123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413 |
- \documentstyle[11pt,reduce]{article}
- \title{{\bf $Z$-Transform Package for {\tt REDUCE}}}
- \author{Wolfram Koepf \\ Lisa Temme \\ email: {\tt Koepf@zib-berlin.de}}
- \date{April 1995 : ZIB Berlin}
- \begin{document}
- \maketitle
- \section{$Z$-Transform}
- The $Z$-Transform of a sequence $\{f_n\}$ is the discrete analogue
- of the Laplace Transform, and
- \[{\cal Z}\{f_n\} = F(z) = \sum^\infty_{n=0} f_nz^{-n}\;.\] \\
- This series converges in the region outside the circle
- $|z|=|z_0|= \limsup\limits_{n \rightarrow \infty} \sqrt[n]{|f_n|}\;.$
- \begin{tabbing}
- {\bf SYNTAX:}\ \ {\tt ztrans($f_n$, n, z)}\ \ \ \ \ \ \ \
- \=where $f_n$ is an expression, and $n$,$z$ \\
- \> are identifiers.\\
- \end{tabbing}
- \section{Inverse $Z$-Transform}
- The calculation of the Laurent coefficients of a regular function
- results in the following inverse formula for the $Z$-Transform:
- \\
- If $F(z)$ is a regular function in the region $|z|> \rho$ then
- $\exists$ a sequence \{$f_n$\} with ${\cal Z} \{f_n\}=F(z)$
- given by
- \[f_n = \frac{1}{2 \pi i}\oint F(z) z^{n-1} dz\]
- \begin{tabbing}
- {\bf SYNTAX:}\ \ {\tt invztrans($F(z)$, z, n)}\ \ \ \ \ \ \ \
- \=where $F(z)$ is an expression, \\
- \> and $z$,$n$ are identifiers.
- \end{tabbing}
- \section{Input for the $Z$-Transform}
- \begin{tabbing}
- This pack\=age can compute the \= $Z$-Transforms of the \=following
- list of $f_n$, and \\ certain combinations thereof.\\ \\
- \>$1$
- \>$e^{\alpha n}$
- \>$\frac{1}{(n+k)}$ \\ \\
- \>$\frac{1}{n!}$
- \>$\frac{1}{(2n)!}$
- \>$\frac{1}{(2n+1)!}$ \\ \\
- \>$\frac{\sin(\beta n)}{n!}$
- \>$\sin(\alpha n+\phi)$
- \>$e^{\alpha n} \sin(\beta n)$ \\ \\
- \>$\frac{\cos(\beta n)}{n!}$
- \>$\cos(\alpha n+\phi)$
- \>$e^{\alpha n} \cos(\beta n)$ \\ \\
- \>$\frac{\sin(\beta (n+1))}{n+1}$
- \>$\sinh(\alpha n+\phi)$
- \>$\frac{\cos(\beta (n+1))}{n+1}$ \\ \\
- \>$\cosh(\alpha n+\phi)$
- \>${n+k \choose m}$\\
- \end{tabbing}
- \begin{tabbing}
- \underline {{\bf Other Combinations}}\= \\ \\
- \underline {Linearity}
- \>${\cal Z} \{a f_n+b g_n \} = a{\cal Z} \{f_n\}+b{\cal Z}\{g_n\}$
- \\ \\
- \underline {Multiplication by $n$}
- \>${\cal Z} \{n^k \cdot f_n\} = -z \frac{d}{dz} \left({\cal Z}\{n^{k-1} \cdot f_n,n,z\} \right)$
- \\ \\
- \underline {Multiplication by $\lambda^n$}
- \>${\cal Z} \{\lambda^n \cdot f_n\}=F \left(\frac{z}{\lambda}\right)$
- \\ \\
- \underline {Shift Equation}
- \>${\cal Z} \{f_{n+k}\} =
- z^k \left(F(z) - \sum\limits^{k-1}_{j=0} f_j z^{-j}\right)$
- \\ \\
- \underline {Symbolic Sums}
- \> ${\cal Z} \left\{ \sum\limits_{k=0}^{n} f_k \right\} =
- \frac{z}{z-1} \cdot {\cal Z} \{f_n\}$ \\ \\
- \>${\cal Z} \left\{ \sum\limits_{k=p}^{n+q} f_k \right\}$
- \ \ \ combination of the above \\ \\
- where $k$,$\lambda \in$ {\bf N}$- \{0\}$; and $a$,$b$ are variables
- or fractions; and $p$,$q \in$ {\bf Z} or \\
- are functions of $n$; and $\alpha$, $\beta$ \& $\phi$ are angles
- in radians.
- \end{tabbing}
- \section{Input for the Inverse $Z$-Transform}
- \begin{tabbing}
- This \= package can compute the Inverse \= Z-Transforms of any
- rational function, \\ whose denominator can be factored over
- ${\bf Q}$, in addition to the following list \\ of $F(z)$.\\ \\
- \> $\sin \left(\frac{\sin (\beta)}{z} \ \right)
- e^{\left(\frac{\cos (\beta)}{z} \ \right)}$
- \> $\cos \left(\frac{\sin (\beta)}{z} \ \right)
- e^{\left(\frac{\cos (\beta)}{z} \ \right)}$ \\ \\
- \> $\sqrt{\frac{z}{A}} \sin \left( \sqrt{\frac{z}{A}} \ \right)$
- \> $\cos \left( \sqrt{\frac{z}{A}} \ \right)$ \\ \\
- \> $\sqrt{\frac{z}{A}} \sinh \left( \sqrt{\frac{z}{A}} \ \right)$
- \> $\cosh \left( \sqrt{\frac{z}{A}} \ \right)$ \\ \\
- \> $z \ \log \left(\frac{z}{\sqrt{z^2-A z+B}} \ \right)$
- \> $z \ \log \left(\frac{\sqrt{z^2+A z+B}}{z} \ \right)$ \\ \\
- \> $\arctan \left(\frac{\sin (\beta)}{z+\cos (\beta)} \ \right)$
- \\
- \end{tabbing}
- where $k$,$\lambda \in$ {\bf N}$ - \{0\}$ and $A$,$B$ are fractions
- or variables ($B>0$) and $\alpha$,$\beta$, \& $\phi$ are angles
- in radians.
- \section{Application of the $Z$-Transform}
- \underline {{\bf Solution of difference equations}}\\
- In the same way that a Laplace Transform can be used to
- solve differential equations, so $Z$-Transforms can be used
- to solve difference equations.\\ \\
- Given a linear difference equation of $k$-th order
- \begin{equation}
- f_{n+k} + a_1 f_{n+k-1}+ \ldots + a_k f_n = g_n
- \label{eq:1}
- \end{equation}
- with initial conditions
- $f_0 = h_0$, $f_1 = h_1$, $\ldots$, $f_{k-1} = h_{k-1}$ (where $h_j$
- are given), it is possible to solve it in the following way.
- If the coefficients $a_1, \ldots , a_k$ are constants, then the
- $Z$-Transform of (\ref{eq:1}) can be calculated using the shift
- equation, and results in a solvable linear equation for
- ${\cal Z} \{f_n\}$. Application of the Inverse $Z$-Transform
- then results in the solution of \ (\ref{eq:1}).\\
- If the coefficients $a_1, \ldots , a_k$ are polynomials in $n$ then
- the $Z$-Transform of (\ref{eq:1}) constitutes a differential
- equation for ${\cal Z} \{f_n\}$. If this differential equation can
- be solved then the Inverse $Z$-Transform once again yields the
- solution of (\ref{eq:1}).
- Some examples of these methods of solution can be found in
- $\S$\ref{sec:Examples}.
- \section{EXAMPLES}
- \label{sec:Examples}
- \underline {{\bf Here are some examples for the $Z$-Transform}}\\
- \begin{verbatim}
- 1: ztrans((-1)^n*n^2,n,z);
- z*( - z + 1)
- ---------------------
- 3 2
- z + 3*z + 3*z + 1
- 2: ztrans(cos(n*omega*t),n,z);
- z*(cos(omega*t) - z)
- ---------------------------
- 2
- 2*cos(omega*t)*z - z - 1
- 3: ztrans(cos(b*(n+2))/(n+2),n,z);
- z
- z*( - cos(b) + log(------------------------------)*z)
- 2
- sqrt( - 2*cos(b)*z + z + 1)
- 4: ztrans(n*cos(b*n)/factorial(n),n,z);
- cos(b)/z sin(b) sin(b)
- e *(cos(--------)*cos(b) - sin(--------)*sin(b))
- z z
- ---------------------------------------------------------
- z
- 5: ztrans(sum(1/factorial(k),k,0,n),n,z);
- 1/z
- e *z
- --------
- z - 1
- 6: operator f$
- 7: ztrans((1+n)^2*f(n),n,z);
- 2
- df(ztrans(f(n),n,z),z,2)*z - df(ztrans(f(n),n,z),z)*z
- + ztrans(f(n),n,z)
- \end{verbatim}
- \underline {{\bf Here are some examples for the Inverse $Z$-Transform}}
- \begin{verbatim}
- 8: invztrans((z^2-2*z)/(z^2-4*z+1),z,n);
- n n n
- (sqrt(3) - 2) *( - 1) + (sqrt(3) + 2)
- -----------------------------------------
- 2
- 9: invztrans(z/((z-a)*(z-b)),z,n);
- n n
- a - b
- ---------
- a - b
- 10: invztrans(z/((z-a)*(z-b)*(z-c)),z,n);
- n n n n n n
- a *b - a *c - b *a + b *c + c *a - c *b
- -----------------------------------------
- 2 2 2 2 2 2
- a *b - a *c - a*b + a*c + b *c - b*c
- 11: invztrans(z*log(z/(z-a)),z,n);
- n
- a *a
- -------
- n + 1
- 12: invztrans(e^(1/(a*z)),z,n);
- 1
- -----------------
- n
- a *factorial(n)
- 13: invztrans(z*(z-cosh(a))/(z^2-2*z*cosh(a)+1),z,n);
- cosh(a*n)
- \end{verbatim}
- \underline {{\bf Examples: Solutions of Difference Equations}}\\ \\
- \begin{tabbing}
- {\bf I} \ \ \ \ \ \ \=
- (See \cite{BS}, p.\ 651, Example 1).\\
- \> Consider the \= homogeneous linear difference equation\\ \\
- \>\> $f_{n+5} - 2 f_{n+3} + 2 f_{n+2} - 3 f_{n+1} + 2 f_{n}=0$\\ \\
- \> with \ initial conditions \ $f_0=0$, $f_1=0$, $f_2=9$, $f_3=-2$,
- $f_4=23$. \ The\\
- \> $Z$-Transform of the left hand side can be written as
- $F(z)=P(z)/Q(z)$ \\
- \> where \ $P(z)=9z^3-2z^2+5z$ \
- and \ $Q(z)=z^5-2z^3+2z^2-3z+2$ \ $=$\\
- \> $(z-1)^2(z+2)(z^2+1)$, \ which can be inverted to give\\ \\
- \>\> $f_n = 2n + (-2)^n - \cos \frac{\pi}{2}n\;.$ \\ \\
- \> The following REDUCE session shows how the present package can
- \\ \> be used to solve the above problem.
- \end{tabbing}
- \begin{verbatim}
- 14: operator f$ f(0):=0$ f(1):=0$ f(2):=9$ f(3):=-2$ f(4):=23$
- 20: equation:=ztrans(f(n+5)-2*f(n+3)+2*f(n+2)-3*f(n+1)+2*f(n),n,z);
- 5 3
- equation := ztrans(f(n),n,z)*z - 2*ztrans(f(n),n,z)*z
- 2
- + 2*ztrans(f(n),n,z)*z - 3*ztrans(f(n),n,z)*z
- 3 2
- + 2*ztrans(f(n),n,z) - 9*z + 2*z - 5*z
- 21: ztransresult:=solve(equation,ztrans(f(n),n,z));
- 2
- z*(9*z - 2*z + 5)
- ztransresult := {ztrans(f(n),n,z)=----------------------------}
- 5 3 2
- z - 2*z + 2*z - 3*z + 2
- 22: result:=invztrans(part(first(ztransresult),2),z,n);
- n n n n
- 2*( - 2) - i *( - 1) - i + 4*n
- result := -----------------------------------
- 2
- \end{verbatim}
- \begin{tabbing}
- \\ \\
- {\bf II} \ \ \ \ \ \ \=
- (See \cite{BS}, p.\ 651, Example 2).\\
- \> Consider the \= inhom\=ogeneous difference equation:\\ \\
- \>\> $f_{n+2} - 4 f_{n+1} + 3 f_{n} = 1$\\ \\
- \> with initial conditions $f_0=0$, $f_1=1$. Giving \\ \\
- \>\> $F(z)$\>$ = {\cal Z}\{1\} \left( \frac{1}{z^2-4z+3} + \frac{z}{z^2-4z+3} \right)$\\ \\
- \>\>\> $ = \frac{z}{z-1} \left( \frac{1}{z^2-4z+3} + \frac{z}{z^2-4z+3} \right)$.
- \\ \\
- \> The Inverse $Z$-Transform results in the solution\\ \\
- \>\>
- $f_n = \frac{1}{2} \left( \frac{3^{n+1}-1}{2}-(n+1) \right)$.\\ \\
- \> The following REDUCE session shows how the present package can\\
- \> be used to solve the above problem.
- \end{tabbing}
- \begin{verbatim}
- 23: clear(f)$ operator f$ f(0):=0$ f(1):=1$
- 27: equation:=ztrans(f(n+2)-4*f(n+1)+3*f(n)-1,n,z);
- 3 2
- equation := (ztrans(f(n),n,z)*z - 5*ztrans(f(n),n,z)*z
- 2
- + 7*ztrans(f(n),n,z)*z - 3*ztrans(f(n),n,z) - z )/(z - 1)
- 28: ztransresult:=solve(equation,ztrans(f(n),n,z));
- 2
- z
- result := {ztrans(f(n),n,z)=---------------------}
- 3 2
- z - 5*z + 7*z - 3
- 29: result:=invztrans(part(first(ztransresult),2),z,n);
- n
- 3*3 - 2*n - 3
- result := ----------------
- 4
- \end{verbatim}
- \begin{tabbing}
- \\ \\
- {\bf III} \ \ \ \ \ \ \=
- Consider the \=following difference equation, which has a
- differential\\
- \> equation for ${\cal Z}\{f_n\}$.\\ \\
- \>\> $(n+1) \cdot f_{n+1}-f_n=0$\\ \\
- \> with initial conditions $f_0=1$, $f_1=1$. It can be solved in REDUCE\\
- \> using the present package in the following way.\\
- \end{tabbing}
- \begin{verbatim}
- 30: clear(f)$ operator f$ f(0):=1$ f(1):=1$
- 34: equation:=ztrans((n+1)*f(n+1)-f(n),n,z);
- 2
- equation := - (df(ztrans(f(n),n,z),z)*z + ztrans(f(n),n,z))
- 35: operator tmp;
- 36: equation:=sub(ztrans(f(n),n,z)=tmp(z),equation);
- 2
- equation := - (df(tmp(z),z)*z + tmp(z))
- 37: load(odesolve);
- 38: ztransresult:=odesolve(equation,tmp(z),z);
- 1/z
- ztransresult := {tmp(z)=e *arbconst(1)}
- 39: preresult:=invztrans(part(first(ztransresult),2),z,n);
- arbconst(1)
- preresult := --------------
- factorial(n)
- 40: solve({sub(n=0,preresult)=f(0),sub(n=1,preresult)=f(1)},
- arbconst(1));
- {arbconst(1)=1}
- 41: result:=preresult where ws;
- 1
- result := --------------
- factorial(n)
- \end{verbatim}
- \begin{thebibliography}{9}
- \bibitem{BS} Bronstein, I.N. and Semedjajew, K.A.,
- {\it Taschenbuch der Mathematik},
- Verlag Harri Deutsch, Thun und Frankfurt(Main),
- 1981.\\ISBN 3 87144 492 8.
- \end{thebibliography}
- \end{document}
|