst} for the arbitrary constants in the general
- solution. The arguments of \name{arbconst} should be new.
- A counter \name{!!arbconst} is used to arrange this.
- \begin{Examples}
- depend y,x;\\
- \% A first-order linear equation, with an initial condition\\
- ode:=df(y,x) + y * sin x/cos x - 1/cos x$\\
- odesolve(ode,y,x); & \{y=arbconst(1)*cos(x) + sin(x)\}
- \end{Examples}
- \end{Operator}
- \begin{Type}{ONE\_OF}
- The operator \name{one\_of} is used to represent an indefinite choice
- of one element from a finite set of objects.
- \begin{Examples}
- x=one_of{1,2,5}\\
- \explanation{this equation encodes that x can take one of the values
- 1,2 or 5}\\
- \end{Examples}
- REDUCE generates a \name{one\_of} form in cases when an implicit
- \name{root\_of} expression could be converted to an explicit solution set.
- A \name{one\_of} form can be converted to a \name{solve} solution using
- \nameref{expand\_cases}. See \nameref{root\_of}.
- \end{Type}
- \begin{Operator}{PART}
- \index{decomposition}
- The operator \name{part} permits the extraction of various parts or
- operators of expressions and \nameref{list}\name{s}.
- \begin{Syntax}
- \name{part}\(\meta{expression,integer}\{,\meta{integer}\}\optional\)
- \end{Syntax}
- \meta{expression} can be any valid REDUCE expression or a list, {\it
- integer} may be an expression that evaluates to a positive or negative
- integer or 0. A positive integer \meta{n} picks up the {\it n} th term,
- counting from the first term toward the end. A negative integer {\it n}
- picks up the {\it n} th term, counting from the back toward the front. The
- integer 0 picks up the operator (which is \name{LIST} when the expression
- is a \ref{list}).
- \begin{Examples}
- part((x + y)**5,4); & 10*X^{2}*Y^{3} \\
- part((x + y)**5,4,2); & X^{2} \\
- part((x + y)**5,4,2,1); & X \\
- part((x + y)**5,0); & PLUS \\
- part((x + y)**5,-5); & 5*X *Y^{4} \\
- part((x + y)**5,4) := sin(x); &
- X^{5} + 5*X^{4}*Y + 10*X^{3}*Y^{2} + SIN(X) + 5*X*Y^{4} + Y^{5} \\
- alist := \{x,y,\{aa,bb,cc\},x**2*sqrt(y)\}; &
- ALIST := \{X,Y,\{AA,BB,CC\},SQRT(Y)*X^{2}\} \\
- part(alist,3,2); & BB \\
- part(alist,4,0); & TIMES
- \end{Examples}
- \begin{Comments}
- Additional integer arguments after the first one examine the
- terms recursively, as shown above. In the third line, the fourth term
- is picked from the original polynomial, \IFTEX{$10x^2y^3$}{10x^2y^3},
- then the second term from that, \IFTEX{$x^2$}{x^2}, and finally the first
- component, \IFTEX{$x$}{x}. If an integer's absolute value is too large for
- the appropriate expression, a message is given.
- \name{part} works on the form of the expression as printed, or as it would
- have been printed at that point of the calculation, bearing in mind the
- current switch settings. It is important to realize that the switch settings
- change the operation of \name{part}. \nameref{pri} must be on when
- \name{part} is used.
- When \name{part} is used on a polynomial expression that has minus signs, the
- \name{+} is always returned as the top-level operator. The minus is found
- as a unary operator attached to the negative term.
- \name{part} can also be used to change the relevant part of the expression or
- list as shown in the sixth example line. The \name{part} operator returns the
- changed expression, though original expression is not changed. You can
- also use \name{part} to change the operator.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{PF}
- \index{partial fraction}\index{rational expression}
- \begin{Syntax}
- pf(\meta{expression},\meta{variable})
- \end{Syntax}
- \name{pf} transforms \meta{expression} into a \nameref{list} of partial fraction
- s
- with respect to the main variable, \meta{variable}. \name{pf} does a
- complete partial fraction decomposition, and as the algorithms used are
- fairly unsophisticated (factorization and the extended Euclidean
- algorithm), the code may be unacceptably slow in complicated cases.
- \begin{Examples}
- pf(2/((x+1)^2*(x+2)),x); &
- \{\rfrac{2}{X + 2},\rfrac{-2}{X + 1},\rfrac{2}{X^{2} + 2*X + 1}\} \\
- off exp; \\
- pf(2/((x+1)^2*(x+2)),x);
- & \{\rfrac{2}{X + 2},\rfrac{- 2}{X + 1},\rfrac{2}{(X + 1)^{2}}\} \\
- for each j in ws sum j; & \rfrac{2}{( + 2)*(X + 1)^{2}}
- \end{Examples}
- \begin{Comments}
- If you want the denominators in factored form, turn \nameref{exp} off, as
- shown in the second example above. As shown in the final example, the
- \nameref{for} \name{each} construct can be used to recombine the terms.
- Alternatively, one can use the operations on lists to extract any desired
- term.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{PROD}
- \index{Gosper algorithm}\index{product}
- The operator \name{prod} returns
- the indefinite or definite product of a given expression.
- \begin{Syntax}
- \name{prod}\(\meta{expr},\meta{k}[,\meta{lolim} [,\meta{uplim} ]]\)
- \end{Syntax}
- where \meta{expr} is the expression to be multiplied, \meta{k} is the
- control variable (a \nameref{kernel}), and \meta{lolim} and \meta{uplim}
- uplim are the optional lower and upper limits. If \meta{uplim} is
- not supplied the upper limit is taken as \meta{k}. The
- Gosper algorithm is used. If there is no closed form solution,
- the operator returns the input unchanged.
- \begin{Examples}
- prod(k/(k-2),k);&k*( - k + 1)\\
- \end{Examples}
- \end{Operator}
- \begin{Operator}{REDUCT}
- \index{reductum}\index{polynomial}
- The \name{reduct} operator returns the remainder of its expression after the
- leading term with respect to the kernel in the second argument is removed.
- \begin{Syntax}
- \name{reduct}\(\meta{expression},\meta{kernel}\)
- \end{Syntax}
- \meta{expression} is ordinarily a polynomial. If \nameref{ratarg} is on,
- a rational expression may also be used, otherwise an error results.
- \meta{kernel} must be a \nameref{kernel}.
- \begin{Examples}
- reduct((x+y)**3,x); & Y*(3*X^{2} + 3*X*Y + Y^{2}) \\
- reduct(x + sin(x)**3,sin(x)); & X \\
- reduct(x + sin(x)**3,y); & 0
- \end{Examples}
- \begin{Comments}
- If the expression does not contain the kernel, \name{reduct} returns 0.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{REPART}
- \index{real part}\index{complex}
- \begin{Syntax}
- \name{repart}\(\meta{expression}\) or \name{repart} \meta{simple\_expression}
- \end{Syntax}
- This operator returns the real part of an expression, if that argument has an
- numerical value. A non-numerical argument is returned as an expression in
- the operators \name{repart} and \nameref{impart}.
- \begin{Examples}
- repart(1+i); & 1 \\
- repart(a+i*b); & REPART(A) - IMPART(B)
- \end{Examples}
- \end{Operator}
- \begin{Operator}{RESULTANT}
- \index{polynomial}
- The \name{resultant} operator computes the resultant of two polynomials with
- respect to a given variable. If the resultant is 0, the polynomials have
- a root in common.
- \begin{Syntax}
- \name{resultant}\(\meta{expression},\meta{expression},\meta{kernel}\)
- \end{Syntax}
- \meta{expression} must be a polynomial containing \meta{kernel} ;
- \meta{kernel} must be a \nameref{kernel}.
- \begin{Examples}
- resultant(x**2 + 2*x + 1,x+1,x); & 0 \\
- resultant(x**2 + 2*x + 1,x-3,x); & 16 \\
- \begin{multilineinput}
- resultant(z**3 + z**2 + 5*z + 5,
- z**4 - 6*z**3 + 16*z**2 - 30*z + 55,
- z);
- \end{multilineinput} & 0 \\
- resultant(x**3*y + 4*x*y + 10,y**2 + 6*y + 4,y); &
- Y^{6} + 18*Y^{5} + 120*Y^{4} + 360*Y^{3} + 480*Y^{2} + 288*Y + 64
- \end{Examples}
- \begin{Comments}
- The resultant is the determinant of the Sylvester matrix, formed from the
- coefficients of the two polynomials in the following way:
- Given two polynomials:
- \begin{TEX}
- \begin{displaymath}
- a_0x^n+a_1x^{n-1}+\cdots+a_n
- \end{displaymath}
- \end{TEX}
- \begin{INFO}
- {\begin{verbatim}
- n n-1
- a x + a1 x + ... + an
- \end{verbatim}}
- \end{INFO}
- and
- \begin{TEX}
- \begin{displaymath}
- b_0x^n+b_1x^{n-1}+\cdots+b_n
- \end{displaymath}
- \end{TEX}
- \begin{INFO}
- {\begin{verbatim}
- m m-1
- b x + b1 x + ... + bm
- \end{verbatim}}
- \end{INFO}
- form the (m+n)x(m+n-1) Sylvester matrix by the following means:
- \begin{TEX}
- \begin{displaymath}
- \left(\begin{array}{cccccccc}
- 0&\ldots&0&0&a_0&a_1&\ldots&a_n\\
- 0&\ldots&0&a_0&a_1&\ldots&a_n&0\\
- \vdots&&&\vdots&&&\vdots\\
- a_0&a_1&\ldots&a_n&0&0&\ldots&0\\
- 0&\ldots&0&0&b_0&b_1&\ldots&b_n\\
- \vdots&&&\vdots&&&\vdots\\
- b_0&b_1&\ldots&b_n&0&0&\ldots&0
- \end{array}\right)
- \end{displaymath}
- \end{TEX}
- \begin{INFO}
- {\begin{verbatim}
- 0.......0 a a1 .......... an
- 0....0 a a1 .......... an 0
- . . . .
- a0 a1 .......... an 0.......0
- 0.......0 b b1 .......... bm
- 0....0 b b1 .......... bm 0
- . . . .
- b b1 .......... bm 0.......0
- \end{verbatim}}
- \end{INFO}
- If the determinant of this matrix is 0, the two polynomials have a common
- root. Finding the resultant of large expressions is time-consuming, due
- to the time needed to find a large determinant.
- The sign conventions \name{resultant} uses are those given in the article,
- ``Computing in Algebraic Extensions,'' by R. Loos, appearing in
- \meta{Computer Algebra--Symbolic and Algebraic Computation}, 2nd ed.,
- edited by B. Buchberger, G.E. Collins and R. Loos, and published by
- Springer-Verlag, 1983.
- These are:
- \begin{TEX}
- \begin{eqnarray*}
- \mbox{resultant}(p(x),q(x),x)
- &=& (-1)^{\deg p(x)*\deg q(x)}\cdot\mbox{resultant}(q(x),p(x),x),\\
- \mbox{resultant}(a,p(x),x) &=& a^{\deg p(x)},\\
- \mbox{resultant}(a,b,x) &=& 1
- \end{eqnarray*}
- where $p(x)$ and $q(x)$ are polynomials which have $x$ as a variable, and
- $a$ and $b$ are free of $x$.
- \end{TEX}
- \begin{INFO}
- {
- \begin{verbatim}
- resultant(p(x),q(x),x) = (-1)^{deg p(x)*deg q(x)} * resultant(q(x),p(x),x),
- resultant(a,p(x),x) = a^{deg p(x)},
- resultant(a,b,x) = 1
- \end{verbatim}
- where p(x) and q(x) are polynomials which have x as a variable, and
- a and b are free of x.
- }
- \end{INFO}
- Error messages are given if \name{resultant} is given a non-polynomial
- expression, or a non-kernel variable.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{RHS}
- \index{right-hand side}\index{equation}
- The \name{rhs} operator returns the right-hand side of an \nameref{equation},
- such as those returned in a \nameref{list} by \nameref{solve}.
- \begin{Syntax}
- \name{rhs}\(\meta{equation}\) or \name{rhs} \meta {equation}
- \end{Syntax}
- \meta{equation} must be an equation of the form {\it left-hand side = right-hand
- side}.
- \begin{Examples}
- roots := solve(x**2 + 6*x*y + 5x + 3y**2,x); &
- \begin{multilineoutput}{6cm}
- ROOTS := \{X= - \rfrac{SQRT(24*Y^{2} + 60*Y + 25) + 6*Y + 5}{2},
- X= \rfrac{SQRT(24*Y^{2} + 60*Y + 25) - 6*Y - 5}{2}\}
- \end{multilineoutput} \\
- root1 := rhs first roots; &
- ROOT1 := - \rfrac{SQRT(24*Y^{2} + 60*Y + 25) + 6*Y + 5}{2} \\
- root2 := rhs second roots; &
- ROOT2 := \rfrac{SQRT(24*Y^{2} + 60*Y + 25) - 6*Y - 5}{2}
- \end{Examples}
- \begin{Comments}
- An error message is given if \name{rhs} is applied to something other than an
- equation.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ROOT\_OF}
- \index{roots}\index{solve}
- When the operator \nameref{solve} is unable to find an explicit solution
- or if that solution would be too complicated, the result is presented
- as formal root expression using the internal operator \name{root\_of}
- and a new local variable. An expression with a top level \name{root\_of}
- is implicitly a list with an unknown number of elements since we
- can't always know how many solutions an equation has. If a
- substitution is made into such an expression, closed form solutions
- can emerge. If this occurs, the \name{root\_of} construct is
- replaced by an operator \nameref{one\_of}. At this point it is
- of course possible to transform the result if the original \name{solve}
- operator expression into a standard \name{solve} solution. To
- effect this, the operator \nameref{expand\_cases} can be used.
- \begin{Examples}
- solve(a*x^7-x^2+1,x);&
- \{x=root\_of(a*x\_^7 - x\_^2 + 1,x\_)\}\\
- sub(a=0,ws);&
- \{x=one\_of(1,-1)\}\\
- expand_cases ws;&
- {x=1,x=-1}\\
- \end{Examples}
- The components of \name{root\_of} and \name{one\_of} expressions can be
- processed as usual with operators \nameref{arglength} and \nameref{part}.
- A higher power of a \name{root\_of} expression with a polynomial
- as first argument is simplified by using the polynomial as a side relation.
- \end{Operator}
- \begin{Operator}{SELECT}
- \index{map}\index{list}
- The \name{select} operator extracts from a list
- or from the arguments of an n--ary operator elements corresponding
- to a boolean predicate. The predicate pattern can be a
- unary procedure, an operator or an algebraic expression with
- one \nameref{free variable}.
- \begin{Syntax}
- \name{select}\(\meta{function},\meta{object}\)
- \end{Syntax}
- \meta{object} is a \nameref{list}.
- \meta{function} is
- the name of an operator for a single argument: the operator
- is evaluated once with each element of \meta{object} as its single argument,
- or an algebraic expression with exactly one \nameref{free variable}, that is
- a variable preceded by the tilde symbol: the expression
- is evaluated for each element of \meta{object} where the element is
- substituted for the free variable,
- or a replacement \nameref{rule} of the form
- \begin{Syntax}
- \name{var} => \name{rep}
- \end{Syntax}
- where \meta{var} is a variable (a \meta{kernel} without subscript)
- and \meta{rep} is an expression which contains \meta{var}.
- Here \name{rep} is evaluated for each element of \meta{object} where
- the element is substituted for \name{var}. \name{var} may be
- optionally preceded by a tilde.
- The rule form for \meta{function} is needed when more than
- one free variable occurs. The evaluation result of \meta{function} is
- interpreted as \nameref{boolean value} corresponding to the conventions of
- REDUCE. The result value is built with the leading operator of the
- input expression.
- \begin{Examples}
- select( ~w>0 , {1,-1,2,-3,3}) & \{1,2,3\} \\
- q:=(part((x+y)^5,0):=list)\\
- select(evenp deg(~w,y),q);& \{x^5 ,10*x^3 *y^2 ,5*x*y^4 \}\\
- select(evenp deg(~w,x),2x^2+3x^3+4x^4);& 2x^2+4x^4\\
- \end{Examples}
- \end{Operator}
- \begin{Operator}{SHOWRULES}
- \index{rule}\index{output}
- \begin{Syntax}
- \name{showrules}\(\meta{expression}\) or
- \name{showrules} \meta{simple\_expression}
- \end{Syntax}
- \name{showrules} returns in \nameref{rule}\name{-list} form any
- \nameref{operator} rules associated with its argument.
- \begin{Examples}
- showrules log; &
- \begin{multilineoutput}{6cm}
- \{LOG(E) => 1,
- LOG(1) => 0,
- LOG(E^{~X} ) => ~X,
- DF(LOG(~X),~X) => \rfrac{1}{~X}\}
- \end{multilineoutput}
- \end{Examples}
- Such rules can then be manipulated further as with any \nameref{list}. For
- example
- \name{rhs first ws;} has the value {\em 1}.
- \begin{Comments}
- An operator may have properties that cannot be displayed in such a form,
- such as the fact it is an \ref{odd} function, or has a definition defined
- as a procedure.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{SOLVE}
- \index{equation}\index{equation solving}
- \index{equation system}\index{root}\index{solve}
- The \name{solve} operator solves a single algebraic \nameref{equation} or a
- system of simultaneous equations.
- \begin{TEX}
- \begin{Syntax}
- % \name{solve}\(\meta{expression} \&option(, \meta{kernel})\) or
- % \name{solve}\(\name{\{}\meta{expression}\{,\meta{expression}\}
- % \optional\name{\}}
- % \&option(,\meta{kernel}\optional\)
- \name{solve}\(\meta{expression}\&option(, \meta{kernel})\) or \\
- \name{solve}\(\name{\{}\meta{expression}\&option( ,\meta{expression})
- \optional\name{\}}
- \&option(,\{\meta{kernel})\optional\name{\}\}}\)
- \end{Syntax}
- \end{TEX}
- \begin{INFO}
- {\begin{Syntax}
- \name{solve}\(\meta{expression} [ , \meta{kernel}]\) or
- \name{solve}\(\{\meta{expression},...\} [ ,\{ \meta{kernel} ,...\}] \)
- \end{Syntax}
- }\end{INFO}
- If the number of equations equals the number of distinct kernels, the
- optional kernel argument(s) may be omitted. \meta{expression} is either a
- scalar expression or an \nameref{equation}.
- When more than one expression is given,
- the \nameref{list} of expressions is surrounded by curly braces.
- The optional list
- of \nameref{kernel}s follows, also in curly braces.
- \begin{Examples}
- sss := solve(x^2 + 7); &
- \begin{multilineoutput}{6cm}
- Unknown: X
- SSS := \{X= - SQRT(7)*I,
- X=SQRT(7)*I\}
- \end{multilineoutput}\\
- rhs first sss; & - SQRT(7)*I \\
- solve(sin(x^2*y),y); &
- \begin{multilineoutput}{6cm}
- \{Y=\rfrac{2*ARBINT(1)*PI}{X^{2}}
- Y=\rfrac{PI*(2*ARBINT(1) + 1)}{X^{2}}\}
- \end{multilineoutput}\\
- off allbranch; \\
- solve(sin(x**2*y),y); & \{Y=0\} \\
- solve({3x + 5y = -4,2*x + y = -10},{x,y});
- & \{\{X= - \rfrac{22}{7},Y=\rfrac{46}{7}\}\} \\
- solve({x + a*y + z,2x + 5},{x,y});
- & \{\{X= - \rfrac{5}{2},Y= - \rfrac{2*Z - 5}{2*A}\}\} \\
- % xval := rhs part(ws,1,1); & XVAL := - \rfrac{5}{2} \\
- ab := (x+2)^2*(x^6 + 17x + 1);
- & AB := X^{8} + 4*X^{7} + 4*X^{6} + 17*X^{3} + 69*X^{2} + 72*X + 4 \\
- www := solve(ab,x); & \{X=ROOT_OF(X_^{6} + 17*X_ + 1),X=-2\} \\
- root_multiplicities; & \{1,2\}
- \end{Examples}
- \begin{Comments}
- Results of the \name{solve} operator are returned as \nameref{equation}\name{s}
- in a \nameref{list}.
- You can use the usual list access methods (\nameref{first},
- \nameref{second}, \nameref{third}, \nameref{rest} and \nameref{part}) to
- extract the desired equation, and then use the operators \nameref{rhs} and
- \nameref{lhs} to access the right-hand or left-hand expression of the
- equation. When \name{solve} is unable to solve an equation, it returns the
- unsolved part as the argument of \name{root_of}, with the variable renamed
- to avoid confusion, as shown in the last example above.
- For one equation, \name{solve} uses square-free factorization, roots of
- unity, and the known inverses of the \nameref{log}, \nameref{sin},
- \nameref{cos}, \nameref{acos}, \nameref{asin}, and
- exponentiation operators. The quadratic, cubic and quartic formulas are
- used if necessary, but these are applied only when the switch
- \nameref{fullroots} is set on; otherwise or when no closed form is available
- the result is returned as
- \nameref{root\_of} expression. The switch \nameref{trigform}
- determines which type of cubic and quartic formula is used.
- The multiplicity of each solution is given in a list as
- the system variable \nameref{root\_multiplicities}. For systems of
- simultaneous linear equations, matrix inversion is used. For nonlinear
- systems, the Groebner basis method is used.
- %If kernels are given for linear equations, and there are an unequal number
- %of kernels and equations, an error message is given. If no kernels are
- %given, and there are more kernels in the equations than there are
- %equations, an error message is given.
- Linear equation system solving is influenced by the switch \nameref{cramer}.
- %For nonlinear equations, it is
- %possible to have a consistent set in which the number of variables does not
- %match the number of equations.
- Singular systems can be solved when the switch \nameref{solvesingular} is
- on, which is the default setting. An empty list is returned the system of
- equations is inconsistent. For a linear inconsistent system with parameters
- the variable \nameref{requirements} constraints
- conditions for the system to become consistent.
- For a solvable linear and polynomial system with parameters
- the variable \nameref{assumptions}
- contains a list side relations for the parameters: the solution is
- valid only as long as none of these expressions is zero.
- If the switch \nameref{varopt} is on (default), the system rearranges the
- variable sequence for minimal computation time. Without \name{varopt}
- the user supplied variable sequence is maintained.
- If the solution has free variables (dimension of the solution is greater
- than zero), these are represented by \nameref{arbcomplex} expressions
- as long as the switch \nameref{arbvars} is on (default). Without
- \name{arbvars} no explicit equations are generated for free variables.
- \end{Comments}
- \begin{Related}
- \item[\nameref{allbranch} switch]
- \item[\nameref{arbvars} switch]
- \item[\nameref{assumptions} variable]
- \item[\nameref{fullroots} switch]
- \item[\nameref{requirements} variable]
- \item[\nameref{roots} operator]
- \item[\nameref{root\_of} operator]
- \item[\nameref{trigform} switch]
- \item[\nameref{varopt} switch]
- \end{Related}
- \end{Operator}
- \begin{Operator}{SORT}
- \index{sorting}
- The \name{sort} operator sorts the elements of a list according to
- an arbitrary comparison operator.
- \begin{Syntax}
- \name{sort}\(\meta{lst},\meta{comp}\)
- \end{Syntax}
- \meta{lst} is a \nameref{list} of algebraic expressions.
- \meta{comp} is a comparison operator which defines a partial
- ordering among the members of \meta{lst}. \meta{comp} may be
- one of the builtin comparison operators like
- \name{<}(\nameref{lessp}), \name{<=}(\nameref{leq})
- etc., or \meta{comp} may be the name of a comparison procedure.
- Such a procedure has two arguments, and it returns
- \nameref{true} if the first argument
- ranges before the second one, and 0 or \nameref{nil} otherwise.
- The result of \name{sort} is a new list which contains the
- elements of \meta{lst} in a sequence corresponding to \meta{comp}.
- \begin{Examples}
- % Sort random integers\\
- procedure ce(a,b);\\
- if evenp a and not evenp b then 1 else 0;\\
- for i:=1:10 collect random(50)$\\
- sort(ws,>=); & \{41,38,33,30,28,25,20,17,8,5\}\\
- sort(ws,<); & \{5,8,17,20,25,28,30,33,38,41\}\\
- sort(ws,ce); &\{8,20,28,30,38,5,17,25,33,41\}\\
- % Sort a set of polynomials, first for degree of x\\
- % and second for degree of y.\\
- procedure cd(a,b);\\
- if deg(a,x)>deg(b,x) then 1 else\\
- if deg(a,x)<deg(b,x) then 0 else\\
- if deg(a,y)>deg(b,y) then 1 else 0;\\
- sort({x^2,y^2,x*y},cd);&\{x^2,x*y,y^2\}
- \end{Examples}
- \end{Operator}
- \begin{Operator}{STRUCTR}
- \index{decomposition}
- The \name{structr} operator breaks its argument expression into named
- subexpressions.
- \begin{TEX}
- \begin{Syntax}
- \name{structr}\(\meta{expression} \&option(,\meta{identifier}
- \&option(,\meta{identifier}))\)
- \end{Syntax}
- \end{TEX}
- \begin{Syntax}
- \name{structr}\(\meta{expression} [,\meta{identifier}[,\meta{identifier} ...]]\)
- \end{Syntax}
- \begin{INFO}
- \end{INFO}
- \meta{expression} may be any valid REDUCE scalar expression.
- \meta{identifier} may be any valid REDUCE \name{identifier}. The first
- identifier
- is the stem for subexpression names, the second is the name to be assigned
- to the structured expression.
- \begin{Examples}
- structr(sqrt(x**2 + 2*x) + sin(x**2*z)); &
- \begin{multilineoutput}{6cm}
- ANS1 + ANS2
- where
- ANS2 := SIN(X^{2}*Z)
- ANS1 := ((X + 2)*X)^{1/2}
- \end{multilineoutput}\\
- ans3; & ANS3 \\
- on fort; \\
- structr((x+1)**5 + tan(x*y*z),var,aa); &
- \begin{multilineoutput}{6cm}
- VAR1=TAN(X*Y*Z)
- AA=VAR1+X**5+5.*X**4+10.*X**3+10.X**2+5.*X+1
- \end{multilineoutput}
- \end{Examples}
- \begin{Comments}
- The second argument to \name{structr} is optional. If it is not given, the
- default stem \name{ANS} is used by REDUCE to construct names for the
- subexpression. The names are only for display purposes: REDUCE does not
- store the names and their values unless the switch \nameref{savestructr} is
- on.
- If a third argument is given, the structured expression as a whole is named by
- this argument, when \nameref{fort} is on. The expression is not stored
- under this
- name. You can send these structured Fortran expressions to a file with the
- \name{out} command.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{SUB}
- \index{substitution}
- The \name{sub} operator substitutes a new expression for a kernel in an
- expression.
- \begin{Syntax}
- %\name{sub}\(\meta{kernel}\name{=}\meta{expression}%
- % \{,\meta{kernel}\name{=}\meta{expression}\}\optional,%
- % \meta{expression}\)
- \name{sub}\(\meta{kernel}\name{=}\meta{expression}
- \{,\meta{kernel}\name{=}\meta{expression}\}\optional,
- \meta{expression}\) or \\
- \name{sub}\(\{\meta{kernel}\name{=}\meta{expression}\optional,
- \meta{kernel}\name{=}\name{expression}\},\meta{expression}\)
- \end{Syntax}
- \meta{kernel} must be a \nameref{kernel}, \meta{expression} can be any REDUCE
- scalar expression.
- \begin{Examples}
- sub(x=3,y=4,(x+y)**3); & 343 \\
- x; & X \\
- sub({cos=sin,sin=cos},cos a+sin b} & COS(B) + SIN(A)
- \end{Examples}
- \begin{Comments}
- Note in the second example that operators can be replaced using the
- \name{sub} operator.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{SUM}
- \index{Gosper algorithm}\index{summation}
- The operator \name{sum} returns
- the indefinite or definite summation of a given expression.
- \begin{Syntax}
- \name{sum}\(\meta{expr},\meta{k}[,\meta{lolim} [,\meta{uplim} ]]\)
- \end{Syntax}
- where \meta{expr} is the expression to be added, \meta{k} is the
- control variable (a \nameref{kernel}), and \meta{lolim} and \meta{uplim}
- are the optional lower and upper limits. If \meta{uplim} is
- not supplied the upper limit is taken as \meta{k}. The Gosper
- algorithm is used. If there is no closed form solution, the operator
- returns the input unchanged.
- \begin{Examples}
- sum(4n**3,n); &n^2 *(n^2 + 2*n + 1)\\
- sum(2a+2k*r,k,0,n-1);& n*(2*a + n*r - r)\\
- \end{Examples}
- \end{Operator}
- \begin{Operator}{WS}
- \index{work space}\index{interactive}
- The \name{ws} operator alone returns the last result; \name{ws} with a
- number argument returns the results of the REDUCE statement executed after
- that numbered prompt.
- \begin{Syntax}
- \name{ws} or \name{ws}\(\meta{number}\)
- \end{Syntax}
- \meta{number} must be an integer between 1 and the current REDUCE prompt number.
- \begin{Examples}
- \explanation{(In the following examples, unlike most others, the numbered
- prompt is shown.)} \\
- 1: df(sin y,y); & COS(Y) \\
- 2: ws^2; & COS(Y)^{2} \\
- 3: df(ws 1,y); & -SIN(Y)
- \end{Examples}
- \begin{Comments}
- \name{ws} and \name{ws}\name{(}\meta{number}\name{)} can be used anywhere the
- expression they stand for can be used. Calling a number for which no
- result was produced, such as a switch setting, will give an error message.
- The current workspace always contains the results of the last REDUCE
- command that produced an expression, even if several input statements
- that do not produce expressions have intervened. For example, if you do
- a differentiation, producing a result expression, then change several
- switches, the operator \name{ws;} returns the results of the differentiation.
- The current workspace (\name{ws}) can also be used inside files, though the
- numbered workspace contains only the \name{in} command that input the file.
- There are three history lists kept in your REDUCE session. The first
- stores raw input, suitable for the statement editor. The second stores
- parsed input, ready to execute and accessible by \nameref{input}. The
- third stores results, when they are produced by statements, which are
- accessible by the \name{ws}\meta{ n} operator. If your session is very
- long, storage space begins to fill up with these expressions, so it is a
- good idea to end the session once in a while, saving needed expressions to
- files with the \nameref{saveas} and \nameref{out} commands.
- % Or you could use the \name{forget} command to clear all history lists and
- % reset the prompt number to 1, which doesn't change any switch settings or
- % variable assignments.
- An error message is given if a reference number has not yet been used.
- \end{Comments}
- \end{Operator}
|