123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799 |
- \section{Elementary Functions}
- \begin{Operator}{ACOS}
- \index{arccosine}
- The \name{acos} operator returns the arccosine of its argument.
- \begin{Syntax}
- \name{acos}\(\meta{expression}\) or \name{acos} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- acos(ab); & ACOS(AB) \\
- acos 15; & ACOS(15) \\
- df(acos(x*y),x); & \rfrac{SQRT( - X^{2}*Y^{2} + 1)*Y}{X^{2}*Y^{2} - 1} \\
- on rounded; \\
- res := acos(sqrt(2)/2); & RES := 0.785398163397 \\
- res-pi/4; & 0
- \end{Examples}
- \begin{Comments}
- An explicit numeric value is not given unless the switch \nameref{rounded} is
- on and the argument has an absolute numeric value less than or equal to 1.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ACOSH}
- \index{hyperbolic arccosine}
- \name{acosh} represents the hyperbolic arccosine of its argument. It takes
- an arbitrary scalar expression as its argument. The derivative of
- \name{acosh} is known to the system. Numerical values may also be found by
- turning on the switch \nameref{rounded}.
- \begin{Syntax}
- \name{acosh}\(\meta{expression}\) or \name{acosh} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- acosh a; & ACOSH(A) \\
- acosh(0); & ACOSH(0) \\
- df(acosh(a**2),a); & \rfrac{2*SQRT(A^{4} - 1)*A}{A^{4} - 1} \\
- int(acosh(x),x); & INT(ACOSH(X),X)
- \end{Examples}
- \begin{Comments}
- You may attach functionality by defining \name{acosh} to be the inverse of
- \name{cosh}. This is done by the commands
- \begin{verbatim}
- put('cosh,'inverse,'acosh);
- put('acosh,'inverse,'cosh);
- \end{verbatim}
- You can write a procedure to attach integrals or other
- functions to \name{acosh}. You may wish to add a check to see that its
- argument is properly restricted.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ACOT}
- \index{arccotangent}
- \name{acot} represents the arccotangent of its argument. It takes
- an arbitrary scalar expression as its argument. The derivative of
- \name{acot} is known to the system. Numerical values may also be found by
- turning on the switch \nameref{rounded}.
- \begin{Syntax}
- \name{acot}\(\meta{expression}\) or \name{acot} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- You can add functionality yourself with \name{let} and procedures.
- \end{Operator}
- \begin{Operator}{ACOTH}
- \index{hyperbolic cotangent}
- \name{acoth} represents the inverse hyperbolic cotangent of its argument.
- It takes an arbitrary scalar expression as its argument. The derivative
- of \name{acoth} is known to the system. Numerical values may also be found
- by turning on the switch \nameref{rounded}.
- \begin{Syntax}
- \name{acoth}\(\meta{expression}\) or \name{acoth} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array,
- matrix or vector expression. \meta{simple\_expression} must be a single
- identifier or begin with a prefix operator name. You can add
- functionality yourself with \name{let} and procedures.
- \end{Operator}
- \begin{Operator}{ACSC}
- \index{arccosecant}
- The \name{acsc} operator returns the arccosecant of its argument.
- \begin{Syntax}
- \name{acsc}\(\meta{expression}\) or \name{acsc} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- acsc(ab); & ACSC(AB) \\
- acsc 15; & ACSC(15) \\
- df(acsc(x*y),x); & \rfrac{-SQRT(X^{2}*Y^{2} - 1)}{X*(X^{2}*Y^{2} - 1)} \\
- on rounded; \\
- res := acsc(2/sqrt(3)); & RES := 1.0471975512 \\
- res-pi/3; & 0
- \end{Examples}
- \begin{Comments}
- An explicit numeric value is not given unless the switch \name{rounded} is
- on and the argument has an absolute numeric value less than or equal to 1.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ACSCH}
- \index{arccosecant}
- The \name{acsch} operator returns the hyperbolic arccosecant of its argument.
- \begin{Syntax}
- \name{acsch}\(\meta{expression}\) or \name{acsch} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- acsch(ab); & ACSCH(AB) \\
- acsch 15; & ACSCH(15) \\
- df(acsch(x*y),x); & \rfrac{-SQRT(X^{2}*Y^{2} + 1)}{X*(X^{2}*Y^{2} + 1)} \\
- on rounded; \\
- res := acsch(3); & RES := 0.327450150237
- \end{Examples}
- \begin{Comments}
- An explicit numeric value is not given unless the switch \name{rounded} is
- on and the argument has an absolute numeric value less than or equal to 1.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ASEC}
- \index{arccosecant}
- The \name{asec} operator returns the arccosecant of its argument.
- \begin{Syntax}
- \name{asec}\(\meta{expression}\) or \name{asec} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- asec(ab); & ASEC(AB) \\
- asec 15; & ASEC(15) \\
- df(asec(x*y),x); & \rfrac{SQRT(X^{2}*Y^{2} - 1)}{X*(X^{2}*Y^{2} - 1)} \\
- on rounded; \\
- res := asec sqrt(2); & RES := 0.785398163397 \\
- res-pi/4; & 0
- \end{Examples}
- \begin{Comments}
- An explicit numeric value is not given unless the switch \name{rounded} is
- on and the argument has an absolute numeric value greater or equal to 1.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ASECH}
- \index{hyperbolic arccosecant}
- \name{asech} represents the hyperbolic arccosecant of its argument. It takes
- an arbitrary scalar expression as its argument. The derivative of
- \name{asech} is known to the system. Numerical values may also be found by
- turning on the switch \nameref{rounded}.
- \begin{Syntax}
- \name{asech}\(\meta{expression}\) or \name{asech} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- asech a; & ASECH(A) \\
- asech(1); & 0 \\
- df(acosh(a**2),a); & \rfrac{2*SQRT(- A^{4} + 1)}{A*(A^{4} - 1)} \\
- int(asech(x),x); & INT(ASECH(X),X)
- \end{Examples}
- \begin{Comments}
- You may attach functionality by defining \name{asech} to be the inverse of
- \name{sech}. This is done by the commands
- \begin{verbatim}
- put('sech,'inverse,'asech);
- put('asech,'inverse,'sech);
- \end{verbatim}
- You can write a procedure to attach integrals or other
- functions to \name{asech}. You may wish to add a check to see that its
- argument is properly restricted.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ASIN}
- \index{arcsine}
- The \name{asin} operator returns the arcsine of its argument.
- \begin{Syntax}
- \name{asin}\(\meta{expression}\) or \name{asin} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- asin(givenangle); & ASIN(GIVENANGLE) \\
- asin(5); & ASIN(5) \\
- df(asin(2*x),x); & - \rfrac{2*SQRT( - 4*X^{2} + 1))}{4*X^{2} - 1} \\
- on rounded; \\
- asin .5; & 0.523598775598 \\
- asin(sqrt(3)); & ASIN(1.73205080757) \\
- asin(sqrt(3)/2); & 1.04719755120 \\
- \end{Examples}
- \begin{Comments}
- A numeric value is not returned by \name{asin} unless the switch
- \name{rounded} is on and its argument has an absolute value less than or
- equal to 1.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ASINH}
- \index{hyperbolic arcsine}
- The \name{asinh} operator returns the hyperbolic arcsine of its argument.
- The derivative of \name{asinh} and some simple transformations are known
- to the system.
- \begin{Syntax}
- \name{asinh}\(\meta{expression}\) or \name{asinh} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- asinh d; & ASINH(D) \\
- asinh(1); & ASINH(1) \\
- df(asinh(2*x),x); & \rfrac{2*SQRT(4*X^{2} + 1))}{4*X^{2} + 1} \\
- \end{Examples}
- \begin{Comments}
- You may attach further functionality by defining \name{asinh} to be the
- inverse of \name{sinh}. This is done by the commands
- \begin{verbatim}
- put('sinh,'inverse,'asinh);
- put('asinh,'inverse,'sinh);
- \end{verbatim}
- A numeric value is not returned by \name{asinh} unless the switch
- \name{rounded} is on and its argument evaluates to a number.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ATAN}
- \index{arctangent}
- The \name{atan} operator returns the arctangent of its argument.
- \begin{Syntax}
- \name{atan}\(\meta{expression}\) or \name{atan} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- atan(middle); & ATAN(MIDDLE) \\
- on rounded; \\
- atan 45; & 1.54857776147 \\
- off rounded; \\
- int(atan(x),x); & \rfrac{2*ATAN(X)*X - LOG(X^{2} + 1)}{2} \\
- df(atan(y**2),y); & \rfrac{2*Y}{Y^{4} + 1}
- \end{Examples}
- \begin{Comments}
- A numeric value is not returned by \name{atan} unless the switch
- \nameref{rounded} is on and its argument evaluates to a number.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ATANH}
- \index{hyperbolic arctangent}
- The \name{atanh} operator returns the hyperbolic arctangent of its argument.
- The derivative of \name{asinh} and some simple transformations are known
- to the system.
- \begin{Syntax}
- \name{atanh}\(\meta{expression}\) or \name{atanh} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- atanh aa; & ATANH(AA) \\
- atanh(1); & ATANH(1) \\
- df(atanh(x*y),y); & \rfrac{- X}{X^{2}*Y^{2} - 1}
- \end{Examples}
- \begin{Comments}
- A numeric value is not returned by \name{asinh} unless the switch
- \name{rounded} is on and its argument evaluates to a number.
- You may attach additional functionality by defining \name{atanh} to be the
- inverse of \name{tanh}. This is done by the commands
- \begin{verbatim}
- put('tanh,'inverse,'atanh);
- put('atanh,'inverse,'tanh);
- \end{verbatim}
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ATAN2}
- \begin{Syntax}
- \name{atan2}\(\meta{expression},\meta{expression}\)
- \end{Syntax}
- \meta{expression} is any valid scalar REDUCE expression. In
- \nameref{rounded} mode, if a numerical value exists, \name{atan2} returns
- the principal value of the arc tangent of the second argument divided by
- the first in the range \[-pi,+pi\] radians, using the signs of both
- arguments to determine the quadrant of the return value. An expression in
- terms of \name{atan2} is returned in other cases.
- \begin{Examples}
- atan2(3,2); & ATAN2(3,2); \\
- on rounded; \\
- atan2(3,2); & 0.982793723247 \\
- atan2(a,b); & ATAN2(A,B); \\
- atan2(1,0); & 1.57079632679
- \end{Examples}
- \begin{Comments}
- \name{atan2} returns a numeric value only if \nameref{rounded} is on. Then
- \name{atan2} is calculated to the current degree of floating point precision.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{COS}
- The \name{cos} operator returns the cosine of its argument.
- \begin{Syntax}
- \name{cos}\(\meta{expression}\) or \name{cos} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} is any valid scalar REDUCE expression,
- \meta{simple\_expression} is a single identifier or begins with a prefix
- operator name.
- \begin{Examples}
- cos abc; & COS(ABC) \\
- cos(pi); & -1 \\
- cos 4; & COS(4) \\
- on rounded; \\
- cos(4); & - 0.653643620864 \\
- cos log 5; & - 0.0386319699339
- \end{Examples}
- \begin{Comments}
- \name{cos} returns a numeric value only if \nameref{rounded} is on. Then the
- cosine is calculated to the current degree of floating point precision.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{COSH}
- \index{hyperbolic cosine}
- The \name{cosh} operator returns the hyperbolic cosine of its argument.
- The derivative of \name{cosh} and some simple transformations are known
- to the system.
- \begin{Syntax}
- \name{cosh}\(\meta{expression}\) or \name{cosh} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- cosh b; & COSH(B) \\
- cosh(0); & 1 \\
- df(cosh(x*y),x); & SINH(X*Y)*Y \\
- int(cosh(x),x); & SINH(X)
- \end{Examples}
- \begin{Comments}
- You may attach further functionality by defining its inverse (see
- \nameref{acosh}).
- A numeric value is not returned by \name{cosh} unless the switch
- \nameref{rounded} is on and its argument evaluates to a number.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{COT}
- \name{cot} represents the cotangent of its argument. It takes an arbitrary
- scalar expression as its argument. The derivative of \name{acot} and some
- simple properties are known to the system.
- \begin{Syntax}
- \name{cot}\(\meta{expression}\) or \name{cot} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression. \meta{simple\_expression}
- must be a single identifier or begin with a prefix operator name.
- \begin{Examples}
- cot(a)*tan(a); & COT(A)*TAN(A)) \\
- cot(1); & COT(1) \\
- df(cot(2*x),x); & - 2*(COT(2*X)^{2} + 1)
- \end{Examples}
- \begin{Comments}
- Numerical values of expressions involving \name{cot} may be found by
- turning on the switch \nameref{rounded}.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{COTH}
- \index{hyperbolic cotangent}
- The \name{coth} operator returns the hyperbolic cotangent of its argument.
- The derivative of \name{coth} and some simple transformations are known
- to the system.
- \begin{Syntax}
- \name{coth}\(\meta{expression}\) or \name{coth} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression. \meta{simple\_expression}
- must be a single identifier or begin with a prefix operator name.
- \begin{Examples}
- df(coth(x*y),x); & - Y*(COTH(X*Y)^{2} - 1) \\
- coth acoth z; & Z
- \end{Examples}
- \begin{Comments}
- You can write \nameref{let} statements and procedures to add further
- functionality to \name{coth} if you wish. Numerical values of expressions
- involving \name{coth} may also be found by turning on the switch
- \nameref{rounded}.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{CSC}
- \index{cosecant}
- The \name{csc} operator returns the cosecant of its argument.
- The derivative of \name{csc} and some simple transformations are known
- to the system.
- \begin{Syntax}
- \name{csc}\(\meta{expression}\) or \name{csc} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression. \meta{simple\_expression}
- must be a single identifier or begin with a prefix operator name.
- \begin{Examples}
- csc(q)*sin(q); & CSC(Q)*SIN(Q) \\
- df(csc(x*y),x); & -COT(X*Y)*CSC(X*Y)*Y
- \end{Examples}
- \begin{Comments}
- You can write \nameref{let} statements and procedures to add further
- functionality to \name{csc} if you wish. Numerical values of expressions
- involving \name{csc} may also be found by turning on the switch
- \nameref{rounded}.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{CSCH}
- \index{hyperbolic cosecan}
- The \name{cosh} operator returns the hyperbolic cosecant of its argument.
- The derivative of \name{csch} and some simple transformations are known
- to the system.
- \begin{Syntax}
- \name{csch}\(\meta{expression}\) or \name{csch} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- csch b; & CSCH(B) \\
- csch(0); & 0 \\
- df(csch(x*y),x); & - COTH(X*Y)*CSCH(X*Y)*Y \\
- int(csch(x),x); & INT(CSCH(X),X)
- \end{Examples}
- \begin{Comments}
- % You may attach further functionality by defining its inverse (see
- % \nameref{acsch}).
- A numeric value is not returned by \name{csch} unless the switch
- \nameref{rounded} is on and its argument evaluates to a number.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{ERF}
- \index{error function}
- The \name{erf} operator represents the error function, defined by
- \begin{TEX}
- \begin{displaymath}
- erf(x) = {2\over \sqrt{\pi}} \int{e^{-x^2}\,dx}
- \end{displaymath}
- \end{TEX}
- \begin{INFO}
- erf(x) = (2/sqrt(pi))*int(e^(-x^2),x)
- \end{INFO}
- A limited number of its properties are known to the system, including the
- fact that it is an odd function. Its derivative is known, and from this,
- some integrals may be computed. However, a complete integration procedure
- for this operator is not currently included.
- \begin{Examples}
- erf(0); & 0 \\
- erf(-a); & - ERF(A) \\
- df(erf(x**2),x); & \rfrac{4*SQRT(PI)*X}{E^{X^{4}}*PI} \\\\
- int(erf(x),x); & \rfrac{E^{X^{2}}*ERF(X)*PI*X + SQRT(PI)}{E^{X^{2}}*PI}
- \end{Examples}
- \end{Operator}
- \begin{Operator}{EXP}
- \index{exponential function}
- The \name{exp} operator returns \name{e} raised to the power of its argument.
- \begin{Syntax}
- \name{exp}\(\meta{expression}\) or \name{exp} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} can be any valid REDUCE scalar expression.
- \meta{simple\_expression} must be a single identifier or begin with a
- prefix operator.
- \begin{Examples}
- exp(sin(x)); & E^{SIN X} \\
- exp(11); & E^{11} \\
- on rounded; \\
- exp sin(pi/3); & 2.37744267524
- \end{Examples}
- \begin{Comments}
- Numeric values are returned only when \name{rounded} is on.
- The single letter \name{e} with the exponential operator \name{^} or
- \name{**} may be substituted for \name{exp} without change of function.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{SEC}
- The \name{sec} operator returns the secant of its argument.
- \begin{Syntax}
- \name{sec}\(\meta{expression}\) or \name{sec} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} is any valid scalar REDUCE expression,
- \meta{simple\_expression} is a single identifier or begins with a prefix
- operator name.
- \begin{Examples}
- sec abc; & SEC(ABC) \\
- sec(pi); & -1 \\
- sec 4; & SEC(4) \\
- on rounded; \\
- sec(4); & - 1.52988565647 \\
- sec log 5; & - 25.8852966005
- \end{Examples}
- \begin{Comments}
- \name{sec} returns a numeric value only if \nameref{rounded} is on. Then the
- secant is calculated to the current degree of floating point precision.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{SECH}
- \index{hyperbolic secant}
- The \name{sech} operator returns the hyperbolic secant of its argument.
- \begin{Syntax}
- \name{sech}\(\meta{expression}\) or \name{sech} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} is any valid scalar REDUCE expression,
- \meta{simple\_expression} is a single identifier or begins with a prefix
- operator name.
- \begin{Examples}
- sech abc; & SECH(ABC) \\
- sech(0); & 1 \\
- sech 4; & SECH(4) \\
- on rounded; \\
- sech(4); & 0.0366189934737 \\
- sech log 5; & 0.384615384615
- \end{Examples}
- \begin{Comments}
- \name{sech} returns a numeric value only if \nameref{rounded} is on. Then the
- expression is calculated to the current degree of floating point precision.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{SIN}
- \index{sine}
- The \name{sin} operator returns the sine of its argument.
- \begin{Syntax}
- \name{sin}\(\meta{expression}\) or \name{sin} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} is any valid scalar REDUCE expression,
- \meta{simple\_expression} is a single identifier or begins with a prefix
- operator name.
- \begin{Examples}
- sin aa; & SIN(AA) \\
- sin(pi/2); & 1 \\
- on rounded; \\
- sin 3; & 0.14112000806 \\
- sin(pi/2); & 1.0
- \end{Examples}
- \begin{Comments}
- \name{sin} returns a numeric value only if \name{rounded} is on.
- Then the sine is calculated to the current degree of floating point precision.
- The argument in this case is assumed to be in radians.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{SINH}
- \index{hyperbolic sine}
- The \name{sinh} operator returns the hyperbolic sine of its argument.
- The derivative of \name{sinh} and some simple transformations are known
- to the system.
- \begin{Syntax}
- \name{sinh}\(\meta{expression}\) or \name{sinh} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- sinh b; & SINH(B) \\
- sinh(0); & 0 \\
- df(sinh(x**2),x); & 2*COSH(X^{2})*X \\
- int(sinh(4*x),x); & \rfrac{COSH(4*X)}{4} \\
- on rounded; \\
- sinh 4; & 27.2899171971
- \end{Examples}
- \begin{Comments}
- You may attach further functionality by defining its inverse (see
- \nameref{asinh}).
- A numeric value is not returned by \name{sinh} unless the switch
- \nameref{rounded} is on and its argument evaluates to a number.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{TAN}
- The \name{tan} operator returns the tangent of its argument.
- \begin{Syntax}
- \name{tan}\(\meta{expression}\) or \name{tan} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} is any valid scalar REDUCE expression,
- \meta{simple\_expression} is a single identifier or begins with a prefix
- operator name.
- \begin{Examples}
- tan a; & TAN(A) \\
- tan(pi/5); & TAN(\rfrac{PI}{5}) \\
- on rounded;
- tan(pi/5); & 0.726542528005
- \end{Examples}
- \begin{Comments}
- \name{tan} returns a numeric value only if \name{rounded} is on. Then the
- tangent is calculated to the current degree of floating point accuracy.
- When \nameref{rounded} is on,
- no check is made to see if the argument of \name{tan} is a multiple of
- $\pi/2$, for which the tangent goes to positive or negative infinity.
- (Of course, since REDUCE uses a fixed-point representation of $\pi/2$,
- it produces a large but not infinite number.) You need to make a check for
- multiples of $\pi/2$ in any program you use that might possibly ask
- for the tangent of such a quantity.
- \end{Comments}
- \end{Operator}
- \begin{Operator}{TANH}
- \index{hyperbolic tangent}
- The \name{tanh} operator returns the hyperbolic tangent of its argument.
- The derivative of \name{tanh} and some simple transformations are known
- to the system.
- \begin{Syntax}
- \name{tanh}\(\meta{expression}\) or \name{tanh} \meta{simple\_expression}
- \end{Syntax}
- \meta{expression} may be any scalar REDUCE expression, not an array, matrix or
- vector expression. \meta{simple\_expression} must be a single identifier or
- begin with a prefix operator name.
- \begin{Examples}
- tanh b; & TANH(B) \\
- tanh(0); & 0 \\
- df(tanh(x*y),x); & Y*( - TANH(X*Y)^{2} + 1) \\
- int(tanh(x),x); & LOG(E^{2*X} + 1) - X \\
- on rounded; tanh 2; & 0.964027580076
- \end{Examples}
- \begin{Comments}
- You may attach further functionality by defining its inverse (see
- \nameref{atanh}).
- A numeric value is not returned by \name{tanh} unless the switch
- \nameref{rounded} is on and its argument evaluates to a number.
- \end{Comments}
- \end{Operator}
|