123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358 |
- \documentstyle[a4wide,11pt,reduce,makeidx]{article}
- \pagestyle{empty}
- \makeindex
- \title{{\bf SCOPE 1.5\\ A Source-Code Optimization PackagE\\ for\\ REDUCE 3.6\\
- \vspace{0.5cm}
- =====\\
- \vspace{0.5cm} User's Manual}}
- \date{}
- \author {\large
- \vspace{1cm} \\
- J.A. van Hulzen \\ University of Twente, Department of Computer Science\\
- P.O. Box 217, 7500 AE Enschede, The Netherlands \\
- Email: infhvh@cs.utwente.nl}
- \newcommand{\ad}{\mbox{$\rightarrow$}\hspace{-.30cm}{$/$}\hspace{.30cm}}
- \begin{document}
- \maketitle
- \vspace{3cm}
- \begin{center}
- {\bf Abstract}\\
- \end{center}
- The facilities, offered by SCOPE 1.5, a Source-Code Optimization PackagE
- for {\REDUCE} 3.6, are presented. We discuss the user aspects of the package.
- The algorithmic backgrounds are shortly summarized.
- Examples of straightforward and more advanced usage are shown,
- both in algebraic and symbolic mode.
- Possibilities for a combined use of GENTRAN and SCOPE are presented as well.
- \vspace{1.5cm}
- \copyright {\em \ \ } J.A. van Hulzen, University of Twente. All rights reserved.
- \newpage
- \tableofcontents
- \newpage
- \pagestyle{headings}
- \section{Introduction}\label{SCOPE:intro}
- \pagenumbering{arabic}
- An important application of computer algebra systems is the generation
- of code for numerical purposes via automatic or semi-automatic program
- generation or synthesis.
- GENTRAN~\cite{Gates:84,Gates:85,Gates:86,Gates:91}, a flexible general-purpose
- package, was especially developed to assist in such a task, when using
- MACSYMA or {\REDUCE}.
- \index{optimization}
- Attendant to {\bf automatic program generation} is the problem
- of {\bf automatic source-code optimization}.
- This is a crucial aspect because code
- generated from symbolic computations often tends to be made up of
- lengthy arithmetic expressions.
- Such lengthy codes are grouped together in
- blocks of straight-line code in a program for numerical purposes. The
- main objective of SCOPE, our source-code optimization package, has been
- minimization of the number of (elementary) arithmetic operations in such
- blocks. This can be accomplished by replacing repeatedly occuring
- subexpressions, called common subexpressions or cse's for short,
- \index{cse (common subexpression)}
- by placeholders. We further assume that new statements of the form
- "placeholder := cse" are inserted correctly in the code. This
- form of optimization is often helpful in reducing redundancy in (sets of)
- expressions. A recent application, code generation for an
- incompressible Navier-Stokes problem~\cite{Goldman:95}, showed reduction
- from 45.000 lines of FORTRAN code to 13.000 lines.
- \index{optimizing compilers}
- Optimizing compilers ought to deal effectively and efficiently with
- the average, hand coded program. The enormous, arithmetic intensive
- expressions, easily producable by a computer algebra system, fall
- outside the range of the FORTRAN programs, once analyzed and discussed
- by Knuth~\cite{Knuth:71}. He suggested that optimization of the arithmetic in
- such a program is slightly overdone. The usual compiler optimization strategy
- is based on easy detection of redundancy, without assuming the validity of
- (some) algebric laws (see for instance ~\cite{Gonzales})
- Our optimization strategy however, requires the validity of
- some elementary algebraic laws. We employ heuristic techniques to
- reduce the arithmetic complexity of the given representation of a set
- ${\rm E}_{in}$ of input statements, thus producing a set
- ${\rm E}_{out}$ of output assignment statements.
- ${\rm E}_{in}$ and ${\rm E}_{out}$ define blocks of
- code, which would compute the same exact values for the same exact
- inputs, thus implicitly proving the correctness of the underlying
- software. Obviously the use of ${\rm E}_{out}$ ought to save a considerable
- amount of execution time in comparison with the application of ${\rm
- E}_{in}$. Johnson et al~\cite{Johnson:79} suggest that such
- transformations do not destabilize the computations. However this is only
- apparent after a careful error analysis of both ${\rm E}_{in}$ and ${\rm
- E}_{out}$. In view of the size of both ${\rm E}_{in}$ and ${\rm E}_{out}$
- such an analysis has to be automatized as well. Work in this direction is
- in progress ~\cite{Hulshof,Molenkamp:91,Molenkamp:94}.
- \index{error analysis}
- \index{arithmetic complexity}
- Although the use of SCOPE can considaribly reduce the arithmetic complexity
- of a given piece of code,
- we have to be aware of possible numerical side effects. In addition we have
- to realize that a mapping is performed from one source language to another
- source language, seemingly without taking into account the platform the resulting
- numerical code has to be executed on. Seemingly, because we implemented some
- facilities for regulating minimal expression length and for producing
- vector code.
- \index{vector code}
- This manual is organized as follows. We begin with some preliminary remarks
- in section~\ref{SCOPE:prel}. The history and the present status,
- the optimization
- strategy and the interplay between GENTRAN and SCOPE are shortly summarized.
- The basic algebraic mode facilities are presented in
- section~\ref{SCOPE:basic}. Special SCOPE features are discussed in
- section~\ref{SCOPE:soph}. Besides facilities for Horner-rules and an extended
- version of the REDUCE function {\tt structr}, we introduce some tools for
- extending SCOPE with user defined specialties. File management follows in
- section~\ref{SCOPE:files}. In section~\ref{SCOPE:decl} declaration handling
- and related issues are discussed, before illustrating our strategy concerning
- data dependencies and generation of vector code in section~\ref{SCOPE:dda}.
- In section~\ref{SCOPE:gopt} is shown how a combined used of GENTRAN and SCOPE
- can be profitable for pro\-gram-ge\-ne\-ra\-ti\-on. The use of SCOPE in
- symbolic mode is presented in section~\ref{SCOPE:symb}. A SCOPE syntax
- summary is given in section~\ref{SCOPE:syntax}.
- For completeness we present guidelines for installing the
- package in the last section.\\
- {\bf Requests}
- \begin{itemize}
- \item Comment and complaints about possible bugs can be send to the author
- using the e-mail address infhvh@cs.utwente.nl. A compact piece with
- REDUCE code, illustrating the bug, is prefered.
- \item When SCOPE 1.5 is used in prepairing results, presented in some
- publication, reference to its use is highly appreciated. A copy of the
- published document as well.
- \end{itemize}
- \newpage
- \section{Preliminaries}\label{SCOPE:prel}
- For completeness we present a historical survey, a birds-eye view of the
- overall optimization strategy and the interplay between GENTRAN and SCOPE.
- \subsection{History and Present Status}\label{SCOPE:hito}
- The first version of the package was designed to optimize the
- description of {\REDUCE}-statements, generated by
- NETFORM~\cite{Smit:81,Smit:82}. This
- version was tailored to a restrictive class of problems, mainly occurring
- in electrical network theory, thus implying that the right-hand
- sides (rhs's) in the input were limited to elements of ${\rm {\bf Z_2}}$[V],
- where V is a set of identifiers. The second version~\cite{vanHulzen:83}
- allowed rhs's from {\bf Z}[V]. For both versions the validity of the
- commutative and the associative law was assumed. A third version
- evolved from the latter package by allowing to apply the distributive
- law, i.e. by replacing (sub)expressions like $a.b + a.c$ by $a.(b
- + c)$ whenever possible. But the range of possible applications of
- this version was really enlarged by redefining V as a set of kernels,
- implying that almost any proper {\REDUCE}
- expression could function as a rhs. The mathematical capabilities of
- this version are shortly summarized in~\cite{Wang:84}, in the context of code
- generation and optimization for finite-element analysis. This version
- was further extended~\cite{vanHulzen:89} with a declaration-module,
- in accordance with the strategy outlined in~\cite{Aho:86}, chapter 6.
- It is used \index{GENTRAN}
- in combination with GENTRAN, for
- the construction of Jacobians and Hessians~\cite{Heuvel:89,Berger:92} and
- also in experiments with strategies for code vectorization~\cite{Goldman:89}.
- In the meantime the Jacobian-Hessian production package, at present
- called GENJAC, is further extended with possibilities for global optimization
- and with some form of loop-differentiation. So in stead of optimizing
- separate blocks of arithmetic we are now able to optimize complete programs,
- albeit of a rather specific syntactical structure~\cite{Berger:92}.
- The present 1.5 version of SCOPE, is an intermediate between the distributed first
- version and the future, second version. Version 2 is currently in
- development and will contain, besides the already existing common sub
- expression (cse) searches, facilities for structure and pattern recognition.
- The 1.5 version permits -using the present REDUCE terminology- rounded
- coefficients, based on the domain features, described in~\cite{Bradford:86},
- discovery and adequate treatement of a variety of data dependencies, and
- quotient-optimization, besides a collection of other improvements and
- refinements for using the facilities in the algebraic mode.
- Furthermore, an increased flexibility in the interplay between
- GENTRAN and SCOPE is accomplished. It is used for experiments concerning
- automatic differentiation ~\cite{Goldman:91}, symbolic-numeric approaches to
- stability analysis ~\cite{Ganzha:92,Ganzha:94} and for code generation for
- numerically solving the Navier-Stokes equations for incompressible
- flows ~\cite{Goldman:95}. An interesting example of its use elsewhere can be found
- in ~\cite{Dyer:94}.
- \subsection{Acknowledgements}\label{SCOPE:ackn}
- Many discussions with Victor V. Goldman, Jaap Smit and Paul S. Wang
- have contributed to the present status of SCOPE. I express my
- gratitude to the many students, who have also
- contributed to SCOPE, either by assisting in designing and implementing new
- facilities, or by applying the package in automated program generation projects
- in and outside university, thus showing shortcomings and suggesting
- improvements and extensions. I mention explicitly
- Frits Berger, Johan de Boer, John Boers, Pim Borst, Barbara Gates,
- Marcel van Heerwaarden, Pim van den Heuvel, Ben Hulshof, Emiel Jongerius,
- Steffen Posthuma, Anco Smit, Bernard van Veelen and Jan Verheul.
- \subsection{The Optimization Strategy in a Birds-eye View}\label{SCOPE:bird}
- In~\cite{vanHulzen:81,vanHulzen:83} we described the overall
- optimization strategy used for
- \index{optimization strategy}
- SCOPE as a composite function ${{\rm R}^{-1}} \circ {{\rm T}}
- \circ {{\rm R}}$. The function R defines how to store the input
- ${{\rm E}}_{0}$ in an expression database ${{\rm D}}_{0}$.
- The inverse function ${{\rm R}}^{{-1}}$ defines the output production.
- The function T defines the
- optimization process itself. It essentially consists of a heuristic
- remodeling of the (extendable and modifiable) expression database
- in combination with storing information required for a fast
- retrieval and correct insertion of the detected cse's in the output.
- This is accomplished by an iteratively
- applied search, resulting in a stepwise reduction of the arithmetic
- complexity of the input set, using an extended version of Breuer's
- \index{Breuer's Algorithm}
- grow factor algorithm~\cite{Breuer:69,vanHulzen:81,vanHulzen:83}.
- It is applied until no further profit
- is gained, i.e. until the reduction in arithmetic complexity stops.
- Before producing output, a finishing touch can be performed to further
- \index{finishing touch}
- reduce the arithmetic complexity with some locally applied techniques.
- Hence T is also a composite function.
- The overall process can be summarized as follows:
- %\begin{eqnarray*}
- \[ \begin{array}{rcrcl}
- {\rm R} & : & {\rm E_{in}}~=~{\rm E_0} & \rightarrow & ({\rm D_0},{\rm profit_0}) \\
- {\rm T_{\beta}} & : & ({\rm D_i},{\rm profit_i}) & \rightarrow & ({\rm D_{i+1}},
- {\rm profit_{i+1}})~,~{\rm i}~=~0,...,~\lambda - 1. \\
- {\rm F} & : & ({\rm D_{\lambda}},{\rm profit_{\lambda}}) & \rightarrow & {D_{\lambda}}\\
- {\rm R^{-1}} & : & {D_{\lambda}} & \rightarrow & {\rm E_{\lambda}}~=~{\rm E_{out}}
- %\end{eqnarray*}
- \end{array} \]
- ${\rm D_0}$ is created as a result of an R-application performed on
- input ${\rm E_0}$. The termination condition depends on some profit criterion
- related to the arithmetic complexity of the latest version of the
- input, ${{{\rm D}}_i}$. Hence we assume ${{{\rm profit}}_i} = true$
- for $i =0,~\cdots , \lambda -1$ and ${{{\rm profit}}_\lambda} =
- false$. The function T is defined
- by ${\rm T} = {\rm F} \circ {\rm T_{\beta}^{\lambda}}$, where
- ${{\rm T}}_{\beta}$ defines one iteration step, i.e. one application of the
- extended version of Breuer's algorithm, and where F defines a
- \index{extended Breuer algorithm}
- finishing touch, resulting in the final version $D_{\lambda}$ of
- ${{\rm D}}_{0}$, used to produce the output ${{\rm E}}_{\lambda}$.
- It is stated in ~\cite{vanHulzen:83} that the computing time for
- ${\rm T_{\beta}^{\lambda}}$ is ${\rm O(n.m)}$, where n is the size
- of ${\rm E_{in}}$ and m the number of cse's found during this process.
- Practical experience showed that the finishing touch can take about
- 10 \% of the actual cpu-time and that its real profit is limited.
- Therefore its use is made optional.
- The wish to optimize source code, defining arithmetic, usually leads an attempt
- to minimize the arithmetic complexity. This can be accomplished by replacing
- cse's by placeholders, assuming a new assignment
- statement "placeholder $:=$ cse" is correctly inserted in the code.
- So most of the cse-searches are done in right hand sides of
- arithmetic assignment statements.
- The search strategy depends on the permissible structure of the arithmetic
- expressions. We assume these expressions to be multivariate polynomials
- or rational functions in a finite set of kernels, and presented in some
- normal form. Let us further assume that scalar placeholders are substituted
- for the non-scalar kernels, such that back-substitution remains possible,
- using an adequate information storage mechanism. Then we are left with
- the interesting question how to define a minimal set of constituents of
- multivariate polynomials in some normal form norm. Let us take as an
- example of such a polynomial or rational function $p = 3a + 2b + 3 {b^2} c
- (3a + 2b){(c + d)^2}$. We easily recognize linear forms, i.e. $3a + 2b$
- (twice) and $c + d$, possibly raised to some power (${(c + d)}^2$), power
- products, such as ${b^2} c$, or monomial parts of products, i.e. $3 {b^2} c$.
- Hence with some imagination, one realizes that every polynomial can be
- decomposed in a set of linear forms and a set of power products. When
- assuming the validity of the commutative and the associative law, one can also
- realize that we can associate a coefficient matrix with the linear forms and
- an exponent matrix with the power products. The rows can correspondent
- with (sub)\-ex\-pressions and the columns with scalar identifiers.
- The entries are either coefficients or exponents.
- It is therefore conceivable to make a parser, mapping a set of REDUCE
- expressions in a database, consisting of two
- incidence matrices and a function table, such that the original expressions
- can be retrieved. Taking a group of assignmemnt statements or a list of
- equations, where in both cases the lhs's function as right hand side
- recognizers, does not confuse this idea. This rather informal indication
- merely serves as a suggestion how ${\rm R}$ and its inverse operation are
- designed.
- So we suggest that we can consider any set of rhs's as being built with
- linear forms and power products only. An additional remark is worth being
- made: Non-scalar kernels will in general have non-commutable arguments.
- These arguments can in turn be arbitrary {\REDUCE}-expressions, which
- also have to be incorporated in the database. Hence the function table
- is created recursively.
- \index{cse (common subexpression)}
- What is a cse and how do we locate its occurrences? A (sub)expression
- is common when it occurs repeatedly in the input. The occurrences are,
- as part of the input, distributed over the matrices, and shown as
- equivalent (sub)patterns. In fact, we repeatedly search for
- completely dense (sub)matrices of rank 1. The expression $2a + 3c$
- is a cse of ${e_1} = 2a + 4b + 3c$ and ${e_2} = 4a + 6c + 5d$,
- representable by (2,4,3,0) and (4,0,6,5), respectively. We
- indeed have to assume commutativity, so as to be able to produce new
- patterns (2,0,3,0,0), (0,4,0,0,1) and (0,0,0,5,2), representing $s = 2a + 3c$,
- ${e_1} = 4b + s$ and ${e_2} = 5d + 2s$,
- respectivily, and thus saving one addition and one multiplication.
- Such an additive cse can be a factor in a (sub)product,
- which in turn can extend its monomial part, when replacing the cse
- by a new symbol. Therefore an essential part of an
- optimization step is regrouping of information. This migration of
- information between the matrices is performed if the Breuer-searches
- are temporarily completed. After this regrouping the distributive law
- is applied, possibly also leading to a further regrouping. If at
- least one of these actions leads to a rearrangement of information the
- function ${\rm T} _{\beta}$ is again applied. In view of the
- iterative character of the optimization process we always accept
- minimal profits.
- A similar search is performed to detect multiplicative cse's, for
- instance occuring in ${e_1} = {a^2} {b^4} {c^3}$ and ${e_2} =
- {a^4} {c^6} {d^5}$. However, given a power product $\prod_{i=1}^m
- {x_i}^{{a}_i}$, any product $\prod_{i=1}^m {x_i}^{{b}_i}$, such that
- some ${b_i} \leq {a_i}$, for i = 1(1)m, can function as a cse. We
- therefore extend the search for multiplicative cse's by employing this
- property, and as indicated in~\cite{vanHulzen:83}.
- The finishing touch F is made to perform one-row and/or
- one-column searches. Once the extended Breuer-searches do not lead to
- further reduction in the arithmetic complexity we try -applying it- to
- improve what is left. The coefficients in (sub)sums can have,
- possibly locally, a gcd, which can be factored out. One-column
- operations serve to discover and to replace properly constant multiples of
- identifiers. As part of the output-process we subject all
- exponentiations left - at most one for each identifier - to an
- addition chain algorithm.
- \subsection{The Interplay between GENTRAN and SCOPE 1.5}\label{SCOPE:inter}
- The current version of SCOPE is written in RLISP.
- Like GENTRAN, it can be used as an extension of {\REDUCE}.
- When SCOPE is loaded GENTRAN is also activated.
- If we start a REDUCE session, we create an initial algebraic mode
- programming environment. All switches get their initial value, such as
- {\tt ON EXP,PERIOD} and {\tt OFF FORT}.
- Certain REDUCE commands serve to modify or to enrich the current environment.
- Others are used to perform calculations, producing formulae. Such a
- calculation follows a standard pattern, although parts of this repertoire
- can be influenced by the user, for instance by changing the value of
- certain switches. Usually execution is a three-step process.
- First the infix text is parsed into a prefix form. Then the internal algebra
- is applied on this form, leading to a so-called standard quotient.
- This quotient is stored on the property list of the identifier
- functioning as assigned variable for this value. The last step
- defines the inverse route from internal existence to external presentation
- in infix form. Occurrences of identifiers are recursively
- replaced by their standard quotient representation when the internal algebra
- is applied. Hence the REDUCE simplification strategy follows the imperative
- programming paradigm.
- When loading SCOPE, and thus GENTRAN, the environment is enriched with
- features for program generation and program optimization.
- Evaluation of GENTRAN and SCOPE commands differs from the standard REDUCE
- approach to evaluation. Both packages employ their own storage mechanism.
- The output is normally produced as a side-effect of the command evaluation.
- The output is directed to some medium, a file or a screen. Command evaluation
- is similar in GENTRAN and in SCOPE.
- The code generation process of GENTRAN can be viewed as the application
- \index{GENTRAN ! code generation process}
- of a composite function to an argument, which is almost equivalent with a
- piece of REDUCE code. Almost, because some GENTRAN specific facilities
- can be used. We can distinguish between the preprocessing phase,
- the translation phase and the postprocessing phase.
- During preprocessing relevant parts of the input are evaluated prior to
- translation into prefix form. Such a locally performed evaluation can be
- accomplished through recognition of certain "evaluation markers", i.e.
- modifications of the traditional assignment symbol {\tt :=},
- such as {\tt ::=}, {\tt :=:} and {\tt ::=:}. The {\tt :=} operator
- "orders" GENTRAN to translate the statement literally. Addition of an extra
- colon to the left hand side orders subscript expression evaluation before
- translation. An extra colon to the right hand side leads to right hand side
- evaluation, but without application of the storage mechanism of REDUCE.
- Hence evaluations
- remain anonymous and are only incorporated in the translatable "text".
- Another aspect of preprocessing is initialization of the symbol table,
- using information provided by a {\tt DECLARE} statement.
- \index{GENTRAN ! {\tt DECLARE} statement}
- GENTRAN also allows to further rewrite (sets of) arithmetic assignment
- statements, using the switches {\tt GENTRANOPT} and {\tt GENTRANSEG},
- \index{{\tt GENTRANOPT} switch}
- \index{{\tt GENTRANSEG} switch}
- introduced for code optimization (using SCOPE) and segmentation, respectively.
- \index{GENTRAN ! code segmentation}
- It possibly leads to storage of additional information in the symbol table.
- During the translation phase the final internal form
- of the code is produced, in combination with formatting specifications and
- instructions to produce declarations.
- Postprocessing finally does produce formatted code strings. So essentially,
- each GENTRAN command has its own seperate translation process, implying that
- the symbol table, required for the production of declarations, is fresh
- at the beginning of a GENTRAN command evaluation.
- As stated before, a SCOPE command evaluation is also a composite operation.
- The role of the assignment operators in both GENTRAN and SCOPE is similar.
- In SCOPE, the locally performed evaluation provides
- information to be entered in the database ${\rm D_0}$.
- If the declaration feature is activated, the symbol table generation and
- maintenance mechanism is borrowed from GENTRAN.
- For output production, we can make a choice from
- GENTRAN's target language repertoire. When declarations are required, we simply
- obey the GENTRAN regime as well. ${D_{\lambda}}$ is used to update the symbol
- table. All cse-names, generated during the optimization process, are typed in
- accordance with the strategy for dynamic typing, which is discussed
- in~\cite{Aho:86}, chapter 6. We assume all relevant identifiers
- of ${\rm E_{in}}$ to be adequately typed, using SCOPE's {\tt DECLARE} facility,
- an equivalent of GENTRAN's {\tt DECLARE} statement. The
- \index{SCOPE ! {\tt DECLARE} facility}
- \index{GENTRAN ! {\tt DECLARE} statement}
- production of ${D_{\lambda}}$ is completely decoupled from the normal
- REDUCE simplification strategy, because we employ our own expression database.
- In principle, the status of REDUCE before and after a GENTRAN or SCOPE
- command execution is unaltered. In principle, because some minor modifications,
- although user controlable, may be necessary. The special assignment symbols
- -also usable in SCOPE- were only introduced as a syntactical instrument to
- allow internal algebraic actions, decoupled from the standard REDUCE
- expression processing.
- This short excursion into the different evaluation strategies is added to
- assist in understanding the functioning of the different SCOPE commands and
- facilities, to be introduced in the next sections.
- \newpage
- \section{The Basic SCOPE 1.5 Facilities in the Algebraic Mode}\label{SCOPE:basic}
- {\REDUCE} allows, roughly speaking, two modes of operation in algebraic
- mode: {\tt ON EXP} or {\tt OFF EXP}.
- The first is the default setting, leading to
- expanded forms. The latter gives unexpanded forms, as discussed by Hearn
- in some detail~\cite{Hearn:85,Hearn:86}. It is obvious that the {\tt OFF
- EXP} setting is in general preferable over the {\tt ON
- EXP} setting when attempting to optimize the description of a set of
- assignment statements.
- \index{{\tt ACINFO} switch}
- \index{{\tt ROUNDED} switch}
- \index{{\tt DOUBLE} switch}
- \index{{\tt INPUTC} switch}
- \index{{\tt PRIMAT} switch}
- \index{{\tt PRIALL} switch}
- \index{{\tt EXP} switch}
- \index{{\tt FORT} switch}
- \index{{\tt FTCH} switch}
- \index{{\tt AGAIN} switch}
- \index{{\tt SIDREL} switch}
- \index{{\tt VECTORC} switch}
- \index{{\tt NAT} switch}
- \index{{\tt PERIOD} switch}
- \index{{\tt GENTRANOPT} switch}
- \index{{\tt PREFIX} switch}
- \index{{\tt INTERN} switch}
- \index{{\tt EVALLHSEQP} switch}
- \index{{\tt ROUNDBF} switch}
- The result of an application of SCOPE can be influenced by the use of
- certain {\REDUCE}- or SCOPE-switches. The influence of {\tt EXP} is obvious:
- unexpanded input is more compact than expanded.
- {\tt ON ACINFO} serves to produce tables with the numbers of arithmetic
- operations, oc\-cu\-ring in ${{{\rm E}}_0}$ and ${{\rm E}}_{\lambda}$,
- respectively.
- {\tt ON INPUTC} serves to echo the input, processed by SCOPE. The actual
- form of the input can be the consequence of locally performed evaluations,
- before the actual parsing into the database takes place.
- {\tt ON PRIMAT} can be used to visualize
- both ${{\rm D}}_{0}$ and $D_{\lambda}$.
- {\tt ON PRIALL} finally, can be used instead of
- {\tt ON ACINFO,INPUTC,PRIMAT}. These SCOPE-switches are initially all turned
- {\tt OFF}. SCOPE has a facility to visualize the status of all
- SCOPE-switches and some relevant {\REDUCE}-switches. The current status
- of all relevant switches can be presented with the command
- \hspace*{1cm} {\tt SCOPE\_SWITCHES}\verb+$+
- \index{SCOPE function ! {\tt SCOPE\_SWITCHES}}
- \example\label{ex:3.1.1}
- \index{SCOPE ! example}
- The start of a {\REDUCE} session shows the initial state
- of {\REDUCE}, directly after loading the SCOPE package.
- The set of relevant switches is made visible.
- Besides the {\REDUCE} switches {\tt EVALLHSEQP}, {\tt EXP}, {\tt FORT},
- {\tt NAT}, {\tt PERIOD}, {\t ROUNDBF}
- and {\tt ROUNDED} six additional SCOPE switches, i.e. {\tt AGAIN}, {\tt FTCH},
- {\tt INTERN}, {\tt PREFIX}, {\tt SIDREL} and {\tt VECTORC}, and the GENTRAN
- switches {\tt DOUBLE} and {\tt GENTRANOPT} are thus presented.
- They all wil be discussed in more
- detail below.
- {\small
- \begin{verbatim}
- REDUCE 3.6, 15-Jul-95 ...
- 1: load_package nscope$
- 2: SCOPE_SWITCHES$
- ON : exp ftch nat period
- OFF : acinfo again double evallhseqp fort gentranopt inputc
- intern prefix priall primat roundbf rounded sidrel
- vectorc
- 3: % etc. ...
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- Output is by default given in {\REDUCE} syntax, but FORTRAN syntax is
- possible in the usual way, e.g. {\tt ON FORT} and {\tt OFF PERIOD}, for
- instance. The use of other target languages
- from the GENTRAN repertoire is discussed in section~\ref{SCOPE:decl}.
- \subsection{The {\tt OPTIMIZE} command: Straightforward use}\label{SCOPE:optim}
- \index{{\tt OPTIMIZE} command}
- \index{{\tt INAME} option}
- \index{REDUCE function ! {\tt gensym}}
- \index{SCOPE function ! {\tt SETLENGTH}}
- A SCOPE application is easily performed and based on the use of
- the following syntax:
- \begin{center}
- \begin{tabular}{lcl}
- $<$SCOPE\_application$>$ & $::=$ & {\tt OPTIMIZE} $<$object\_seq$>$
- [{\tt INAME} $<$cse\_prefix$>$]\\
- $<$object\_seq$>$ & $::=$ & $<$object$>$[,$<$object\_seq$>$]\\
- $<$object$>$ & $::=$ & $<$stat$>~\mid~<$alglist$>~\mid~<$alglist\_production$>$ \\
- $<$stat$>$ & $::=$ & $<$name$>~<$assignment operator$>~<$expression$>$\\
- $<$assignment operator$>$ & $::=$ & $:=~\mid~::=~\mid~::=:~\mid~:=:$\\
- $<$alglist$>$ & $::=$ & \{$<$eq\_seq$>$\}\\
- $<$eq\_seq$>$ & $::=$ & $<$name$>~=~<$expression$>$[,$<$eq\_seq$>$]\\
- $<$alglist\_production$>$ & $::=$ & $<$name$>~\mid~<$function\_application$>$\\
- $<$name$>$ & $::=$ & $<$id$>~\mid~<$id$>(<$a\_subscript\_seq$>)$\\
- $<$a\_subscript\_seq$>$ & $::=$ & $<$a\_subscript$>$[,$<$a\_subscript\_seq$>$]\\
- $<$a\_subscript$>$ & $::=$ & $<$integer$>~\mid~<$integer infix\_expression$>$\\
- $<$cse\_prefix$>$ & $::=$ & $<$id$>$
- \end{tabular}
- \end{center}
- A SCOPE action can be applied on one assignment statement.
- The assigned variable
- is either a scalar identifier, like {\tt z} in example~\ref{ex:3.1.2}, or a
- name with subscripts, such as {\tt a(1,1)} in example~\ref{ex:3.1.3}.
- In stead of one
- statement a sequence of such statements, separated by comma's, is possible.
- An alternative is provided by the use of an algebraic mode list, consisting
- of {\REDUCE} equations. An assigned variable, identifying such a list, is
- allowed as well. Examples are presented in section~\ref{SCOPE:algo}.
- The function\_application is introduced in section~\ref{SCOPE:soph}. Such an
- application ought to produce an alglist.
- The expressions, i.e. rhs's in assignments or equations are legal {\REDUCE}
- expressions or ought to evaluate to such expressions. Statements inside
- expressions are allowed, but only useful if these expressions are evaluated,
- before being optimized. Only integer or rounded coefficients are supported
- by SCOPE. So we either suppose the default integer setting or allow the switch
- {\tt ROUNDED} to be turned {\tt ON}.
- The optional use of the {\tt INAME} extension in an {\tt OPTIMIZE} command
- is introduced to allow the user to influence the generation of cse-names.
- The cse\_prefix is an identifier, used to generate cse-names, by
- extending it with an integer part. If the cse\_prefix consists of letters
- only, the initially selected integer part is 0. All following integer parts are
- obtained by incrementing the previous integer part by 1. If the user-supplied
- cse\_prefix ends with an integer its value functions as initial integer part.
- The {\tt gensym}-function is applied when the {\tt INAME}-extension is omitted.
- The three alternatives are illustrated in example~\ref{ex:3.1.2}.
- As stated before minimal profits are accepted during all stages of the
- optimization process: many small steps may lead to impressive final results.
- But it can also lead to unwanted details. Therefore, it can be desirable
- to rerun an optimization request with a restriction on the minimal size of
- the rhs's. The command
- \hspace*{1cm} {\tt SETLENGTH} $<$integer$>$\$
- can be used to produce rhs's with a minimal arithmetic complexity,
- dictated by the value of
- its integer argument. Statements, used to rename function applications, are
- not affected by the {\tt SETLENGTH} command. The default setting is restored
- with the command
- \hspace*{1cm} {\tt RESETLENGTH}\$
- \index{SCOPE function ! {\tt RESETLENGTH}}
- We now illustrate the use of the {\tt OPTIMIZE} command through a number of
- small examples, being parts of {\REDUCE} sessions. We show in
- example~\ref{ex:3.1.2} the effect of the different visualization switches,
- the use of {\tt SETLENGTH} and {\tt RESETLENGTH} and of the three {\tt INAME}
- alternatives. In example~\ref{ex:3.1.3} the effect of some of the GENTRAN and
- SCOPE input processing features is presented. Some finishing touch activities
- are illustrated in the examples ~\ref{ex:3.1.4} and ~\ref{ex:3.1.5}.
- The approach towards rational exponents is presented in
- example~\ref{ex:3.1.6}, while some form of quotient optimization is
- illustrated in example~\ref{ex:3.1.7}. Finally, we present the differences
- in {\tt ON/OFF EXP} processing in example~\ref{ex:3.1.8}.
- \example\label{ex:3.1.2}
- \index{SCOPE ! example}
- The multivariate polynomial {\tt z} is a sum of 6 terms. These
- terms, monomials, are constant multiples of power products. A
- picture of ${{\rm D}}_{0}$ is shown after the input echo. The
- sums-matrix consists of only one row, identifiable by its Fa(the)r {\tt z},
- the lhs. Its exponent is given in the EC (Exponent or Coefficient)
- field. The 6 monomials are stored in the products-matrix. The
- coefficients are stored in the EC-fields and the predecessor row
- index, 0, is given in the Far-field. Before the $D_{\lambda}$ picture
- is given the effect of the optimization process, the output and the
- operator counts are shown. The optimized form of {\tt z} is obtained by
- applying the distributive law. The output also shows applications of
- an addition chain algorithm (\cite{Knuth:80} 441-466) as part of ${{\rm
- R}}^{{-1}}$, although its use in example~\ref{ex:3.1.4} is more apparent.
- \index{addition chain algorithm}
- Observe that the output illustrates the heuristic character of the
- optimization process: In this particular case the rhs can be written
- as a polynomial in {\tt g4}, thus saving one extra multiplication.
- The {\tt SETLENGTH} command is illustrated too. See also example~\ref{ex:3.2.6}.
- Application of a Horner-rule may be profitable as well. See, for instance
- example~\ref{ex:4.1.3}.
- \index{{\tt PRIALL} switch}
- {\small
- \begin{verbatim}
- ON PRIALL$
- z:=a^2*b^2+10*a^2*m^6+a^2*m^2+2*a*b*m^4+2*b^2*m^6+b^2*m^2;
- 2 2 2 6 2 2 4 2 6 2 2
- z := a *b + 10*a *m + a *m + 2*a*b*m + 2*b *m + b *m
- OPTIMIZE z:=:z$
- 2 2 2 6 2 2 4 2 6 2 2
- z := a *b + 10*a *m + a *m + 2*a*b*m + 2*b *m + b *m
- Sumscheme :
- || EC|Far
- ------------
- 0|| 1| z
- ------------
- \end{verbatim}}
- \newpage
- {\small
- \begin{verbatim}
- Productscheme :
- | 0 1 2| EC|Far
- ---------------------
- 1| 2 2| 1| 0
- 2| 6 2| 10| 0
- 3| 2 2| 1| 0
- 4| 4 1 1| 2| 0
- 5| 6 2 | 2| 0
- 6| 2 2 | 1| 0
- ---------------------
- 0 : m
- 1 : b
- 2 : a
- Number of operations in the input is:
- Number of (+/-) operations : 5
- Number of unary - operations : 0
- Number of * operations : 10
- Number of integer ^ operations : 11
- Number of / operations : 0
- Number of function applications : 0
- g1 := b*a
- g5 := m*m
- g2 := g5*b*b
- g3 := g5*a*a
- g4 := g5*g5
- z := g2 + g3 + g1*(2*g4 + g1) + g4*(2*g2 + 10*g3)
- Number of operations after optimization is:
- Number of (+/-) operations : 5
- Number of unary - operations : 0
- Number of * operations : 12
- Number of integer ^ operations : 0
- Number of / operations : 0
- Number of function applications : 0
- Sumscheme :
- | 0 3 4 5| EC|Far
- ------------------------
- 0| 1 1| 1| z
- 15| 2 10| 1| 14
- 17| 2 1 | 1| 16
- ------------------------
- 0 : g4
- 3 : g1
- 4 : g2
- 5 : g3
- \end{verbatim}}
- \newpage
- {\small
- \begin{verbatim}
- Productscheme :
- | 8 9 10 11 17 18 19 20| EC|Far
- ------------------------------------
- 7| 1 1| 1| g1
- 8| 1 2 | 1| g2
- 9| 1 2| 1| g3
- 10| 2 | 1| g4
- 11| 2 | 1| g5
- 14| 1 | 1| 0
- 16| 1 | 1| 0
- ------------------------------------
- 8 : g5
- 9 : g4
- 10 : g3
- 11 : g2
- 17 : g1
- 18 : m
- 19 : b
- 20 : a
- OFF PRIALL$
- SETLENGTH 2$
- OPTIMIZE z:=:z INAME s$
- 2 2
- s1 := b *m
- 2 2
- s2 := a *m
- 4 4
- z := (a*b + 2*m )*a*b + 2*(s1 + 5*s2)*m + s1 + s2
- RESETLENGTH$
- OPTIMIZE z:=:z INAME s1$
- s1 := b*a
- s5 := m*m
- s2 := s5*b*b
- s3 := s5*a*a
- s4 := s5*s5
- z := s2 + s3 + s1*(2*s4 + s1) + s4*(2*s2 + 10*s3)
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \index{SCOPE function ! {\tt SETLENGTH}}
- \index{SCOPE function ! {\tt RESETLENGTH}}
- \example\label{ex:3.1.3}
- \index{SCOPE ! example}
- The input echo below shows the literal copy of the first assignment.
- This is in accordance with role the GENTRAN assignment operator {\tt :=}
- ought to play. The second assignment, this time using the operator {\tt ::=:},
- leads to rhs evaluation (expansion) and lhs subscript-value substitution.
- Application of the distributive law is refected by the rhs of {\tt a(1,1)}
- in the presented result.
- \index{{\tt INPUTC} switch}
- {\small
- \begin{verbatim}
- OPERATOR a$ k:=j:=1$ u:=c*x+d$ v:=sin(u)$
- ON INPUTC$
- OPTIMIZE a(k,j):=v*(v^2*cos(u)^2+u), a(k,j)::=:v*(v^2*cos(u)^2+u) INAME s;
- 2 2
- a(k,j) := v*(v *cos(u) + u)
- 2 3
- a(1,1) := cos(c*x + d) *sin(c*x + d) + sin(c*x + d)*c*x + sin(c*x + d)*d
- s9 := cos(u)*v
- a(k,j) := v*(u + s9*s9)
- s6 := x*c + d
- s5 := sin(s6)
- s10 := s5*cos(s6)
- a(1,1) := s5*(s6 + s10*s10)
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \example\label{ex:3.1.4}
- \index{SCOPE ! example}
- The effect is shown of a finishing touch application, in combination
- with FORTRAN output. The value of {\tt S0} is rewritten during output
- preparation, and the earlier mentioned addition chain algorithm is applied.
- When turning {\tt OFF} the switch {\tt FTCH} the latter activity is skipped.
- \index{{\tt FTCH} switch}
- \index{{\tt FORT} switch}
- \index{{\tt PERIOD} switch}
- {\small
- \begin{verbatim}
- ON FORT$ OFF PERIOD$
- OPTIMIZE z:=(6*a+18*b+9*c+3*d+6*f+18*g+6*h+5*j+5*k+3)^13 INAME s;
- S0=5*(J+K)+3*(3*C+D+1+6*(B+G)+2*(A+F+H))
- S3=S0*S0*S0
- S2=S3*S3
- Z=S0*S2*S2
- OFF FTCH$
- OPTIMIZE z:=(6*a+18*b+9*c+3*d+6*f+18*g+6*h+5*j+5*k+3)^13 INAME s;
- Z=(5*(J+K)+3*(3*C+D+1+6*(B+G)+2*(A+F+H)))**13
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \example\label{ex:3.1.5}
- \index{SCOPE ! example}
- Recovery of repeatedly occurring integer multiples of identifiers,
- as part of the finishing touch, is illustrated. This facility is
- part of the finishing touch and will seemingly be neglected when
- using {\tt SETLENGTH} 2\verb+$+ instruction in stead of {\tt OFF FTCH}.
- \index{{\tt FTCH} switch}
- {\small
- \begin{verbatim}
- OPTIMIZE x:=3*a*p, y:=3*a*q, z:=6*a*r+2*b*p,
- u:=6*a*d+2*b*q, v:=9*a*c+4*b*d, w:=4*b INAME s;
- s2 := 3*a
- x := s2*p
- y := s2*q
- s0 := 2*b
- s3 := 6*a
- z := s0*p + s3*r
- u := s0*q + s3*d
- w := 4*b
- v := w*d + 9*c*a
- OFF FTCH$
- OPTIMIZE x:=3*a*p, y:=3*a*q, z:=6*a*r+2*b*p,
- u:=6*a*d+2*b*q, v:=9*a*c+4*b*d, w:=4*b INAME t;
- x := 3*p*a
- y := 3*q*a
- z := 2*b*p + 6*r*a
- u := 2*b*q + 6*d*a
- v := 4*d*b + 9*c*a
- w := 4*b
- ON FTCH$
- SETLENGTH 2$
- OPTIMIZE x:=3*a*p, y:=3*a*q, z:=6*a*r+2*b*p,
- u:=6*a*d+2*b*q, v:=9*a*c+4*b*d, w:=4*b INAME t;
- x := 3*p*a
- y := 3*q*a
- z := 2*b*p + 6*r*a
- u := 2*b*q + 6*d*a
- v := 4*d*b + 9*c*a
- w := 4*b
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \index{{\tt FTCH} switch}
- \index{SCOPE function ! {\tt SETLENGTH}}
- \example\label{ex:3.1.6}
- \index{SCOPE ! example}
- This example serves to show how SCOPE deals with rational
- exponents. All rational exponents of an identifier are collected.
- \index{rational exponents}
- The least common
- multiple lcm of the denominators of these rationals is
- computed and the variable is replaced by a possibly newly selected
- variable name, denoting the variable raised to the power 1/lcm. This
- facility is only efficient for what we believe to be problems
- occurring in computational practice. That is easily verified by
- extending the sum we are elaborating here with some extra terms.
- \newpage
- {\small
- \begin{verbatim}
- ON INPUTC,FORT$
- OPTIMIZE z:=:FOR j:=2:6 SUM q^(1/j) INAME s;
- 1/6 1/5 1/4 1/3
- z := q + q + q + q + sqrt(q)
- S0=Q**(1.0/60.0)
- S8=S0*S0
- S7=S8*S0
- S5=S8*S7
- S3=S5*S5
- S2=S8*S3
- S1=S7*S2
- S4=S5*s1
- Z=S4+S1+S2+S3+S4*S3
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \example\label{ex:3.1.7}
- \index{SCOPE ! example}
- \index{{\tt INPUTC} switch}
- \index{{\tt ROUNDED} switch}
- \index{{\tt FORT} switch}
- The special attention, given to rational exponents, is not extended to
- rational coefficients. The script in this example shows four different
- approaches for dealing with such coefficients using the expressions assigned to
- {\tt f} and {\tt g}. We start with a literal parsing of the two assignments,
- leading to a form of ${\rm D}_0$, which is based on the present REDUCE
- strategy for dealing with fixed float numbers in the default integer
- coefficient domain setting.
- The four rational numbers $\frac{31}{5} ,~ \frac{31}{10} ,~\frac{93}{5}~
- {\rm and}~\frac{93}{10}$ are just like ${\rm b}^{\frac{1}{5}}$, $\sqrt {\rm
- sin(\cdots)}$ and ${\rm sin(\cdots)}^{\frac{5}{3}}$ considered as kernels.
- The second approach illustrates the effect of simplification in
- an {\tt OFF ROUNDED} mode prior to parsing. The input expressions are
- remodeled into rational expressions, the usual internal standard quotient form.
- After turning {\tt ON} the switch {\tt ROUNDED} we repeat the previous
- commands. Again some differences in evaluation can be observed. Literally
- taken input, the third approach, shows rational exponent optimizations
- prior to the production of rounded exponents in the output.
- The last approach, simplification before parsing, leads to a float
- representation for the rational exponents. SCOPE's exponent optimization
- features are designed for integer and rational exponents only. Floating
- point exponentiation is therefore assumed to be a function application.
- Further illustrations of operations on quotients are shown in
- example~\ref{ex:8.2}.
- {\small
- \begin{verbatim}
- ON INPUTC$
- OPTIMIZE
- f:= cos(6.2*a+18.6*(b)^(1/5))/sqrt(sin(3.1*a+9.3*(b)^(1/5))),
- g:= sin(6.2*a+18.6*(b)^(1/5))/sin(3.1*a+9.3*(b)^(1/5))^(5/3)
- INAME s$
- \end{verbatim}}
- \newpage
- {\small
- \begin{verbatim}
- 31 93 1/5
- cos(----*a + ----*b )
- 5 5
- f := -------------------------------
- 31 93 1/5
- sqrt(sin(----*a + ----*b ))
- 10 10
- 31 93 1/5
- sin(----*a + ----*b )
- 5 5
- g := ----------------------------
- 31 93 1/5 5/3
- sin(----*a + ----*b )
- 10 10
- 1/5
- s15 := b
- 93 31
- s12 := s15*---- + a*----
- 5 5
- 93 31
- s6 := sin(----*s15 + ----*a)
- 10 10
- 1/6
- s14 := s6
- s5 := s14*s14*s14
- cos(s12)
- f := ----------
- s5
- sin(s12)
- g := -----------
- s5*s14*s6
- OPTIMIZE
- f:=: cos(6.2*a+18.6*(b)^(1/5))/sqrt(sin(3.1*a+9.3*(b)^(1/5))),
- g:=: sin(6.2*a+18.6*(b)^(1/5))/sin(3.1*a+9.3*(b)^(1/5))^(5/3)
- INAME t$
- 1/5
- 93*b + 31*a
- cos(----------------)
- 5
- f := -----------------------------
- 1/5
- 93*b + 31*a
- sqrt(sin(----------------))
- 10
- \end{verbatim}}
- \newpage
- {\small
- \begin{verbatim}
- 1/5
- 93*b + 31*a
- sin(----------------)
- 5
- g := ------------------------------------------------
- 1/5 1/5
- 93*b + 31*a 2/3 93*b + 31*a
- sin(----------------) *sin(----------------)
- 10 10
- 1/5
- t7 := 93*b + 31*a
- t7
- t2 := ----
- 5
- t7
- t5 := sin(----)
- 10
- 1/6
- t11 := t5
- t4 := t11*t11*t11
- cos(t2)
- f := ---------
- t4
- sin(t2)
- g := -----------
- t4*t11*t5
- ON ROUNDED$
- OPTIMIZE
- f:= cos(6.2*a+18.6*(b)^(1/5))/sqrt(sin(3.1*a+9.3*(b)^(1/5))),
- g:= sin(6.2*a+18.6*(b)^(1/5))/sin(3.1*a+9.3*(b)^(1/5))^(5/3)
- INAME s$
- 1/5
- cos(6.2*a + 18.6*b )
- f := -----------------------------
- 1/5
- sqrt(sin(3.1*a + 9.3*b ))
- 1/5
- sin(6.2*a + 18.6*b )
- g := --------------------------
- 1/5 5/3
- sin(3.1*a + 9.3*b )
- \end{verbatim}}
- \newpage
- {\small
- \begin{verbatim}
- 0.2
- s5 := 9.3*b + 3.1*a
- s8 := 2*s5
- s4 := sin(s5)
- 0.166666666667
- s10 := s4
- s3 := s10*s10*s10
- cos(s8)
- f := ---------
- s3
- sin(s8)
- g := -----------
- s3*s10*s4
- OPTIMIZE
- f:=: cos(6.2*a+18.6*(b)^(1/5))/sqrt(sin(3.1*a+9.3*(b)^(1/5))),
- g:=: sin(6.2*a+18.6*(b)^(1/5))/sin(3.1*a+9.3*(b)^(1/5))^(5/3)
- INAME t$
- 0.2
- cos(18.6*b + 6.2*a)
- f := --------------------------
- 0.2 0.5
- sin(9.3*b + 3.1*a)
- 0.2
- sin(18.6*b + 6.2*a)
- g := ------------------------------------
- 0.2 1.66666666667
- sin(9.3*b + 3.1*a)
- 0.2
- t6 := 9.3*b + 3.1*a
- t9 := 2*t6
- t5 := sin(t6)
- cos(t9)
- f := ---------
- 0.5
- t5
- sin(t9)
- g := -----------------
- 1.66666666667
- t5
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \newpage
- \example\label{ex:3.1.8}
- \index{SCOPE ! example}
- \index{{\tt ACINFO} switch}
- \index{{\tt FORT} switch}
- \index{{\tt PERIOD} switch}
- \index{{\tt EXP} switch}
- The effect of {\tt ON EXP} or {\tt OFF EXP} on the result of a
- SCOPE-application is illustrated by optimi\-zing the representation of the
- determinant of a symmetric (3,3) matrix {\tt m}. Besides differences in
- computing time we also observe that the arithmetic complexity of the
- optimized version of the expanded representation of the determinant is
- about the same as the not optimized form of the unexpanded representation.
- {\small
- \begin{verbatim}
- MATRIX m(3,3)$
- m(1,1):=18*cos(q3)*cos(q2)*m30*p^2-sin(q3)^2*j30y+sin(q3)^2*j30z-
- 9*sin(q3)^2*m30*p^2+j1oy+j30y+m10*p^2+18*m30*p^2$
- m(2,1):=
- m(1,2):=9*cos(q3)*cos(q2)*m30*p^2-sin(q3)^2*j30y+sin(q3)^2*j30z-
- 9*sin(q3)^2*m30*p^2+j30y+9*m30*p^2$
- m(3,1):=
- m(1,3):=-9*sin(q3)*sin(q2)*m30*p^2$
- m(2,2):=-sin(q3)^2*j30y+sin(q3)^2*j30z-9*sin(q3)^2*m30*p^2+j30y+
- 9*m30*p^2$
- m(3,2):=
- m(2,3):=0$
- m(3,3):=9*m30*p^2+j30x$
- ON ACINFO,FORT$ OFF PERIOD$
- OPTIMIZE detm:=:det(m) INAME s;
- Number of operations in the input is:
- Number of (+/-) operations : 36
- Number of unary - operations : 0
- Number of * operations : 148
- Number of integer ^ operations : 84
- Number of / operations : 0
- Number of function applications : 32
- S2=SIN(REAL(Q2))
- S30=S2*S2
- S3=SIN(REAL(Q3))
- S29=S3*S3
- S31=P*P
- S8=S31*M30
- S32=S8*S8
- S4=S32*J30Y
- S28=S32*S8
- S9=S29*M10
- S10=S30*S29*S29
- S44=COS(REAL(Q3))*COS(REAL(Q2))
- S11=S44*S44
- S20=S31*S8
- S23=S31*J30X
- S22=S29*J30X
- S24=S8*J1OY
- S19=M10*J30Y
- S43=81*S32*J30X
- S35=-S43-(81*S32*J1OY)
- S36=-(729*S29*S28)-(81*S29*S4)
- S37=J30Z-J30Y
- S39=9*S37
- S40=9*J30X
- S41=81*S32*J30Z
- S42=81*S4
- DETM=S42+S36-S35+729*S28+S37*(S22*J1OY+9*S29*S24+S23*S9)+S10*(S42-
- . S41)+S20*S8*81*(M10-S9)+S20*S9*(S39-S40)+S22*S8*(S39-(9*J1OY))+
- . S20*(9*S19+S40*M10)+S24*(S40+9*J30Y)+J30Y*J30X*(J1OY+9*S8)+S28*
- . 729*(S10-S11)+S29*(S41+S35)+S36*S30+S23*S19-(S43*S11)
- Number of operations after optimization is:
- Number of (+/-) operations : 30
- Number of unary - operations : 0
- Number of * operations : 59
- Number of integer ^ operations : 0
- Number of / operations : 0
- Number of function applications : 4
- OFF EXP$
- OPTIMIZE detm:=:det(m) INAME t;
- Number of operations in the input is:
- Number of (+/-) operations : 23
- Number of unary - operations : 1
- Number of * operations : 38
- Number of integer ^ operations : 21
- Number of / operations : 0
- Number of function applications : 10
- T1=SIN(REAL(Q3))
- T9=T1*T1
- T8=P*P
- T5=T8*M30
- T16=9*T5
- T10=-T16-(9*T5*COS(REAL(Q3))*COS(REAL(Q2)))
- T13=(T16+J30Y-J30Z)*T9
- T15=T13-J30Y
- T0=T15+T10
- T14=T13-T16-J30Y
- T17=T5*SIN(REAL(Q2))
- DETM=81*T17*T17*T14*T9-((T16+J30X)*(T0*T0-(T14*(T15+2*T10-J1OY-(T8
- . *M10)))))
- Number of operations after optimization is:
- Number of (+/-) operations : 13
- Number of unary - operations : 0
- Number of * operations : 18
- Number of integer ^ operations : 0
- Number of / operations : 0
- Number of function applications : 4
- \end{verbatim}}
- We can also use this example to show that correctness of results is
- easily verified. When storing
- the result of a SCOPE application in a file, it is of course possible
- to read the result in again. Then we apply a normal {\REDUCE} evaluation
- strategy. This implies that all references to cse-names are automatically
- replaced by their values. We show the ``correctness'' of SCOPE by
- storing the optimized version of the expanded form of the determinant
- of {\tt M}, called {\tt detm1} in file {\tt out.1} and the result of a
- SCOPE-application on the unexpanded form, {\tt detm2}, in file {\tt out.2},
- followed by reading in both files and by subtracting {\tt detm2}
- from {\tt detm1}, resulting in the value 0.
- This is of course an ad hoc correctness-proof for one specific
- example. It is in fact another way of testing the code of the package.
- We show it as a direct continuation of the previous determinant calculations.
- \index{{\tt NAT} switch}
- This example also serves to show that the {\tt OPTIMIZE} command can be
- extended with the {\tt OUT} option. The keyword {\tt OUT} has to be followed
- \index{{\tt OUT} option}
- by a file-name. This file is properly closed and left in a readable form,
- assuming printing is produced in a {\tt OFF NAT} fashion.
- SCOPE's file management features are discussed in more detail in
- section~\ref{SCOPE:files}.
- {\small
- \begin{verbatim}
- OFF ACINFO,FORT,NAT$ ON EXP$
- OPTIMIZE detm1:=:det(M) OUT "out.1" INAME s;
- OFF EXP$
- OPTIMIZE detm2:=:det(M) OUT "out.2" INAME t;
- ON NAT$
- IN "out.1","out.2"$
- detm1-detm2;
- 0
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- So far we presented via some examples straightforward
- algebraic mode use. The output is produced as a side-effect. However,
- optimization results can easily be made operational in algebraic mode.
- The parameterless function
- \hspace*{1cm} {\tt ARESULTS}
- \index{SCOPE function ! {\tt ARESULTS}}
- delivers the result of the directly
- preceding {\tt OPTIMIZE} command in the form of a list of equations,
- corresponding with the sequence of assignment statements, shown either in
- {\REDUCE} syntax or in the syntax of one of GENTRAN's target languages.
- But, we need to operate carefully. Application of a variety of assignment
- operators can easily bring in identifiers, representing earlier produced
- algebraic values. They will be substituted automatically, when referenced in
- rhs's in the list, produced with an {\tt ARESULTS} application.
- Therefore, we implemented a
- protection mechanism. Before delivering output produced by {\tt ARESULTS},
- we make the system temporarily deaf for such references. The
- possibly game-spoiling algebraic values are stored at a seemingly
- anonymous place. All
- identifiers, subjected to this special treatement, can be made visible with
- the command
- \hspace*{1cm} {\tt RESTORABLES};
- \index{SCOPE function ! {\tt RESTORABLES}}
- Their original status can be restored, either globally with the command
- \hspace*{1cm} {\tt RESTOREALL}\verb+$+
- \index{SCOPE function ! {\tt RESTOREALL}}
- or selectively with the instruction
- \hspace*{1cm} {\tt ARESTORE} $<$subsequence$>$\verb+$+
- \index{SCOPE function ! {\tt ARESTORE}}
- This subsequence is built with names, selected from the list
- of {\tt RESTORABLES}, and separated by comma's. Information restoration
- is only possible before the next {\tt OPTIMIZE} command.
- \example\label{ex:3.1.9}
- \index{SCOPE ! example}
- The use of these commands is now illustrated.
- A further explanation is given in the form of comment in the script.
- {\small
- \begin{verbatim}
- u:=a*x+2*b$ v:=sin(u)$ w:=cos(u)$ f:=v^2*w;
- 2
- f := cos(a*x + 2*b)*sin(a*x + 2*b)
- OFF EXP$
- OPTIMIZE f:=:f,g:=:f^2+f INAME s;
- s3 := x*a + 2*b
- s2 := sin(s3)
- f := s2*s2*cos(s3)
- g := f*(f + 1)
- alst:=ARESULTS;
- alst := {s3=a*x + 2*b,
- s2=sin(s3),
- 2
- f=cos(s3)*s2 ,
- g=(f + 1)*f}
- % ---
- % SCOPE is made deaf for the standard reference mechanism for algebraic
- % variables. However the rhs's in the list alst are simplified before
- % being shown. It explains the differences between the layout in the
- % alst items and the results, presented by the OPTIMIZE-command itself.
- % ---
- RESTORABLES;
- {f}
- f;
- f
- ARESTORE f$
- f;
- 2
- cos(a*x + 2*b)*sin(a*x + 2*b)
- % ---
- % f is re-associated with its original value. This can lead to a modified
- % presentation of some of the rhs's of alst.
- % ---
- alst;
- {s3=a*x + 2*b,
- s2=sin(s3),
- 2
- f=cos(s3)*s2 ,
- 2 2
- g=(cos(a*x + 2*b)*sin(a*x + 2*b) + 1)*cos(a*x + 2*b)*sin(a*x + 2*b) }
- OPTIMIZE f:=:f,g:=:f^2+f INAME s;
- s3 := x*a + 2*b
- s2 := sin(s3)
- f := s2*s2*cos(s3)
- g := f*(f + 1)
- alst2:=ARESULTS$
- OPTIMIZE f:=:f,g:=:f^2+f INAME s;
- g := f*(f + 1)
- % ---
- % The algebraic value, which was associated with f, is permanently
- % lost. It ought to be restored before a new OPTIMIZE command is given.
- % Therefore f:=:f produced an identity, which is redundant in terms of
- % code production. More details about removal of redundant code are
- % given in section 7, when discussing data dependencies and related topics.
- % ---
- RESTOREALL$
- f;
- f
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \subsection{The function {\tt ALGOPT}: Straightforward use}\label{SCOPE:algo}
- \index{SCOPE function ! {\tt ALGOPT}}
- \index{SCOPE function ! {\tt RESTOREALL}}
- \index{SCOPE function ! {\tt RESTORABLES}}
- \index{SCOPE function ! {\tt ARESULTS}}
- \index{SCOPE function ! {\tt ARESTORE}}
- The function {\tt ALGOPT} accepts up to three arguments. It can be used in
- stead of the {\tt OPTIMIZE} command. It returns the optimization result,
- like {\tt ARESULTS}, in the form of a list of equations.
- Since the {\tt ARESULTS} mechanism
- is applied as well, the pre-{\tt ALGOPT}-application situation can be restored
- with {\tt RESTOREALL} or partly and selective with {\tt ARESTORE}, using
- information, providable by an application of the function {\tt RESTORABLES}.
- The first argument of {\tt ALGOPT}, like the other two optional, is the
- equivalent of the alglist or alglist\_production in the earlier introduced
- syntax of a SCOPE\_application.
- The second argument can be used to inform SCOPE
- that input from file(s) have to be processed. We survey SCOPE's file
- management features in section~\ref{SCOPE:files}. So we omit a further
- discussion now. The last argument correspondents with the cse\_prefix
- of the {\tt INAME } option of the {\tt OPTIMIZE} command. The extension
- of the SCOPE\_application syntax, needed to include possible {\tt ALGOPT}
- activities, is:
- \begin{tabular}{lcl}
- $<$SCOPE\_application$>$ & $::=$ & $\cdots~\mid~$\\
- & & {\tt ALGOPT}($<$a\_object\_list$>$[,$<$string\_id\_list$>$][,$<$cse\_prefix$>$]) $\mid$\\
- & & {\tt ALGOPT}([$<$a\_object\_list$>$,]$<$string\_id\_list$>$[,$<$cse\_prefix$>$])\\
- \end{tabular}
- \begin{tabular}{lcl}
- $<$a\_object\_list$>$ & $::=$ & $<$a\_object$>~\mid$ \{$<$a\_object$>$[,$<$a\_object\_seq$>$]\}\\
- $<$a\_object\_seq$>$ & $::=$ & $<$a\_object$>$[,$<$a\_object\_seq$>$]\\
- $<$a\_object$>$ & $::=$ & $<$id$>~\mid~<$alglist$>~\mid~<$alglist\_production$>~\mid$
- \{$<$a\_object$>$\}
- \end{tabular}
- We require at least one actual parameter, here the a\_object\_list. Its
- syntactical structure allows to apply a GENTRAN-like repertoire in an
- algebraic mode setting. The a\_object's can
- either be an alglist identifier, an alglist producing function application,
- or an alglist itself. An alglist identifier can be
- either a scalar or a matrix or array entry. The alglist producing
- functions will be discussed in section~\ref{SCOPE:soph}. An alglist has the
- structure of an algebraic mode list; its elements are either a\_object's
- or equations of the form lhs = rhs. Such equations correspondent
- with the "take literal" GENTRAN operator {\tt :=} facility in the setting
- of an {\tt OPTIMIZE} command (see also section~\ref{SCOPE:soph} for a further
- discussion). The alternatives, i.e. uses of {\tt ::=}, {\tt :=:} or {\tt ::=:},
- are also covered by the a\_object syntax.
- The examples, given in this subsection, show that simplification of an algebraic
- list of equations leads to right hand side simplification, corresponding with
- the effect of the colon-added-to-the-right-extension of the assignment operator.
- However, as illustrated by example~\ref{ex:3.2.7}, some care has to be taken
- when operating in {\tt OFF EXP} mode.
- Turning {\tt ON} the switch {\tt EVALLHSEXP}, can lead to lhs evaluations,
- corresponding with the extra-colon-to-the-left strategy. But we have to
- be aware of the instanteneous evaluation mechanism for matrix and
- array entries, when referenced.
- We present some examples of possible use of the {\tt ALGOPT} function.
- In example~\ref{ex:3.2.4} a straightforward application is given.
- In example~\ref{ex:3.2.5} follows an ilustration of a possible strategy
- concerning optimizing sets of array- and/or matrix-entries. Then,
- in example~\ref{ex:3.2.6}, possible SCOPE assistance in problem analysis is
- shown. Finally in example~\ref{ex:3.2.7}
- some differences in simplification and their influence on optimization are
- discussed. We also introduce and explain the role of the SCOPE
- switch {\tt SIDREL}.
- \index{{\tt SIDREL} switch}
- \index{{\tt EVALLHSEQP} switch}
- \example\label{ex:3.2.4}
- \index{SCOPE ! example}
- A number of possible alglist elements is presented in the script.
- The first three elements of the actual parameter define values, obtained
- via the usual algebraic mode list evaluation mechanism. The last two will be
- processed literally. So, the actual parameter for {\tt ALGOPT} is composed
- of the scalar {\tt alist}, a list consisting of the matrix element {\tt m(1,1)},
- the array element {\tt ar(2,2)}, nested even deeper, and two equations. Before
- an {\tt ALGOPT} argument is optimized it is flattened by the SCOPE parser
- into a list of equations, the algebraic mode equivalent of the sequence of
- assignments in the {\tt OPTIMIZE} context. Evaluation of an {\tt ALGOPT}
- application leads to an algebraic mode list of equations, with optimized rhs's.
- The cse\_prefix was seemingly superfluous, because all its references
- disappeared by back-substitution before output-processing started. See also
- example~\ref{ex:3.2.7}.
- \index{{\tt ALGOPT} application}
- Since an {\tt ALGOPT} application always results in an algebraic mode list,
- one can not use this feature for production of code in one of GENTRAN's target
- languages. To facilitate the translation of the result of an {\tt ALGOPT}
- application, we extended the syntax of the {\tt OPTIMIZE} input repertoire,
- such that alglst\_production's are processable by {\tt OPTIMIZE}
- as well, as illustrated in the script of this example and
- in example~\ref{ex:3.2.7}
- {\small
- \begin{verbatim}
- OFF EXP$
- ARRAY ar(2,2)$ MATRIX m(2,2)$
- alst:={p1=a+b,p2=(a+b)^2}$
- m(1,1):={q1=c+d,q2=(c+d)^2}$
- ar(2,2):={r1=(a+b)*(c+d),r2=(a+b)^2*(c+d)^2}$
- optlst:=ALGOPT({alst,{m(1,1)},{{ar(2,2)}},
- t1=(a+b)*(c+d)^2,t2=(c+d)*(a+b)^2},s);
- optlst := {p1=a + b,
- 2
- p2=p1 ,
- q1=c + d,
- 2
- q2=q1 ,
- r1=p1*q1,
- 2
- r2=r1 ,
- t1=q1*r1,
- t2=p1*r1}
- OPTIMIZE optlst$
- p1 := a + b
- p2 := p1*p1
- q1 := c + d
- q2 := q1*q1
- r1 := q1*p1
- r2 := r1*r1
- t1 := r1*q1
- t2 := r1*p1
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \example\label{ex:3.2.5}
- \index{SCOPE ! example}
- In example~\ref{ex:3.1.8} we introduced a symmetric (3,3)-matrix {\tt m}. We
- present an alternative computation of its determinant. We start with building
- a list of equations, with rhs's, being the non-zero entries of {\tt m},
- relevant for the computation. The lhs's are produced with
- the {\tt mkid} function. These
- newly generated names are assigned to the matrix-entries as well. Finally
- we add the definition of the computation of the determinant of {\tt m},
- in terms of the redefined entries, to this list.
- For the construction of the value of {\tt mlst} we applied both the lhs and
- rhs evaluation mechanism. Observe also that, due to the redefinition process,
- the original values of the entries of the matrix {\tt m} are lost.
- We can optimize {\tt mlst}, using
- either an {\tt OPTIMIZE} command or an {\tt ALGOPT} application. The reduction
- in arithmetic is not yet impressive here, certainly comparing it with the
- non-expanded, optimized form in the earlier example~\ref{ex:3.1.8}.
- (See also example~\ref{ex:3.2.7} for additional comment).
- However, working with larger and non-symmetric matrices will certainly
- improve results, when applying a comparable strategy.
- Observe that the syntax of permissible {\tt ALGOPT} a\_object's does not
- allow to use matrix or array names to compactly identify the complete set
- of their entries. The script in this example shows that such a facility is
- easily made. This possibility exists already for matrices in a GENTRAN
- setting (see also example~\ref{ex:8.2} in section~\ref{SCOPE:gopt}).
- \index{{\tt EVALLHSEQP} switch}
- {\small
- \begin{verbatim}
- % ---
- % We assume the matrix m to be known already.
- % ---
- mlst:={}$ l:=-1$
- OFF EXP$ ON EVALLHSEQP$
- FOR j:=1:3 DO FOR k:=j:3 DO
- IF m(j,k) neq 0 THEN
- << s:=mkid(t,l:=l+1);
- mlst:=append(mlst,{s=m(j,k)});
- m(j,k):=m(k,j):=s
- >>$
- OFF EVALLHSEQP$
- m;
- [t0 t1 t2]
- [ ]
- [t1 t3 0 ]
- [ ]
- [t2 0 t4]
- mlst:=append(mlst,{detm=det(m)});
- 2 2
- mlst := {t0= - (j30y - j30z + 9*m30*p )*sin(q3)
- 2 2
- + 18*cos(q2)*cos(q3)*m30*p + j10y + j30y + m10*p
- 2
- + 18*m30*p ,
- 2 2
- t1= - (j30y - j30z + 9*m30*p )*sin(q3)
- 2 2
- + 9*cos(q2)*cos(q3)*m30*p + j30y + 9*m30*p ,
- 2
- t2= - 9*sin(q2)*sin(q3)*m30*p ,
- 2 2 2
- t3= - (j30y - j30z + 9*m30*p )*sin(q3) + j30y + 9*m30*p ,
- 2
- t4=j30x + 9*m30*p ,
- 2 2
- detm=(t0*t3 - t1 )*t4 - t2 *t3}
- ON ACINFO,FORT$ OFF PERIOD$
- \end{verbatim}}
- \index{{\tt ACINFO} switch}
- \index{{\tt FORT} switch}
- \index{{\tt PERIOD} switch}
- {\small
- \begin{verbatim}
- OPTIMIZE mlst INAME s;
- Number of operations in the input is:
- Number of (+/-) operations : 19
- Number of unary - operations : 1
- Number of * operations : 33
- Number of integer ^ operations : 16
- Number of / operations : 0
- Number of function applications : 9
- S0=SIN(REAL(Q3))
- S7=P*P
- S5=S7*M30
- S4=S5*COS(REAL(Q3))*COS(REAL(Q2))
- S13=9*S5
- S11=(S13+J30Y-J30Z)*S0*S0
- T0=J30Y+J10Y+18*(S4+S5)+S7*M10-S11
- T3=S13+J30Y-S11
- T1=T3+9*S4
- T2=-(S13*SIN(REAL(Q2))*S0)
- T4=S13+J30X
- DETM=T4*(T3*T0-(T1*T1))-(T2*T2*T3)
- Number of operations after optimization is:
- Number of (+/-) operations : 13
- Number of unary - operations : 1
- Number of * operations : 17
- Number of integer ^ operations : 0
- Number of / operations : 0
- Number of function applications : 4
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \example\label{ex:3.2.6}
- \index{SCOPE ! example}
- We now illustrate that information, produced by SCOPE, can possibly also play
- a role in computations in algebraic mode. Let ${\rm A.\vec{x}~=~\vec{b}}$
- be given by
- \[ \left[ \begin{array}{rrrrrr}
- -1 & 2 & -2 & 1 & 3 & 2 \\
- -2 & 4 & -4 & 2 & -2 & 3 \\
- 1 & 1 & 1 & 1 & 2 & 4 \\
- 2 & -2 & -1 & 1 & -1 & -2 \\
- 3 & 1 & -4 & 1 & 1 & 2 \\
- -1 & -5 & 1 & 1 & 3 & 6
- \end{array}\right]~\cdot~\left[ \begin{array}{c}
- x1 \\ x2 \\ x3 \\ x4 \\ x5 \\ x6
- \end{array} \right]~=~
- \left[ \begin{array}{r}
- 5 \\ 1 \\ 10 \\ -3 \\ 4 \\ 5
- \end{array} \right] \cdot \]
- This artificial system is constructed for illustrative purposes.
- Its solution is simply ${\rm x_i~=~1}$, ${\rm i~=~1,..,6}$.
- But straightforward inspection shows that
- \[ {\rm A}~=~\left[ \begin{array}{cc}
- {\rm A}_1 & {\rm A}_2 \\
- {\rm A}_3 & {\rm A}_4 \end{array}\right]~
- {\rm where}~{\rm A}_1~=~\left[ \begin{array}{cccc}
- -1 & 2 & -2 & 1\\
- -2 & 4 & -4 & 2 \end{array}\right]~
- {\rm and}~ {\rm A}_4~=~\left[ \begin{array}{rr}
- 2 & 4 \\
- -1 & -2 \\
- 1 & 2 \\
- 3 & 6 \end{array} \right] \cdot \]
- We can use {\tt ALGOPT} to "discover" and thus to employ this information.
- The system is introduced in the form of assignment statements
- $e_i~=~(\sum_{j=1}^{6}~a_{ij}~\cdot~x_{j})~-~b_{i},~i~=~1, \cdots ,6$.
- We use {\tt alst}, identifying the set of equations (see command 9),
- as actual parameter for {\tt ALGOPT}, leading to an algebraic list,
- identified by {\tt reslst} (see command 10). We recognize {\tt g2 = g6 + x5}
- {\tt (= x5 + 2x6)} and {\tt g1 = g3 + g5 + -2x3} {\tt (= -x1 + 2x2 - 2x3 + x4)}.
- Through command 12 we require
- cse's to have an arithmetic complexity of a least 4. We then find {\tt g1}
- directly, now called {\tt g8}, because we continue applying the
- function {\tt gensym}; the cse\_prefix was left out as actual parameter.
- The {\tt solve} function is applied (command 14) to obtain {\tt rootset1}, a list
- of values for {\tt x5} and {\tt x6}, expressed in the parameter {\tt g8}.
- After assigning {\tt g8} its value in algebraic mode and
- resetting the algebraic values of {\tt ei}, $i~=~ 1, \cdots ,6$
- with {\tt RESTOREALL} instructions (the commands 11 and 16),
- we can obtain the solution
- of the subsets, denoted by {\tt rootset1} and {\tt rootset2}.
- \index{SCOPE function ! {\tt RESTOREALL}}
- {\small
- \begin{verbatim}
- 1: LOAD_PACKAGE nscope$
- 2: e1:=2*x6+3*x5+x4-2*x3+2*x2-x1-5$
- 3: e2:=3*x6-2*x5+2*x4-4*x3+4*x2-2*x1-1$
- 4: e3:=2*x5+4*x6+x1+x2+x3+x4-10$
- 5: e4:=-x5-2*x6+2*x1-2*x2-x3+x4+3$
- 6: e5:=x5+2*x6+3*x1+x2-4*x3+x4-4$
- 7: e6:=3*x5+6*x6-x1-5*x2+x3+x4-5$
- 8: solve({e1,e2,e3,e4,e5,e6},{x1,x2,x3,x4,x5,x6});
- {{x1=1,x2=1,x3=1,x4=1,x5=1,x6=1}}
- 9: alst:={e1=e1,e2=e2,e3=e3,e4=e4,e5=e5,e6=e6}$
- 10: reslst:=ALGOPT alst;
- reslst := {g3= - x1 + x4,
- g5=2*x2,
- g1=g3 + g5 - 2*x3,
- g6=2*x6,
- e1=g1 + g6 + 3*x5 - 5,
- e2=2*g1 - 2*x5 + 3*x6 - 1,
- g2=g6 + x5,
- g4=x2 + x4,
- e3=2*g2 + g4 + x1 + x3 - 10,
- e4= - g2 - g5 + 2*x1 - x3 + x4 + 3,
- e5=g2 + g4 + 3*x1 - 4*x3 - 4,
- e6=3*g2 + g3 - 5*x2 + x3 - 5}
- 11: RESTOREALL$
- 12: SETLENGTH 4$
- 13: reslst:=ALGOPT alst;
- reslst := {g8= - x1 + 2*x2 - 2*x3 + x4,
- e1=g8 + 3*x5 + 2*x6 - 5,
- e2=2*g8 - 2*x5 + 3*x6 - 1,
- e3=x1 + x2 + x3 + x4 + 2*x5 + 4*x6 - 10,
- e4=2*x1 - 2*x2 - x3 + x4 - x5 - 2*x6 + 3,
- e5=3*x1 + x2 - 4*x3 + x4 + x5 + 2*x6 - 4,
- e6= - x1 - 5*x2 + x3 + x4 + 3*x5 + 6*x6 - 5}
- 14: rootset1:=solve({part(reslst,2,2),part(reslst,3,2)},{x5,x6});
- g8 + 13 - 8*g8 + 13
- rootset1 := {{x5=---------,x6=--------------}}
- 13 13
- 15: g8:=part(reslst,1,2);
- g8 := - x1 + 2*x2 - 2*x3 + x4
- 16: RESTOREALL$
- 17: rootset2:=solve(sub(rootset1,{e3,e4,e5,e6}),{x1,x2,x3,x4});
- rootset2 := {{x1=1,x2=1,x3=1,x4=1}}
- 18: rootset1:=sub(rootset2,rootset1);
- rootset1 := {{x5=1,x6=1}}
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \index{SCOPE function ! {\tt SETLENGTH}}
- \index{{\tt EXP} switch}
- \example\label{ex:3.2.7}
- \index{SCOPE ! example}
- The script in example~\ref{ex:3.2.5} suggests that we can easily copy GENTRAN's
- assignment features by some listprocessing in algebraic mode. However, we
- have to operate carefully. In the script of the present example we introduce an
- expression denoted by {\tt f}. Production of a number of its partial (higher)
- derivatives is a straightforward mechanism to assist in constructing a set
- of assignment statements, containing lots of cse's. Inspection of the values,
- in {\tt OFF EXP} mode assigned to {\tt faa}, {\tt tst1} and {\tt tst2},
- respectively, learns that the value of {\tt mlst} in example~\ref{ex:3.2.5}
- may be improvable.
- {\small
- \begin{verbatim}
- u:=a*x+2*b$ v:=sin(u)$ w:=cos(u)$ f:=v^2*w$
- OFF EXP$
- faa:=df(f,a,2);
- 2 2 2
- faa := (2*cos(a*x + 2*b) - 7*sin(a*x + 2*b) )*cos(a*x + 2*b)*x
- tst1:={faa=df(f,a,2)};
- 3 2 2 2
- tst1 := {faa=2*cos(a*x + 2*b) *x - 7*cos(a*x + 2*b)*sin(a*x + 2*b) *x }
- tst2:={faa=(faa:=df(f,a,2))};
- 2 2 2
- tst2 := {faa=(2*cos(a*x + 2*b) - 7*sin(a*x + 2*b) )*cos(a*x + 2*b)*x }
- \end{verbatim}}
- We produce an optimized version of the value of {\tt tlst}, using {\tt ALGOPT}.
- Switching {\tt ON INPUTC} and {\tt PRIMAT} results in an input echo, indeed
- showing expanded rhs's and a vizualized picture of the \verb+Sumscheme+ of
- $D_{\lambda}$. We skipped the ${\rm D_0}$-picture and the rest of the
- $D_{\lambda}$-picture from the script. The value of {\tt reslst} shows the
- patterns {\tt s14 = -7.f.x + 2.s9.x} and {\tt fbb = -28.f + 8.s9}.
- The presented \verb+Sumscheme+ of $D_{\lambda}$ suggests that {\tt fbb} and
- {\tt s13} (see the Fa(the)r entries) seemingly have
- nothing in common. But {\tt s14} stands for {\tt 2.s6 - 7.s7}, because,
- column 8 has to be identified with {\tt s7}, etc. Since both {\tt S6} and
- {\tt S7} occur only once in $D_{\lambda}$, their value replaces them in the
- output.
- It is an illustration of the heuristic character of the optimization process.
- Optimization of the value of {\tt reslst} shows that the repeated pattern
- is now recognized.
- \index{{\tt INPUT} switch}
- \index{{\tt PRIMAT} switch}
- {\small
- \begin{verbatim}
- tlst:={f=f,fa=df(f,a),fb=df(f,b),faa=df(f,a,2),
- fab=df(f,a,b),fba=df(f,b,a),fbb=df(f,b,2)}$
- ON INPUTC,PRIMAT$
- reslst:=ALGOPT(tlst,s);
- 2
- f := cos(a*x + 2*b)*sin(a*x + 2*b)
- 2 3
- fa := 2*cos(a*x + 2*b) *sin(a*x + 2*b)*x - sin(a*x + 2*b) *x
- 2 3
- fb := 4*cos(a*x + 2*b) *sin(a*x + 2*b) - 2*sin(a*x + 2*b)
- 3 2 2 2
- faa := 2*cos(a*x + 2*b) *x - 7*cos(a*x + 2*b)*sin(a*x + 2*b) *x
- 3 2
- fab := 4*cos(a*x + 2*b) *x - 14*cos(a*x + 2*b)*sin(a*x + 2*b) *x
- 3 2
- fba := 4*cos(a*x + 2*b) *x - 14*cos(a*x + 2*b)*sin(a*x + 2*b) *x
- 3 2
- fbb := 8*cos(a*x + 2*b) - 28*cos(a*x + 2*b)*sin(a*x + 2*b)
- Sumscheme :
- | 3 4 5 6 7 8 9 10 11 12 32| EC|Far
- ---------------------------------------------
- 3| 1 2| 1| s3
- 20| -28 8 | 1| fbb
- 37| -7 2 | 1| s14
- 38| -1 2 | 1| s15
- ---------------------------------------------
- 3 : s3
- 4 : s15
- 5 : s14
- 6 : s4
- 7 : s9
- 8 : s7
- 9 : s6
- 10 : s10
- 11 : s5
- 12 : s8
- 32 : b
- reslst := {s3=a*x + 2*b,
- s0=cos(s3),
- 3
- s9=s0 ,
- s2=sin(s3),
- s12=s0*s2,
- f=s12*s2,
- 3
- s15=2*s0*s12 - s2 ,
- fa=s15*x,
- fb=2*s15,
- s14= - 7*f*x + 2*s9*x,
- faa=s14*x,
- fab=2*s14,
- fba=fab,
- fbb= - 28*f + 8*s9}
- OFF INPUTC,PRIMAT$
- OPTIMIZE reslst$
- s3 := 2*b + x*a
- s0 := cos(s3)
- s9 := s0*s0*s0
- s2 := sin(s3)
- s12 := s2*s0
- f := s12*s2
- s15 := 2*s12*s0 - s2*s2*s2
- fa := s15*x
- fb := 2*s15
- g3 := 2*s9 - 7*f
- s14 := g3*x
- faa := s14*x
- fab := 2*s14
- fba := fab
- fbb := 4*g3
- \end{verbatim}}
- Repeating this process, this time with an {\tt OPTIMIZE} command to begin with,
- learns that the {\tt OFF EXP} mode is now effective. But this time, and for
- similar
- reasons, the assignments {\tt fbb = 4.s9.s0} and {\tt s12 = s9.s0.x} still
- have a subexpression in common. Now the \verb+Productscheme+ of $D_{\lambda}$
- helps understanding the phenomenon; again we skipped for shortness the rest of
- the information, provided by the {\tt ON PRIMAT} status of SCOPE.
- Internally {\tt s12} denotes the product {\tt s4.s9},
- where {\tt s4 = x.s0}. The cse {\tt s4} disappeared from the output.
- An {\tt ALGOPT} application leads to the "discovery" of the
- cse {\tt g10 = s0.s9}.
- {\small
- \begin{verbatim}
- f:=v^2*w;
- 2
- f := cos(a*x + 2*b)*sin(a*x + 2*b)
- ON INPUTC,PRIMAT$
- OPTIMIZE f:=:f,fa:=:df(f,a),fb:=:df(f,b),faa:=:df(f,a,2),
- fab:=:df(f,a,b),fba:=:df(f,b,a),fbb:=:df(f,b,2) INAME s$
- 2
- f := cos(a*x + 2*b)*sin(a*x + 2*b)
- 2 2
- fa := (2*cos(a*x + 2*b) - sin(a*x + 2*b) )*sin(a*x + 2*b)*x
- 2 2
- fb := 2*(2*cos(a*x + 2*b) - sin(a*x + 2*b) )*sin(a*x + 2*b)
- 2 2 2
- faa := (2*cos(a*x + 2*b) - 7*sin(a*x + 2*b) )*cos(a*x + 2*b)*x
- 2 2
- fab := 2*(2*cos(a*x + 2*b) - 7*sin(a*x + 2*b) )*cos(a*x + 2*b)*x
- 2 2
- fba := 2*(2*cos(a*x + 2*b) - 7*sin(a*x + 2*b) )*cos(a*x + 2*b)*x
- 2 2
- fbb := 4*(2*cos(a*x + 2*b) - 7*sin(a*x + 2*b) )*cos(a*x + 2*b)
- s3 := x*a + 2*b
- s0 := cos(s3)
- s2 := sin(s3)
- s6 := s2*s2
- f := s6*s0
- s14 := 2*s0*s0
- s13 := (s14 - s6)*s2
- fa := s13*x
- fb := 2*s13
- s9 := s14 - 7*s6
- s12 := s9*s0*x
- faa := s12*x
- fab := 2*s12
- fba := fab
- fbb := 4*s9*s0
- Productscheme :
- | 0 2 3 4 5 12 14 18 19 20 21 22 23| EC|Far
- ---------------------------------------------------
- 0| 1 1 | 1| f
- 5| 1 1 | 1| fa
- 9| 1 | 2| fb
- 13| 1 1 | 1| faa
- 17| 1 | 1| fab
- 21| 1 | 1| fba
- 25| 1 1 | 4| fbb
- 29| 1 1 | 1| s4
- 30| 1 1| 1| s5
- 31| 2 | 1| s6
- 33| 2 | 1| s8
- 37| 1 1 | 1| s12
- 38| 1 1 | 1| s13
- 39| 1 | 2| s14
- 40| 1 | 2| s15
- ---------------------------------------------------
- 0 : s15
- 2 : s13
- 3 : s12
- 4 : s9
- 5 : s10
- 12 : s8
- 14 : s6
- 18 : s5
- 19 : s4
- 20 : s2=sin(s3)
- 21 : s0=cos(s3)
- 22 : x
- 23 : a
- ALGOPT ARESULTS;
- {s3=a*x + 2*b,
- s0=cos(s3),
- s2=sin(s3),
- 2
- s6=s2 ,
- f=s0*s6,
- 2
- s14=2*s0 ,
- s13=(s14 - s6)*s2,
- fa=s13*x,
- fb=2*s13,
- s9=s14 - 7*s6,
- g10=s0*s9,
- s12=g10*x,
- faa=s12*x,
- fab=2*s12,
- fba=fab,
- fbb=4*g10}
- \end{verbatim}}
- This script is shown for different reasons. It illustrates the heuristic
- character of the optimization process. We optimize, but do not guarantee
- the optimal solution. It also shows how easily repeated SCOPE applications
- can be accomplished. Hence commands like "{\tt ALGOPT} {\tt ARESULTS};",
- "{\tt ALGOPT} {\tt ALGOPT} $\cdots$ ;"
- or "{\tt OPTIMIZE} {\tt ALGOPT} $\cdots$ ;" are all possible.
- However, it is sometimes better to avoid such a combination when a
- {\tt RESTOREALL} instruction has to follow the first application.
- A more detailed discussion about these possibilities is given in
- section~\ref{SCOPE:soph}, and especially in section~\ref{SSF:Sl}.
- An additional reason was, to stipulate that SCOPE's actual parameters
- have to be built carefully.
- \index{{\tt SIDREL} switch}
- \index{SCOPE function ! {\tt SETLENGTH}}
- This example is also used to illustrate the role, which the switch {\tt SIDREL}
- can possibly play. When turned it {\tt ON} the finishing touch F (see
- subsection~\ref{SCOPE:bird}) is omitted and all non-additive cse's
- are substituted back, thus producing a possibly still rewritten input set,
- which consists of toplevel input and additive cse's only. A simple
- straightforward backsubstitution mechanism is applied on the optimization
- result before it is presented to the user. Seemingly, it can lead to surprises
- as shown below by the differences between the presentations of {\tt s15},
- {\tt s14} and {\tt fbb} when again optimizing the contents of {\tt tlst}.
- This effect disappeares when using {\tt SETLENGTH}.
- The switch {\tt SIDREL} was introduced in SCOPE quite long ago. By that
- time Hearn was wondering ~\cite{Hearn:85,Hearn:86} if (parts of) SCOPE output,
- presented in algebraic mode, can be used as input for a Gr\"{o}bner-base
- algorithm application, thus attempting to assist in expression restructuring
- leading to improved expression representations.
- {\small
- \begin{verbatim}
- ON SIDREL$
- ALGOPT(tlst,s);
- {s3=a*x + 2*b,
- 2
- f=cos(s3)*sin(s3) ,
- 2 3
- s15=2*cos(s3) *sin(s3) - sin(s3) ,
- fa=s15*x,
- fb=2*s15,
- 2 3
- s14= - 7*cos(a*x + 2*b)*sin(a*x + 2*b) *x + 2*cos(s3) *x,
- faa=s14*x,
- fab=2*s14,
- fba=2*s14,
- 2 3
- fbb= - 28*cos(a*x + 2*b)*sin(a*x + 2*b) + 8*cos(s3) }
- SETLENGTH 4$
- ALGOPT(tlst,s);
- 2
- {f=cos(a*x + 2*b)*sin(a*x + 2*b) ,
- 2 3
- s15=2*cos(a*x + 2*b) *sin(a*x + 2*b) - sin(a*x + 2*b) ,
- fa=s15*x,
- fb=2*s15,
- 3 2
- s14=2*cos(a*x + 2*b) *x - 7*cos(a*x + 2*b)*sin(a*x + 2*b) *x,
- faa=s14*x,
- fab=2*s14,
- fba=2*s14,
- 3 2
- fbb=8*cos(a*x + 2*b) - 28*cos(a*x + 2*b)*sin(a*x + 2*b) }
- \end{verbatim}}
- {\small
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \newpage
- \section{Special SCOPE 1.5 Features}\label{SCOPE:soph}
- Part of the input syntax for the function {\tt ALGOPT} was left undiscussed
- in section~\ref{SCOPE:algo}. It was the permissable form for (parts of)
- the actual parameter, defining function applications, producing
- an alglist. The alglist is an algebraic mode list, consisting
- either of equations of the form lhs = rhs or of constructs
- evaluating into an alglist or referencing an alglist.
- In section~\ref{SSF:Sl} is explained which type of user defined
- functions lead to permissable function applications as (part of an) actual
- parameter for an {\tt OPTIMIZE} command or an {\tt ALGOPT} application.
- Tools are provided for building a SCOPE library.
- Already available facilities, designed along these lines, cover
- {\bf structure recognition}, presented in section~\ref{SSF:sr} and
- {\bf Horner-rule} based expression rewriting, surveyed in section~\ref{SSF:Hr}.
- \subsection{Towards a SCOPE 1.5 Library}\label{SSF:Sl}
- \index{REDUCE function ! {\tt ENDSTAT}-type}
- \index{REDUCE function ! {\tt NORMAL}-type}
- \index{REDUCE function ! {\tt PSOPFN}-type}
- Design and implementation of an algebraic or symbolic procedure, returning
- a list of equations in algebraic mode, is straightforward as long as the
- number of formal parameters is exactly known. Let us call such procedures
- functions of {\tt NORMAL}-type. When formal parameters are not required,
- the so-called {\tt ENDSTAT}-variant can be used.
- One simply associates an indicator {\tt stat}, with
- value {\tt endstat}, with the function name {\tt f-name},
- using \verb+lisp(put('f-name,'stat,'endstat))$+ as instruction.
- Such a function will be said to be of {\tt ENDSTAT}-type.
- The so-called {\tt PSOPFN}-type function is similar to the {\tt FEXPR}-type
- function in symbolic mode. It may have an arbitrary number of unevaluated
- parameters.
- Special attention is made possible by modifying the function {\tt reval1}, used
- in both {\tt reval} and {\tt aeval}. The relevant section of the evaluator is:
- {\small
- \begin{verbatim}
- symbolic procedure aeval u; reval1(u,nil);
- symbolic procedure reval u; reval1(u,t);
- symbolic procedure reval1(u,v);
- .......................
- else if x:=get(car u,'psopfn)
- then << u:=apply(x,list cdr u);
- if x:=get(x,'cleanupfn) then u:=apply(x,list(u,v));
- return u
- >>
- .......................
- \end{verbatim}}
- The actual parameter {\tt u} of {\tt reval1} is a function application in
- prefixform: ({\tt function-name} {\tt arg1} ... {\tt argn}).
- The {\tt function-name} is replaced by the value of the indicator {\tt psopfn}.
- The thus modified S-expression is evaluated. This mechanism leaves control
- over evaluation of (part of) the arguments, collected in {\tt cdr u}, to the
- designer of the function hidden behind the {\tt psopfn} value. We employed
- this simple mechanism to implement {\tt ALGOPT} and some of the features,
- to be discussed in section~\ref{SSF:sr} and section~\ref{SSF:Hr}.
- A possible re-evaluation step, based on the use of the
- value of the indicator {\tt cleanupfn} was not necessary; it is not yet
- allowed in the SCOPE context.
- The different combinations, suggested in example~\ref{ex:3.2.7}, such as
- {\tt ALGOPT} {\tt ALGOPT} or {\tt ALGOPT} {\tt ARESULTS}, are merely examples
- of a general rule:
- {\em {\tt ENDSTAT}-, {\tt NORMAL}- and {\tt PSOPFN}-type functions, delivering
- an alglist when applied, are all applicable as actual parameter or
- as element of an alglist, functioning as actual parameter in an
- {\tt OPTIMIZE} command or an {\tt ALGOPT} application. }
- \index{REDUCE function ! {\tt ENDSTAT}-type}
- \index{REDUCE function ! {\tt NORMAL}-type}
- \index{REDUCE function ! {\tt PSOPFN}-type}
- So, in principle, special features, providing a form of preprocessing, can be
- designed and implemented as extension of the default optimization repertoire.
- Of course additional function types are conceivable.
- We illustrate the potential of this facility with a simple example.
- Further examples follow
- in section~\ref{SSF:sr} and section~\ref{SSF:Hr}.
- \example\label{ex:4.1.1}
- \index{SCOPE ! example}
- The procedures {\tt asquares} and {\tt repeated\_squaring}
- define the production of
- lists of equations. The lhs's function as name and the rhs's as
- the computational rules.
- Application of these functions shows how easy a user can provide new features,
- usable in a SCOPE context.
- The procedures {\tt asquares} and {\tt repeated\_squaring} are essentially
- different The first has one parameter, a list of equations, while the latter
- accepts an arbitrary number of such lists as actual parameters.
- The {\tt psopfn} indicator value is
- {\tt repeated\_squaringeval}, the name of the function, which is actually
- introduced. {\tt asquares} is of {\tt NORMAL}-type and applicable in both
- algebraic and symbolic mode.
- {\small
- \begin{verbatim}
- OPERATOR square$
- sq_rule:={square(~u) => u^2}$
- ALGEBRAIC PROCEDURE asquare u;
- square(u) WHERE sq_rule$
- SYMBOLIC PROCEDURE rsquare u;
- reval asquare aeval u$
- SYMBOLIC PROCEDURE asquares u;
- append(list('list),
- FOREACH el IN cdr u COLLECT list('equal,cadr el,rsquare caddr el))$
- SYMBOLIC OPERATOR asquares$
- SYMBOLIC PROCEDURE repeated_squaringeval u;
- BEGIN SCALAR res; INTEGER j;
- j=0;
- FOREACH el IN u DO
- << j:=j+1; el:=asquares el;
- FOR k:=2:j DO el:=asquares el;
- res:= IF j=1 THEN el ELSE append(res,cdr el)
- >>;
- RETURN res
- END$
- LISP( put('repeated_squaring,'psopfn,'repeated_squaringeval))$
- % ---
- % Examples of the use of asquares and repeated_squaring.
- % Although the psopfn-mechanism can be easily avoided,
- % it is used for illustrative purposes here.
- % ---
- OFF EXP$
- asquare sin(x);
- 2
- sin(x)
- LISP(rsquare('(sin x)));
- (expt (sin x) 2)
- asq:=asquares {s1=a+b,s2=(a+b)^2,s3=(a+b)^3};
- 2 4 6
- asq := {s1=(a + b) ,s2=(a + b) ,s3=(a + b) }
- repeated_squaring({s1=a+b,s2=(a+b)^2},{s3=(a+b)^3,s4=(a+b)^4},
- {s5=(a+b)^5,s6=(a+b)^6});
- 2
- {s1=(a + b) ,
- 4
- s2=(a + b) ,
- 12
- s3=(a + b) ,
- 16
- s4=(a + b) ,
- 40
- s5=(a + b) ,
- 48
- s6=(a + b) }
- % ---
- % The "ALGOPT asquares ...;" application is similar to the "ALGOPT asq;"
- % instruction.
- % ---
- ALGOPT(asquares {s1=a+b,s2=(a+b)^2,s3=(a+b)^3},t);
- 2 2
- {t2=a + b,s1=t2 ,s2=s1 ,s3=s1*s2}
- ALGOPT asq;
- \end{verbatim}}
- \newpage
- {\small
- \begin{verbatim}
- 2 2
- {g6=a + b,s1=g6 ,s2=s1 ,s3=s1*s2}
- % ---
- % The OPTIMIZE variant is now applied on a repeated_squaring application.
- % ---
- OPTIMIZE repeated_squaring({s1=a+b,s2=(a+b)^2},{s3=(a+b)^3,s4=(a+b)^4},
- {s5=(a+b)^5,s6=(a+b)^6}) INAME t;
- t5 := a + b
- s1 := t5*t5
- s2 := s1*s1
- t12 := s2*s2
- s3 := s2*t12
- s4 := s2*s3
- s5 := t12*t12*t12*s4
- s6 := t12*s5
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \subsection{Structure Recognition:
- {\tt GSTRUCTR} and {\tt ALGSTRUCTR}} \label{SSF:sr}
- \index{REDUCE function ! {\tt GSTRUCTR}}
- \index{REDUCE function ! {\tt structr}}
- \index{SCOPE function ! {\tt ALGSTRUCTR}}
- The {\tt structr} command in REDUCE 3.6 (see the manual, section 8.3.8)
- can be used
- to display the skeletal structure of its evaluated argument, a single
- expression. After setting {\tt ON SAVESTRUCTR} a {\tt structr} command
- will return a list, whose first element is a presentation for the expression
- and subsequent elements are the subexpression relations.\\
- A special SCOPE feature provides an extended display facility, called
- {\tt GSTRUCTR}. The syntax of this generalized command is:
- \begin{center}
- \begin{tabular}{lcl}
- $<${\tt REDUCE}\_command$>$ & $::=$ & $\cdots~\mid$\\
- & & {\tt GSTRUCTR} $<$stat\_group$>$ [{\tt NAME} $<$cse\_prefix$>$]\\
- $<$stat\_group$>$ & $::=$ & $\ll~<$stat\_list$>~\gg$\\
- $<$stat\_list$>$ & $::=$ & $<$gstat$>$ [; $<$stat\_list$>$]\\
- $<$gstat$>$ & $::=$ & $<$name$>~:=~<$ expression$>~\mid~<$matrix\_id$>$
- \end{tabular}
- \end{center}
- The stat\_group consists
- of one assignment statement or a group of such statements. Application of
- a {\tt GSTRUCTR} command provides a display of the structure of the whole
- set of assignments. Such an assignment can be replaced by a matrix reference.
- That leads to the display of all the non-zero entries of the referenced
- matrix as well. The {\tt NAME} part is optional. The cse-name mechanism
- is applied in the usual way.
- The equivalent of a possible {\tt ON SAVESTRUCTR} setting is provided in the
- form of a {\tt PSOPFN}-type function, called {\tt ALGSTRUCTR}.
- Its syntax is:
- \begin{center}
- \begin{tabular}{lcl}
- $<$function\_application$>$ & $::=$ &
- {\tt ALGSTRUCTR} ($<$arg\_list$>$ [, $<$cse\_prefix$>$ ]) \\
- $<$arg\_list$>$ & $::=$ & $<$arg\_list\_name$>~\mid~$\{$<$arg\_seq$>$\}\\
- $<$arg\_seq$>$ & $::=$ & $<$arg$>$[,$<$arg\_seq$>$]\\
- $<$arg$>$ & $::=$ & $<$matrix\_id$>~\mid~<$name$>$=$<$expression$>$\\
- $<$arg\_list\_name$>$ & $::=$ & $<$id$>$
- \end{tabular}
- \end{center}
- The result is presented in the form of an algebraic mode list.
- Earlier SCOPE-versions allowed to use a {\tt GSTRUCTR} command as (part of an)
- actual parameter for an {\tt OPTIMIZE} command. This facility is not longer
- supported. In stead, an {\tt ALGSTRUCTR} application can now be used as (part
- of an) actual parameter in both an {\tt OPTIMIZE} command or an {\tt ALGOPT}
- application. We now illustrate these features in:
- \index{REDUCE function ! {\tt GSTRUCTR}}
- \index{SCOPE function ! {\tt ALGSTRUCTR}}
- \example\label{ex:4.1.2}
- \index{SCOPE ! example}
- The script hardly requires explanation. However, observe
- that {\tt v1}, {\tt v3}, {\tt v4}, {\tt v6} and {\tt v7} occur only once
- in the result of the {\tt GSTRUCTR} application. When this application
- is used as actual parameter for an {\tt OPTIMIZE} command
- these redundancies are removed before the actual optimization process starts.
- Likewise,
- an {\tt ALGSTRUCTR} application only leads to identification of repeatedly
- occuring sub-structures in its input.
- {\tt ALGSTRUCTR}, {\tt ALGHORNER}, see the next subsection, and {\tt ALGOPT}
- all apply the same output production strategy, i.e. it might be necessary to
- restore the previous algebraic mode status by applying the
- function {\tt RESTOREALL}.
- {\small
- \begin{verbatim}
- OFF EXP,PERIOD$
- MATRIX a(2,2);
- a:=mat((x+y+z,x*y),((x+y)*x*y,(x+2*y+3)^3-x));
- [ x + y + z x*y ]
- [ ]
- a := [ 3 ]
- [(x + y)*x*y (x + 2*y + 3) - x]
- GSTRUCTR <<a;b:=(x+y)^2;c:=(x+y)*(y+z);d:=(x+2*y)*(y+z)*(z+x)^2>> NAME v$
- a(1,1) := v1
- a(1,2) := x*y
- a(2,1) := v2*x*y
- a(2,2) := v4
- 2
- b := v2
- c := v2*v5
- 2
- d := v6*v7 *v5
- where
- v7 := x + z
- v6 := x + 2*y
- v5 := y + z
- 3
- v4 := v3 - x
- v3 := x + 2*y + 3
- v2 := x + y
- v1 := x + y + z
- ALGSTRUCTR({a,b=(x+y)^2,c=(x+y)*(y+z),d=(x+2*y)*(y+z)*(z+x)^2},v);
- {a(1,1)=x + y + z,
- a(1,2)=x*y,
- v2=x + y,
- a(2,1)=v2*x*y,
- 3
- a(2,2)=(x + 2*y + 3) - x,
- 2
- b=v2 ,
- v5=y + z,
- c=v2*v5,
- 2
- d=(x + 2*y)*(x + z) *v5}
- \end{verbatim}}
- \index{SCOPE function ! {\tt RESTORABLES}}
- \index{SCOPE function ! {\tt ARESTORE}}
- {\small
- \begin{verbatim}
- RESTORABLES;
- {a}
- ARESTORE a$
- alst:=
- ALGOPT(ALGSTRUCTR({a,b=(x+y)^2,c=(x+y)*(y+z),d=(x+2*y)*(y+z)*(z+x)^2},v),s);
- *** a declared operator
- alst := {s5=x + z,
- a(1,1)=s5 + y,
- a(1,2)=x*y,
- v2=x + y,
- a(2,1)=a(1,2)*v2,
- s6=x + 2*y,
- s4=s6 + 3,
- 3
- a(2,2)=s4 - x,
- 2
- b=v2 ,
- v5=y + z,
- c=v2*v5,
- 2
- d=s5 *s6*v5}
- % ---
- % The above delivered warning is caused by the decloupling of a and its
- % status as matrix. Therefore a(1,2) can function in the rhs of a(2,1).
- % After an ARESTORE instruction a can restart its life as matrix_id.
- % ---
- a;
- a
- ARESTORE a$
- a;
- [ x + y + z x*y ]
- [ ]
- [ 3 ]
- [(x + y)*x*y (x + 2*y + 3) - x]
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \subsection{Horner-rules: {\tt GHORNER} and {\tt ALGHORNER}} \label{SSF:Hr}
- \index{Horner-rules}
- \index{REDUCE function ! {\tt GHORNER}}
- \index{SCOPE function ! {\tt ALGHORNER}}
- Horner-rule based expression modification is a SCOPE facility,
- called {\tt GHORNER}. The syntax of the command is similar to the
- {\tt GSTRUCTR} syntax:
- \begin{center}
- \begin{tabular}{lcl}
- $<${\tt REDUCE}\_command$>$ & $::=$ & $\cdots~\mid$\\
- & & {\tt GHORNER} $<$stat\_group$>$ [{\tt VORDER} $<$id\_seq$>$];
- \end{tabular}
- \end{center}
- The {\tt VORDER} part is optional. Application of
- a (generalized) Horner-rule assumes an identifier ordering. The syntax
- of the identifier sequence is:
- \hspace{1cm} $<$id\_seq$>~::=~<$id$>$[,$<$id\_seq$>$].
- We assume the rhs's in the stat\_group to be polynomials in
- the identifiers, partly or completely given in the id\_seq. The
- left-to-right ordering of this sequence replaces the existing system
- identifier ordering. Identifiers, omitted from the {\tt vorder} sequence
- have a lower preference and follow the existing system ordering. The
- rewritten rhs's are presented as a side-effect. FORTRAN notation is of
- course permitted. It is simply an extended print facility.
- The {\tt PSOPFN}-type variant of the {\tt GHORNER} command is
- called {\tt ALGHORNER}. Its syntax is:
- \begin{center}
- \begin{tabular}{lcl}
- $<$function\_application$>$ & $::=$ & $\cdots~\mid$\\
- & & {\tt ALGHORNER} ($<$arg\_list$>$ [,\{$<$id\_seq$>$\}]) \\
- \end{tabular}
- \end{center}
- The syntax for the arg\_list can be found in subsection~\ref{SSF:sr}.
- The result is presented in the form of an algebraic mode list.
- An {\tt ALGHORNER} application can be used as (part of an) actual parameter
- of either an {\tt OPTIMIZE} command or an {\tt ALGOPT} application.
- \example\label{ex:4.1.3}
- \index{SCOPE ! example}
- We illustrate the Horner-facilities by rewriting the expression of
- example~\ref{ex:3.1.2}, before optimizing it. Observe that
- application of {\tt ALGHORNER} in the default algebraic mode setting
- is useless. Due to the algebraic mode regime the rewritten expression
- is expanded again. We also show some Taylor-series remodelling.
- {\small
- \begin{verbatim}
- ON EXP$
- z:=a^2*b^2+10*a^2*m^6+a^2*m^2+2*a*b*m^4+2*b^2*m^6+b^2*m^2;
- 2 2 2 6 2 2 4 2 6 2 2
- z := a *b + 10*a *m + a *m + 2*a*b*m + 2*b *m + b *m
- GHORNER z:=z VORDER a;
- 2 6 2 2 4 2 6 2
- z := (2*b *m + b *m ) + a*(2*b*m + a*(b + 10*m + m ))
- GHORNER z:=z VORDER b;
- 2 6 2 2 4 2 6 2
- z := (10*a *m + a *m ) + b*(2*a*m + b*(a + 2*m + m ))
- hlst:={z=z}$
- ALGHORNER(hlst,{a,b,m});
- 2 2 2 6 2 2 4 2 6 2 2
- {z=a *b + 10*a *m + a *m + 2*a*b*m + 2*b *m + b *m }
- OPTIMIZE ALGHORNER(hlst,{a,b,m}) INAME s;
- s1 := m*m
- s0 := s1*s1
- s2 := b*b
- s4 := 2*s0
- z := a*(a*(s2 + s1*(10*s0 + 1)) + s4*b) + s2*s1*(s4 + 1)
- OPTIMIZE ALGHORNER(hlst,{b,m}) INAME s;
- s2 := m*m
- s0 := s2*s2
- s1 := a*a
- s4 := 2*s0
- z := b*(b*(s1 + s2*(s4 + 1)) + s4*a) + s2*(s1 + 10*s1*s0)
- \end{verbatim}}
- \newpage
- {\small
- \begin{verbatim}
- % Hornering Taylor-series:
- PROCEDURE taylor(fx,x,x0,n);
- sub(x=x0,fx)+(FOR k:=1:n SUM(sub(x=x0,df(fx,x,k))*(x-x0)^k/factorial(k)))$
- hlst2:={f1=taylor(e^x,x,0,4),f2=taylor(cos x,x,0,6)};
- 4 3 2
- x + 4*x + 12*x + 24*x + 24
- hlst2 := {f1=-------------------------------,
- 24
- 6 4 2
- - x + 30*x - 360*x + 720
- f2=------------------------------}
- 720
- OPTIMIZE ALGHORNER(hlst2,{x});
- 24 + x*(24 + x*(12 + x*(4 + x)))
- f1 := ----------------------------------
- 24
- g7 := x*x
- 720 + g7*(g7*(30 - g7) - 360)
- f2 := -------------------------------
- 720
- ON ROUNDED$
- hlst2:=hlst2;
- 4 3 2
- hlst2 := {f1=0.0416666666667*x + 0.166666666667*x + 0.5*x + x + 1,
- 6 4 2
- f2= - 0.00138888888889*x + 0.0416666666667*x - 0.5*x + 1
- }
- OPTIMIZE ALGHORNER(hlst2,{x});
- f1 := 1 + x*(1 + x*(0.5 + x*(0.0416666666667*x + 0.166666666667)))
- g9 := x*x
- f2 := 1 + g9*(g9*(0.0416666666667 - 0.00138888888889*g9) - 0.5)
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \index{{\tt ROUNDED} switch}
- \newpage
- \section{File Management and Optimization Strategies}\label{SCOPE:files}
- Both the {\tt OPTIMIZE} command and the {\tt ALGOPT} function accept
- input from file(s). Obviously, this input ought to obey the
- usual syntactical rules, as introduced in the previous (sub)sections.
- The {\tt OPTIMIZE} command is designed as a syntactical extension of {\REDUCE}
- itself, i.e. the meaning of its actual parameters is understood from the
- token-context in the command. However, an {\tt ALGOPT}
- application requires one, two or three actual parameters without additional
- provisions or conditions.
- The {\tt ALGOPT} facility is added to provide a simple, user friendly,
- algebraic mode tool. Therefore -in contrast with the {\tt OPTIMIZE} command-
- it does not allow to direct output to a file; the default {\REDUCE} features
- for dealing with output files can be applied.
- \index{file management}
- \index{{\tt IN} option}
- \index{{\tt OUT} option}
- \index{{\tt INAME} option}
- \index{{\tt AGAIN} switch}
- The previously given syntax requires some extensions:
- $<$SCOPE\_application$>~::=$ $<${\tt OPTIMIZE} command$>~\mid~<${\tt ALGOPT} application$>$\\
- $<${\tt OPTIMIZE} command$>~::=$\\
- \hspace*{1cm} {\tt OPTIMIZE} $<$object\_seq$>$ [{\tt IN} $<$file\_id\_seq$>$] [{\tt OUT} $<$file\_id$>$] [{\tt INAME} $<$cse\_prefix$>$] $\mid$\\
- \hspace*{1cm} {\tt OPTIMIZE} [$<$object\_seq$>$] {\tt IN} $<$file\_id\_seq$>$ [{\tt OUT} $<$file\_id$>$] [{\tt INAME} $<$cse\_prefix$>$]\\
- $<${\tt ALGOPT} application$>~::=$\\
- \hspace*{1cm} {\tt ALGOPT}($<$a\_object\_list$>$[,$<$string\_id\_list$>$][,$<$cse\_prefix$>$]) $\mid$\\
- \hspace*{1cm} {\tt ALGOPT}([$<$a\_object\_list$>$,]$<$string\_id\_list$>$[,$<$cse\_prefix$>$])
- The different variations for the object\_seq and
- the a\_object\_list and the meaning of cse\_prefix are introduced
- in the subsections ~\ref{SCOPE:optim} and ~\ref{SCOPE:algo}.
- The syntax of the file handling features is:
- \begin{center}
- \begin{tabular}{lcl}
- $<$file\_id\_seq$>$ & $::=$ & $<$file\_id$>$ [,$<$file\_id\_seq$>$]\\
- $<$file\_id$>$ & $::=$ & $<$id$>$ $\mid$ $<$string\_id$>$\\
- $<$string\_id\_list$>$ & $::=$ & $<$string\_id$>$ $\mid$
- \{$<$string\_id\_seq$>$\}\\
- $<$string\_id\_seq$>$ & $::=$ & $<$string\_id$>$ [,$<$string\_id\_seq$>$]\\
- $<$string\_id$>$ & $::=$ & {\tt "}$<$id$>${\tt "} $\mid$
- {\tt "}$<$id$>.<$f\_extension$>${\tt "}
- \end{tabular}
- \end{center}
- The differences in input-file management are introduced for practical reasons.
- As stated above, the {\tt ALGOPT} function can have up to three arguments.
- To be able to distinguish the optional second argument from the first and the
- last requires file-names to be given in the form of strings. The
- {\tt OPTIMIZE} command follows the ordinary {\REDUCE} rules for file names.
- File management can be used as a tool for input partioning. If $m>1$ then
- $N^m>\sum_{i=1}^k {n^k}_i$ for positive integers $N$ and $n_i$ , such that
- $N=\sum_{i=1}^k n_i$. In view of the time-complexity of the
- optimization algorithm, it may be worth the effort to partition
- SCOPE input of size $N$ in $k$ partitions, of sizes $n_i,~i=1,...,k$. We can
- start optimizing the contents of file fi.1, containing the initial $n_1$-sized
- piece of code, and store the result of this operation in file fo.1.
- Consecutive steps provide an optimization of the combined contents of the
- files fo.i and fi.(i+1), i=1,..., k-1.
- During this iterative process, or during variations
- of this strategy, it is better not to perform a finishing touch. The switch
- {\tt AGAIN}, which is normally {\tt OFF}, can be used, when set {\tt ON}, to
- avoid this. The switch serves an additional purpose. When switched {\tt ON}
- storage of partly optimized code in a file will include all relevant
- information, needed to restore the required status of system generated
- sub-expression names.
- We illustrate SCOPE's file management facilities with example.
- \example\label{ex:5.1}
- \index{SCOPE ! example}
- We assume to have three files, called f1, f2 and f3. Each file contains only
- one assignment. We simply show different variations of the use of these files.
- \index{{\tt INPUTC} switch}
- \index{{\tt IN} option}
- With {\tt ON INPUTC} the contents of the files is made visible.
- {\small
- \begin{verbatim}
- ON INPUTC$
- OPTIMIZE IN f1,f2,f3 INAME s;
- 2
- 2 (x + y) 8 2 2
- 2*(sin(x) - cos(e ) + 3*cos(x)) *(x + y) + 4*y + 4*y
- e1 := ----------------------------------------------------------------
- 3*x + 2*y
- 2
- 2 (x + y) 2 3
- e2 := (4*(sin(x) - cos(e ) + 2*cos(x)) *(x + y)
- 2 2
- + (4*x - 4*y) - 6*x)/(8*x + 3*y - 2*x)
- 2
- (x + y) 2 2
- 4*sin(cos(e )) + sin(x + y) + (4*x - x + 2*y)
- e3 := --------------------------------------------------------
- 3*y + f(x,g( - cos(x)))
- s3 := sin(x)
- s20 := x + y
- s6 := s20*s20
- s6
- s4 := cos(e )
- s8 := cos(x)
- s31 := s3*s3 - s4
- s2 := s31 + 3*s8
- s44 := s2*s2
- s43 := s44*s44
- s36 := 4*y
- s34 := 2*y
- s10 := s34 + 3*x
- s36 + s36*y + 2*s6*s43*s43
- e1 := ----------------------------
- s10
- s13 := s31 + 2*s8
- s33 := 4*x*x
- s30 := s33 - x
- s35 := 3*y
- \end{verbatim}}
- \newpage
- {\small
- \begin{verbatim}
- s33 - 2*s10 + 4*s6*s20*s13*s13
- e2 := --------------------------------
- s35 + 2*s30
- s21 := s34 + s30
- 4*sin(s4) + sin(s20) + s21*s21
- e3 := --------------------------------
- s35 + f(x,g( - s8))
- \end{verbatim}}
- We repeat the same process. However, this time we apply input partitioning.
- The switch {\tt AGAIN} is turned {\tt ON}. Output is redirected to the
- output file {\tt fo.1} in an {\tt OFF NAT} fashion and ended with the required
- {\tt ;end;} closure, thus made ready for re-use during a next step.
- The default mode of operation is {\tt OFF AGAIN} and {\tt ON NAT}. If the
- switch {\tt NAT} is turned {\tt OFF} file output is automatically ended
- by {\tt ;end;}.
- \index{{\tt AGAIN} switch}
- \index{{\tt NAT} switch}
- Due to the {\tt ON INPUTC} effect we can also observe that the identifiers
- {\tt gsym} and {\tt cses} are apparently used to store relevant information
- about cse names.
- {\small
- \begin{verbatim}
- ON AGAIN,INPUTC$
- OPTIMIZE IN f1 OUT "fo.1" INAME s$
- 2
- 2 (x + y) 8 2 2
- 2*(sin(x) - cos(e ) + 3*cos(x)) *(x + y) + 4*y + 4*y
- e1 := ----------------------------------------------------------------
- 3*x + 2*y
- OPTIMIZE IN "fo.1",f2 OUT "fo.2" INAME t$
- gsym := g0001
- cses := s6
- 2
- s6 := (x + y)
- 2 2 s6 8
- 4*y + 4*y + 2*s6*(3*cos(x) + sin(x) - cos(e ))
- e1 := ----------------------------------------------------
- 3*x + 2*y
- 2
- 2 (x + y) 2 3
- e2 := (4*(sin(x) - cos(e ) + 2*cos(x)) *(x + y)
- 2 2
- + (4*x - 4*y) - 6*x)/(8*x + 3*y - 2*x)
- OFF AGAIN$
- ALGOPT({"fo.2","f3"},u);
- gsym := g0002
- cses := t23 + t11 + t26 + t7 + t17 + t19
- t19 := x + y
- 2
- t17 := t19
- t7 := cos(x)
- 2 t17
- t26 := sin(x) - cos(e )
- t11 := 3*x + 2*y
- 2 8
- 4*y + 4*y + 2*(t26 + 3*t7) *t17
- e1 := ----------------------------------
- t11
- 2
- t23 := x
- 2
- 4*t23 - 2*t11 + 4*t19*(t26 + 2*t7) *t17
- e2 := -----------------------------------------
- 8*t23 - 2*x + 3*y
- 2
- (x + y) 2 2
- 4*sin(cos(e )) + sin(x + y) + (4*x - x + 2*y)
- e3 := --------------------------------------------------------
- 3*y + f(x,g( - cos(x)))
- *** f declared operator
- *** g declared operator
- {u23=x + y,
- 2
- u20=u23 ,
- t7=cos(x),
- u5=sin(x),
- u20
- u6=cos(e ),
- \end{verbatim}}
- \newpage
- {\small
- \begin{verbatim}
- 2
- t26=u5 - u6,
- u33=2*y,
- t11=u33 + 3*x,
- u10=t26 + 3*t7,
- 2
- u46=u10 ,
- 2
- u45=u46 ,
- u35=4*y,
- 2
- 2*u20*u45 + u35*y + u35
- e1=--------------------------,
- t11
- 2
- t23=x ,
- u13=t26 + 2*t7,
- u36=4*t23,
- u31=u36 - x,
- u34=3*y,
- 2
- - 2*t11 + 4*u13 *u20*u23 + u36
- e2=---------------------------------,
- 2*u31 + u34
- u24=u31 + u33,
- 2
- sin(u23) + 4*sin(u6) + u24
- e3=-----------------------------}
- f(x,g( - t7)) + u34
- \end{verbatim}}
- \noindent
- Observe that the initial characters of the sub-expression names indicate
- their moment of generation. We used {\tt f} and {\tt g} as operators.
- Therefore, a warning was produced ahead of the {\tt ALGOPT} output.
- Since an {\tt OPTIMIZE} command produces output as a side-effect these warnings
- were not given earlier.
- {\small
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \newpage
- \section{Generation of Declarations}\label{SCOPE:decl}
- GENTRAN's {\tt DECLARE} statement can be used as an optional extension of the
- {\tt OPTIMIZE} command, and as ilustrated in example~\ref{ex:6.1}. The syntax
- of such an extension is in accordance with the GENTRAN rules:
- \index{GENTRAN ! {\tt DECLARE} statement}
- \index{SCOPE ! {\tt DECLARE} facility}
- \index{{\tt DECLARE} option}
- \index{{\tt IN} option}
- \index{{\tt OUT} option}
- \index{{\tt INAME} option}
- \index{{\tt IMPLICIT} type}
- \index{{\tt integer} type}
- \index{{\tt real} type}
- \index{{\tt real*8} type}
- \index{{\tt complex} type}
- \index{{\tt complex*16} type}
- \index{SCOPE function ! {\tt OPTLANG}}
- \index{SCOPE target language ! {\tt fortran77}}
- \index{SCOPE target language ! {\tt fortran90}}
- \index{SCOPE target language ! {\tt f90}}
- \index{SCOPE target language ! {\tt c}}
- \index{SCOPE target language ! {\tt pascal}}
- \index{SCOPE target language ! {\tt ratfor}}
- \index{SCOPE target language ! {\tt nil}}
- $<${\tt OPTIMIZE} command$>~::=$\\
- \hspace*{1cm} {\tt OPTIMIZE} $<$object\_seq$>$ [{\tt IN} $<$file\_id\_seq$>$]
- [{\tt OUT} $<$file\_id$>$]\\
- \hspace*{3cm} [{\tt INAME} $<$cse\_prefix$>$]
- [{\tt DECLARE} $<$declaration\_group$>$] $\mid$\\
- \hspace*{1cm} {\tt OPTIMIZE} [$<$object\_seq$>$] {\tt IN} $<$file\_id\_seq$>$
- [{\tt OUT} $<$file\_id$>$]\\
- \hspace*{3cm} [{\tt INAME} $<$cse\_prefix$>$]
- [{\tt DECLARE} $<$declaration\_group$>$]\\
- The syntax of the declaration\_group is:
- \begin{center}
- \begin{tabular}{lcl}
- $<$declaration\_group$>$ & $::=$ & $<$declaration$>~\mid~\ll~<$declaration\_list$>~\gg$\\
- $<$declaration\_list$>$ & $::=$ & $<$declaration$>$[$;<$declaration\_list$>$]\\
- $<$declaration$>$ & $::=$ & $<$range\_list$>:$ {\tt IMPLICIT} $<$type$>~\mid$
- $<$id\_list$>:<$type$>$\\
- $<$range\_list$>$& $::=$ & $<$range$>$[,$<$range\_list$>$]\\
- $<$range$>$ & $::=$ & $<$id$>~\mid~<$id$>-<$id$>$\\
- $<$id\_list$>$ & $::=$ & $<$id$>$[,$<$id\_list$>$]\\
- $<$type$>$ & $::=$ & {\tt integer} $\mid$ {\tt real} $\mid$ {\tt complex} $\mid$ {\tt real*8} $\mid$ {\tt complex*16}
- \end{tabular}
- \end{center}
- The symbol table features of GENTRAN are used. During the subtask
- R (see subsection ~\ref{SCOPE:bird}) of an {\tt OPTIMIZE} command evaluation,
- all typing information is installed in the symbol table. Once optimization
- is ready all relevant information for completing the declarations ought to
- be known, i.e. the contents of the symbol table and the result of the
- optimization operations, collected in prefix form in a list,
- called {\tt prefixlist}. This {\tt prefixlist} is employed do decide which not yet typed identifiers and system selected cse names have to be entered in the
- symbol table. We make use of earlier provided information, delivered via the
- {\tt DECLARE} option, (sub)expression structure and the normal hierarchy in data
- types. The strategy to achieve this form of dynamic typing is based on
- chapter 6 of ~\cite{Aho:86}.
- Once the table is completed a list of declarations is produced and precedes the
- other SCOPE output. SCOPE output is by default given in {\REDUCE} notation.
- Therefore such lists of declarations are also given in {\REDUCE} text.
- Incomplete initial typing information can lead to overtyping after
- optimization, such as {\tt complex} in stead of {\tt real}, for instance.
- It can therefore lead to erroneous results and even to an error message.
- A safe procedure is to
- use the {\tt DECLARE} option of the {\tt OPTIMIZE} command for typing
- all identifiers, occuring in the input set ${\rm E}_0$
- \index{dynamic typing}
- Alternative output can be obtained via an application of the function
- {\tt OPTLANG}. This function accepts one argument from the set \{{\tt fortran},
- {\tt c}, {\tt ratfor}, {\tt pascal}\footnote{The {\tt pascal} module of
- GENTRAN is not error free. Especially the template file features do not
- function correctly.}, {\tt f90}, {\tt nil}\}.
- The {\tt fortran}(77) choice can also be made by turning {\tt ON} the
- switch {\tt FORT}. The {\tt nil} option is necessary if one wants to
- switch back to the usual {\REDUCE} output.
- not yet generally available. The output modules of GENTRAN are used for
- producing formatted code in the user selected target language. The
- {\tt f90} option, for the production of {\tt fortran90} code,
- is not yet provided by the standard GENTRAN version ~\cite{Borst:94}.
- Especially the above given syntax rules for typing require some additional
- explanation:
- \begin{itemize}
- \item The corresponding types in Fortran are {\tt integer}, {\tt real},
- {\tt complex}, {\tt double precision} and {\tt complex*16}.
- \item The GENTRAN switch {\tt DOUBLE} is automatically turned {\tt ON},
- when a type {\tt real*8} or type {\tt complex*16} is introduced in
- a {\tt DECLARE} option. The same mode of operation is introduced when
- floating point numbers appear in SCOPE input. Fixed floats do not produce
- this side effect.
- \item When generating {\tt fortran} code we have to be aware of a possibly
- existing statement length limitation. If one is afraid that a declaration statement
- will become
- too long, for instance due to a huge number, dynamically added cse-names,
- it may be better to use {\tt IMPLICIT} typing.
- \item C neither supports {\tt IMPLICIT} types nor has the
- types {\tt complex} and {\tt complex*16}. The remaining types are denoted
- by {\tt int}, {\tt float} and {\tt double}, respectively.
- \item Array and/or matrix definitions are also considered to be id's in
- id\_list's in declarations.
- However, we have to be aware of the instantaneous replacement of array-
- and/or matrix entries, when expressions are simplified. Therefore, we have to
- use operators, functioning as array and/or matrix names in code we want to
- optimize. We return to this question in the sections ~\ref{SCOPE:dda} and
- ~\ref{SCOPE:gopt}.
- \end{itemize}
- \index{{\tt ROUNDED} switch}
- \index{{\tt DOUBLE} switch}
- When the {\tt ON/OFF AGAIN} strategy is applied we have to be aware of the
- above outlined declaration strategy. The last {\tt OPTIMIZE} command,
- executed directly after choosing {\tt OFF AGAIN}, has to be extended
- with the {\tt DECLARE} option.
- Array and/or matrix names only occur in literally parsed information. In all
- other situations we have to make use of {\REDUCE} {\tt operators}. Normally,
- function applications inside SCOPE input are instantaneously replaced by
- newly selected cse names after putting them in the function table.
- Usually array and/or matrix entries are considered to be function applications.
- However, when due to a {\tt DECLARE} option array and/or matrix names
- are known via the contents of the symbol table, such entries are
- substituted back before SCOPE produces output.
- \index{{\tt IMPLICIT} type}
- \index{{\tt integer} type}
- \index{{\tt real} type}
- \index{{\tt real*8} type}
- \index{{\tt complex} type}
- \index{{\tt double precision} type}
- \index{{\tt int} type}
- \index{{\tt float} type}
- \index{{\tt double} type}
- \index{{\tt DOUBLE} switch}
- \index{{\tt AGAIN} switch}
- \index{SCOPE function ! {\tt OPTLANG}}
- \example\label{ex:6.1}
- \index{SCOPE ! example}
- A simple {\tt OPTIMIZE} command, extended with a {\tt DECLARE} option, is
- executed for the various output options of GENTRAN, including the {\tt f90}
- alternative.
- {\small
- \begin{verbatim}
- OPTLANG fortran$
- OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
- INAME s
- DECLARE << a(4,4),x(4),y(5):real; b(5):integer>>$
- INTEGER B(5),I,S10,S9
- REAL A(4,4),X(4),Y(5)
- S10=I+1
- S9=I-1
- X(S10)=A(S10,S9)+B(I)
- Y(S9)=A(S9,S10)-B(i)
- OPTLANG ratfor$
- OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
- INAME s
- DECLARE << a(4,4),x(4),y(5):real; b(5):integer>>$
- integer b(5),i,s10,s9
- real a(4,4),x(4),y(5)
- {
- s10=i+1
- s9=i-1
- x(s10)=a(s10,s9)+b(i)
- y(s9)=a(s9,s10)-b(i)
- }
- OPTLANG c$
- OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
- INAME s
- DECLARE << a(4,4),x(4),y(5):real; b(5):integer>>$
- int b[6],i,s10,s9;
- float a[5][5],x[5],y[6];
- {
- s10=i+1;
- s9=i-1;
- x[s10]=a[s10][s9]+b[i];
- y[s9]=a[s9][s10]-b[i];
- }
- OPTLANG pascal$
- OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
- INAME s
- DECLARE << a(4,4),x(4),y(5):real; b(5):integer>>$
- var
- s9,s10,i: integer;
- b: array[0..5] of integer;
- y: array[0..5] of real;
- x: array[0..4] of real;
- a: array[0..4,0..4] of real;
- begin
- s10:=i+1;
- s9:=i-1;
- x[s10]:=a[s10,s9]+b[i];
- y[s9]:=a[s9,s10]-b[i]
- end;
- OPTLANG nil$
- OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
- INAME s
- DECLARE << a(4,4),x(4),y(5):real; b(5):integer>>$
- integer b(5),i,s10,s9
- real a(4,4),x(4),y(5)
- s10 := i + 1
- s9 := i - 1
- x(s10) := a(s10,s9) + b(i)
- y(s9) := a(s9,s10) - b(i)
- OPTLANG fortran$
- OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
- INAME s
- DECLARE << a(4,4),x(4),y(5):real*8; b(5):integer>>$
- INTEGER B(5),I,S10,S9
- DOUBLE PRECISION A(4,4),X(4),Y(5)
- S10=I+1
- S9=I-1
- X(S10)=A(S10,S9)+B(I)
- Y(S9)=A(S9,S10)-B(I)
- OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
- INAME s
- DECLARE << x(4),y(5):real; b(5):complex>>$
- ***** Type error:
- real x(4),y(5)
- complex b(5)
- (integer all) s9
- integer s5,i
- real := complex(all)
- ***** Wrong typing
- Cont? (Y or N)
- \end{verbatim}}
- We can restart \REDUCE and rerun the example with
- the {\tt Fortran90} version of SCOPE. It results in:
- \index{{\tt scope90}}
- {\small
- \begin{verbatim}
- LOAD_PACKAGE scope90$
- OPTLANG f90$
- OPTIMIZE x(i+1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)
- INAME s
- DECLARE << a(4,4),x(4),y(5):real; b(5):integer>>$
- REAL,DIMENSION(4,4)::A
- INTEGER,DIMENSION(5)::B
- INTEGER::I,S10,S9
- REAL,DIMENSION(4)::x
- REAL,DIMENSION(5)::y
- S10=I+1
- S9=I-1
- X(S10)=A(S10,S9)+B(I)
- Y(S9)=A(S9,S10)-B(I)
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \subsection{Coefficient Arithmetic and Precision Handling}\label{SCOPE:caph}
- {\REDUCE} knows a variety of coefficient domains, as presented in
- subsection 9.11 of the {REDUCE} 3.6 manual ~\cite{Hearn:93}, entitled
- {\em Polynomial Coefficient Arithmetic}. As stated in subsection~\ref{SCOPE:optim}
- SCOPE supports integer and real coefficients. By turning {\tt ON} the switch
- {\tt ROUNDED} we introduce float arithmetic for coefficients.
- The operator {\tt PRECISION} can be applied to change the default,
- machine dependent {\em precision}. Internally, {\REDUCE} uses floating point
- numbers up to the precison supported by the underlying machine hardware, and
- so-called {\em bigfloats} for higher precision. The internal precision is two decimals
- greater than the exernal precision to guard against roundoff inaccuracies.
- Rounded numbers are normally printed to the specified precision. If the user
- wishes to print such numbers with less precision, the printing
- precision can be set by the command {\tt PRINT\_PRECISION}. If a case
- arises where use of the machine arithmetic leads to problems, a user can force
- {\REDUCE} to use the bigfloat representation by turning {\tt ON} the switch
- {\tt ROUNDBF}, which is normally {\tt OFF}. GENTRAN, and thus SCOPE as well,
- support bigfloat notation. However the precision is a responsibility
- of the user. A possibility is to use the {\tt PRINT\_PRECISION} command, both
- for algebraic mode output and for output in a selected target language,
- like {\tt fortran77}. SCOPE uses the given precision for selecting cse's.
- Although complex arithmetic is not supported in SCOPE, a simple alternative
- is provided. When using float arithmetic in {\REDUCE} the protected name
- {\tt I} can be used to denote $\sqrt -1$. If the {\tt I} is included in a
- declaration list as an identifier of type {\tt complex}({\tt !*}), its assumed value is
- automatically put ahead of the resulting optimized code.
- We illustrate the different possibilities in example ~\ref{ex:6.2}. Comment
- is included.
- \index{{\tt ROUNDBF} switch}
- \index{REDUCE function ! {\tt PRECISION}}
- \index{REDUCE function ! {\tt PRINT\_PRECISION}}
- \index{bigfloats}
- \index{coefficient arithmetic}
- \index{machine precision}
- \example\label{ex:6.2}
- \index{SCOPE ! example}
- {\small
- \begin{verbatim}
- OPTLANG fortran$
- ON ROUNDED, DOUBLE$
- % ---
- % We start with precision 6. The returned value is the internal
- % precision supported by the underlying machine hardware.
- % ---
- PRECISION 6;
- 12
- OPTIMIZE x1:= 2 *a + 10 * b,
- x2:= 2.00001 *a + 10 * b,
- x3:= 2 *a + 10.00001 * b,
- x4:= 6 *a + 30 * b,
- x5:= 2.0000001*a + 10.000001 * b
- INAME s
- DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$
- DOUBLE PRECISION A,B,S1,X1,X2,X3,X4,X5
- S1=10*B
- X1=S1+2*A
- X2=S1+2.00001D0*A
- X3=X1
- X4=3*X1
- X5=X1
- % ---
- % Explanation: X1 is a cse of X3, X4 and X5, but not of X2, because
- % the coefficient 2.00001 is given in 6 decimal digits.
- % Increase in precision will show this.
- % ---
- PRECISION 7$
- OPTIMIZE x1:= 2 *a + 10 * b,
- x2:= 2.00001 *a + 10 * b,
- x3:= 2 *a + 10.00001 * b,
- x4:= 6 *a + 30 * b,
- x5:= 2.0000001*a + 10.000001 * b
- INAME s
- DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$
- DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
- S1=2*A
- S2=10*B
- X1=S2+S1
- X2=S2+2.00001D0*A
- X3=S1+1.000001D1*B
- X4=3*X1
- X5=X1
- PRECISION 8$
- OPTIMIZE x1:= 2 *a + 10 * b,
- x2:= 2.00001 *a + 10 * b,
- x3:= 2 *a + 10.00001 * b,
- x4:= 6 *a + 30 * b,
- x5:= 2.0000001*a + 10.000001 * b
- INAME s
- DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$
- DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
- S1=2*A
- S2=10*B
- X1=S2+S1
- X2=S2+2.00001D0*A
- X3=S1+1.000001D1*B
- X4=3*X1
- X5=2.0000001D0*A+1.0000001D1*B
- % ---
- % All rhs's were taken literally. Let us now increase precision and
- % simplify the rhs's before optimization. It is in fact a repetition
- % of the examples above, this time with a larger precision.
- % ---
- PRECISION 20$
- OPTIMIZE x1:=:2 *a + 10 * b,
- x2:=:2.0000000000000000001 *a + 10 * b,
- x3:=:2 *a + 10.0000000000000000001 * b,
- x4:=:6 *a + 30 * b,
- x5:=:2.000000000000000000001*a + 10.000000000000000000001 * b
- INAME s
- DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$
- DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
- S1=2*A
- S2=10*B
- X1=S2+S1
- X2=S2+2.0000000000000000001D0*A
- X3=S1+1.0D1*B
- X4=3*X1
- X5=1.0D0*X1
- PRECISION 21$
- OPTIMIZE x1:=:2 *a + 10 * b,
- x2:=:2.0000000000000000001 *a + 10 * b,
- x3:=:2 *a + 10.0000000000000000001 * b,
- x4:=:6 *a + 30 * b,
- x5:=:2.000000000000000000001*a + 10.000000000000000000001 * b
- INAME s
- DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$
- DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
- S1=2*A
- S2=10*B
- X1=S2+S1
- X2=S2+2.0000000000000000001D0*A
- X3=S1+1.00000000000000000001D1*B
- X4=3*X1
- X5=2.0D0*A+1.0D1*B
- PRECISION 22$
- OPTIMIZE x1:=:2 *a + 10 * b,
- x2:=:2.0000000000000000001 *a + 10 * b,
- x3:=:2 *a + 10.0000000000000000001 * b,
- x4:=:6 *a + 30 * b,
- x5:=:2.000000000000000000001*a + 10.000000000000000000001 * b
- INAME s
- DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$
- DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
- S1=2*A
- S2=10*B
- X1=S2+S1
- X2=S2+2.0000000000000000001D0*A
- X3=S1+1.00000000000000000001D1*B
- X4=3*X1
- X5=2.000000000000000000001D0*A+1.0D1*B
- % ---
- % However, we can observe some differences in both modes of operation, when
- % selecting a precision around the precision supported by the undelying
- % machine hardware. Then the switch ROUNDBF can better be turned ON.
- % ---
- \end{verbatim}}
- \index{{\tt ROUNDBF} switch}
- \index{{\tt complex} type}
- {\small
- \begin{verbatim}
- OFF ROUNDBF$
- PRECISION 12$
- OPTIMIZE x1:= 2.00 *a + 10.00 * b,
- x2:= 2.00000000001*a + 10 * b,
- x3:= 2 *a + 10.000000001* b,
- x4:= 6 *a + 30 * b,
- x5:= 2.0000000000001*a + 10.0000000000001 * b
- INAME s
- DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$
- DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
- S1=2*A
- S2=10*B
- X1=S2+S1
- X2=S2+2.00000000001D0*A
- X3=S1+1.0000000001D1*B
- X4=3*X1
- X5=X1
- OPTIMIZE x1:=:2.00 *a + 10.00 * b,
- x2:=:2.00000000001*a + 10 * b,
- x3:=:2 *a + 10.000000001* b,
- x4:=:6 *a + 30 * b,
- x5:=:2.0000000000001*a + 10.0000000000001 * b
- INAME s
- DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$
- DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
- S1=2*A
- S2=10*B
- X1=S2+S1
- X2=S2+2.0D0*A
- X3=S1+10.0D0*B
- X4=3*X1
- X5=X1
- % ---
- % Observe that simplification prior to optimization leads to internal
- % roundings, which differ from the rounding used for literally taken
- % coefficients. This difference disappeares with ON ROUNDBF.
- % ---
- ON ROUNDBF$
- OPTIMIZE x1:= 2.00 *a + 10.00 * b,
- x2:= 2.00000000001*a + 10 * b,
- x3:= 2 *a + 10.000000001* b,
- x4:= 6 *a + 30 * b,
- x5:= 2.0000000000001*a + 10.0000000000001 * b
- INAME s
- DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$
- DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
- S1=2*A
- S2=10*B
- X1=S2+S1
- X2=S2+2.00000000001D0*A
- X3=S1+1.0000000001D1*B
- X4=3*X1
- X5=X1
- OPTIMIZE x1:=:2.00 *a + 10.00 * b,
- x2:=:2.00000000001*a + 10 * b,
- x3:=:2 *a + 10.000000001* b,
- x4:=:6 *a + 30 * b,
- x5:=:2.0000000000001*a + 10.0000000000001 * b
- INAME s
- DECLARE <<x1,x2,x3,x4,x5,a,b: real>>$
- DOUBLE PRECISION A,B,S1,S2,X1,X2,X3,X4,X5
- S1=2*A
- S2=10*B
- X1=S2+S1
- X2=S2+2.00000000001D0*A
- X3=S1+1.0000000001D1*B
- X4=3*X1
- X5=X1
- % ---
- % Complex arithmetic is not supported in SCOPE. However the Fortan equivalent
- % of I, a protected name in REDUCE, is automatically created, ahead of the
- % optimized code, whenever I is included in the declaration as a type complex
- % or a type complex*16 identifier.
- % ---
- OPTIMIZE a:=b+c
- INAME s
- DECLARE <<a,b,i,c: complex>>;
- COMPLEX*16 B,I,C,A
- I=(0.0D0, 1.0D0)
- A=B+C
- OFF DOUBLE$
- OPTIMIZE a:=b+c
- INAME s
- DECLARE <<a,b,i,c: complex>>;
- COMPLEX B,I,C,A
- I=(0.0, 1.0)
- A=B+C
- \end{verbatim}}
- \begin{flushright}
- $\Box$
- \end{flushright}
- \newpage
- \section{Dealing with Data Dependencies}\label{SCOPE:dda}
- \index{flow dependency}
- \index{anti dependency}
- \index{used identifiers}
- \index{defined identifiers}
- \index{dead code}
- \index{data dependency analysis}
- SCOPE is designed to optimize blocks $B$ of straight line code, i.e.
- sequences of $n$ assignment statements $S_i$ of the
- form ${\lambda}_i := {\rho}_i$, where $i = 1, \cdots , n$. If an identifier
- occurs in ${\lambda}_i$, it is said to be {\em defined} in $S_i$. All
- identifiers occuring in ${\rho}_i$ are said to be {\em used} in $S_i$.
- The set DEF($S_i$)
- is formed by the identifiers defining $S_i$, usually only one.
- The set USE($S_i$) is formed by the identifiers, which are used in $S_i$.
- The relation DEF($S_i$) $\in$ USE($S_j$), for $1 \leq i < j \leq n$, is
- called a {\em flow dependency} and denoted by $S_i \rightarrow S_j$. The
- relation DEF($S_i$) $\in$ USE($S_j$), for $1 \leq j \leq i \leq n$ is called
- an {\em anti dependency} and denoted by $S_i$ \ad $S_j$. The {\em set of inputs}
- of $B$, denoted by $I(B)$, consists of identifiers, which are used
- in $B$, before being defined, if defined at all. The {\em set of outputs} of
- $B$, denoted by $O(B)$, consists of the set of all last definitions of
- identifiers, occuring in $B$. So a block of straight line code can be
- introduced as a triple $B = \{ S, I, O \}$, where $S$ stands for the sequence
- $S_1 ; S_2 ; \cdots ; S_{n-1} ; S_n$, and where $I$ and $O$ define the
- inputs and outputs, respectively. When optimizing source code defined by $B$,
- i.e. the sequence $S$, the intention is to mechanically produce an equivalent,
- but computationally less complex sequence, preserving the relation between
- inputs and outputs. Due to anti dependencies, i.e. redefinitions of the rules
- for computing identifier values or stepwise computing such values,
- $\mid O(B) \mid < n$ is possible. But that in turn implies that some of the
- used identifiers, although being literally identical, represent different
- values. Therefore, a mechanical search for cse's can only be maintained if
- these critical identifiers are adequately renamed internally before the
- optimization process itself is started. As long as the relation between
- $I(B)$ and $O(B)$ is preserved it is even allowed to partly maintain these
- additional names, when presenting the results of an optimization operation.
- Furthermore it is worth noting that {\em dead code} can be left out, when
- ever occuring. Such code can be introduced through redundant assignments.
- The SCOPE features for dealing with data dependencies are illustrated, using
- the following artificial piece of code:
- \begin{center}
- \[ \begin{array}{lclcl}
- S_1 & : & a_{1,x+1} & := & g + h . r^f \\
- S_2 & : & b_{y+1} & := & a_{1, 2.x+1} .(g + h . r^f) \\
- S_3 & : & c1 & := & h.r. a_{2,1+x}/g \\
- S_4 & : & c2 & := & c1 . a_{1,x+1} + sin(d) \\
- S_5 & : & a_{1,x+1} & := & c1 + 2 \\
- S_6 & : & d & := & b_{y+1} . a_{1,x+1} \\
- S_7 & : & a_{1,1+2.x} & := & a_{1,x+1} . b_{y+1} . c/(d . g^2) \\
- S_8 & : & b_{y+1} & := & a_{1.x+1} + b_{y+1} + sin(d) \\
- S_9 & : & a_{1,x+1} & := & b_{y+1} . c + h/(g + sin(d))\\
- S_{10} & : & d & := & k . e + d . (a_{1,1+x} + 3) \\
- S_{11} & : & e & := & d . (a_{1,1+x} + 3) + sin(d) \\
- S_{12} & : & f & := & d . (a_{1,1+x} + 3) + sin(d) \\
- S_{13} & : & g & := & d . (3 + a_{1,1+x}) + f \\
- \end{array}\]
- \end{center}
- The different flow and anti dependencies can be vizualized in the following way:
- \begin{center}
- \begin{tabular}{lcl}
- $x$ & : & $\{ {\lambda}_1 , {\rho}_2 , {\rho}_3 , {\rho}_4 , {\lambda}_5 ,
- {\rho}_6 , {\lambda}_7 , {\rho}_7 , {\rho}_8 ,{\lambda}_9 , {\rho}_{10} ,
- {\rho}_{11} , {\rho}_{12} , {\rho}_{13} \}$ \\
- $y$ & : & $\{ {\lambda}_2 , {\rho}_6 , {\rho}_7 , {\lambda}_8 , {\rho}_8 ,
- {\rho}_9 \}$
- \end{tabular}
- \end{center}
- The identifiers, occuring in the piece of code given above, can be defined,
- can be used or can play both roles. Identifiers, used in one or more of the
- $\lambda_i , i = 1 \cdots n$ figure in subscript expressions. The set
- notation \{ $\cdots$ \} is used to explicitly describe USE sets. Since
- all DEF sets consist of one element only, we omitted the set notation for the
- DEF sets. This provides a simple tool to distinguish flow and anti dependencies:
- \begin{center}
- \begin{tabular}{lcl}
- $a_{1,x+1}$ & : & ${\lambda}_1 \rightarrow \{ {\rho}_3 , {\rho}_4 \}$ \ad
- ${\lambda}_5 \rightarrow \{ {\rho}_6 , {\rho}_7 , {\rho}_8 \}$ \ad
- ${\lambda}_9 \rightarrow \{ {\rho}_{10} , {\rho}_{11} , {\rho}_{12} ,
- {\rho}_{13} \}$ \\
- $g$ & : & $\{ {\rho}_1 , {\rho}_2 , {\rho}_3 , {\rho}_7 , {\rho}_9 \}$ \ad
- ${\lambda}_{13}$ \\
- $h$ & : & $\{ {\rho}_1 , {\rho}_2 , {\rho}_3 , {\rho}_9 \}$ \\
- $r$ & : & $\{ {\rho}_1 , {\rho}_2 , {\rho}_3 \}$ \\
- $f$ & : & $\{ {\rho}_1 , {\rho}_2 \}$ \ad
- ${\lambda}_{12} \rightarrow {\rho}_{13}$ \\
- $b_{y+1}$ & : & ${\lambda}_2 \rightarrow \{ {\rho}_6 , {\rho}_7 , {\rho}_8 \}$ \ad ${\lambda}_8 \rightarrow \{ {\rho}_9 \}$ \\
- $a_{1,2.x+1}$ & : & $\{ {\rho}_2 \}$ \ad ${\lambda}_7$ \\
- $c1$ & : & ${\lambda}_3 \rightarrow \{ {\rho}_4 , {\rho}_5 \}$ \\
- $a_{2,1+x}$ & : & $\{ {\rho}_3 \}$ \\
- $c2$ & : & ${\lambda}_4$ \\
- $d$ & : & $\{ {\rho}_4 \}$ \ad ${\lambda}_6 \rightarrow \{ {\rho}_7 ,
- {\rho}_8 , {\rho}_9 , {\rho}_{10} \}$ \ad ${\lambda}_{10} \rightarrow
- \{ {\rho}_{11} , {\rho}_{12} , {\rho}_{13} \}$ \\
- $c$ & : & $\{ {\rho}_7 , {\rho}_9 \}$ \\
- $k$ & : & $\{ {\rho}_{10} \}$ \\
- $e$ & : & $\{ {\rho}_{10} \}$ \ad ${\lambda}_{12}$
- \end{tabular}
- \end{center}
- We observe that
- \[ I(B) = \{ x, y, g, h, r, f, a_{1,2.x+1} , a_{2,1+x} , d, c, k, e \} ,\]
- \[ O(B) = \{ a_{1,x+1} , g, f, b_{y+1} , a_{1,2.x+1} , c1 , c2 , d, e\}\]
- and thus, that
- \[ I(B) \cap O(B) \neq \emptyset .\]
- The identifiers $a_{1,1+x}$ and $d$ are redefined twice and the identifier
- $b_{y+1}$ once. Only the input occurrences and the last
- output definitions need to be preserved.
- \index{output definition preservation}
- \index{{\tt VECTORC} switch}
- \index{SCOPE function ! {\tt VECTORCODE}}
- We also observe that some of the identifiers are subscripted. In our example
- the subscript expressions are constructed with input identifiers only. More
- general situations are conceivable. The set of subscript expressions contains
- cse's. Since our optimization strategy is based on an all level approach
- expressions, like $1+x$ and $y+1$ are certainly discovered as cse's.
- An {\tt OPTIMIZE} command can be extended with a {\tt DECLARE} option,
- indicating that both $a$ and $b$ are array names. Their subscript expressions
- are optimized. In addition, the $a$ and $b$ entries are considered to be
- array entries, and not as function applications. The latter will happen when
- the {\tt DECLARE} option is omitted. Vector architectures make often use of
- machine specific optimizing compilers. Therefore it may be better not to
- optimize the subset of subscript expressions. We implemented some facilities
- to take such machine specific limitations into account. When turning {\tt ON}
- the switch {\tt VECTORC} the finishing touch is omitted and subscript
- expressions are not optimized. The function
- \index{{\tt VECTORC} switch}
- \hspace*{1cm} {\tt VECTORCODE} $<$a\_or\_m\_id\_seq$>$
- can be used to operate more selectively. The a\_or\_m\_id\_seq consists of
- one or more array and/or matrix names, separated by comma's. Only the
- actual parameters of {\tt VECTORCODE} are assumed to be names of arrays. So
- only their subscript expressions are disregarded during an optimization
- process. We can undo the effect of the {\tt VECTORCODE} setting with a
- command of the form:
- \hspace*{1cm} {\tt VCLEAR} $<$a\_or\_m\_id\_(sub)seq$>$
- \index{SCOPE function ! {\tt VCLEAR}}
- The actual parameters are supposed to be taken from the sequence of actual
- parameters of its counterpart, the function {\tt VECTORCODE}.
- The different settings are now illustrated in:
- \example\label{ex:7.1}
- \index{SCOPE ! example}
- The above given block of code $B = \{ S, I, O \}$ is optimized in five
- different situations. To start with we hand it over to SCOPE, using an
- {\tt OPTIMIZE} command, without using the {\tt DECLARE} option.
- We observe, looking at the results, that some renaming of non significant
- identifier
- definitions have been performed. The first occurrence of $a_{1,1+x}$ is replaced
- by {\tt s34}, the second by {\tt s4}. The first occurrence of $b_{y+1}$ is
- replaced by {\tt s3}, but the occurrences of $d$, a scalar identifier,
- are maintained.
- Especially the role of the scalar $d$ is quite interesting. The first definition
- of $d$ is given in $S_6$ In $S_7$ $d$ is used twice: explicitly in the
- denominator and in a hidden way in the numerator as well. The optimized
- version of $S_7$ shows a factor $d/d$. The reason is that $d$ locally replaces
- an internally created cse name, substituted for ${\rho}_6$ and for part of the
- numerator of ${\rho}_7$. Like illustrated in example~\ref{ex:3.2.7} a second
- SCOPE application can further simplify ${\rho}_7$. The scalar $d$ is also used
- as argument of the $sin$-function in $S_4 , S_8 , S_9 , S_{11}$ and $S_{12}$.
- The $d$-values in $S_4$, in $\{ S_8 , S_9 \}$ and in $\{ S_{11} , S_{12} \}$
- are all different, due to the redefinitions in $S_6$ and in $S_{10}$. Therefore
- we recognize two different cse's, containing $sin(d)$: {\tt s24} and {\tt e}.
- The role of $a_{1,x+1}$ is of course very similar, albeit less transparant,
- due to the renamings.
- The second run showes that adding a {\tt DECLARE}
- option does not influence the form of the output in this particular case.
- Besides the production of declarations, the result of both runs is identical.
- All relevant input and output names are preserved in both runs.
- {\small
- \begin{verbatim}
- OPTIMIZE a(1,x+1) := g+h*r^f,
- b(y+1) := a(1,2*x+1)*(g+h*r^f),
- c1 := (h*r)/g*a(2,1+x),
- c2 := c1*a(1,x+1) + sin(d),
- a(1,x+1) := c1^(5/2),
- d := b(y+1)*a(1,x+1),
- a(1,1+2*x):= (a(1,x+1)*b(y+1)*c)/(d*g^2),
- b(y+1) := a(1,1+x)+b(y+1) + sin(d),
- a(1,x+1) := b(y+1)*c+h/(g + sin(d)),
- d := k*e+d*(a(1,1+x)+3),
- e := d*(a(1,1+x)+3) + sin(d),
- f := d*(3+a(1,x+1)) + sin(d),
- g := d*(3+a(1,x+1))+f
- INAME s$
- s0 := x + 1
- f
- s34 := r *h + g
- s2 := 1 + y
- s6 := 2*x + 1
- s3 := s34*a(1,s6)
- r*h
- c1 := a(2,s0)*-----
- g
- c2 := sin(d) + s34*c1
- s4 := sqrt(c1)*c1*c1
- d := s4*s3
- d*c
- a(1,s6) := -------
- g*g*d
- s24 := sin(d)
- b(s2) := s4 + s3 + s24
- h
- a(1,s0) := --------- + b(s2)*c
- g + s24
- s29 := 3 + a(1,s0)
- d := s29*d + e*k
- s33 := s29*d
- e := s33 + sin(d)
- f := e
- g := s33 + f
- ON FORT$
- OPTIMIZE a(1,x+1) := g+h*r^f,
- b(y+1) := a(1,2*x+1)*(g+h*r^f),
- c1 := (h*r)/g*a(2,1+x),
- c2 := c1*a(1,x+1) + sin(d),
- a(1,x+1) := c1^(5/2),
- d := b(y+1)*a(1,x+1),
- a(1,1+2*x):= (a(1,x+1)*b(y+1)*c)/(d*g^2),
- b(y+1) := a(1,1+x)+b(y+1) + sin(d),
- a(1,x+1) := b(y+1)*c+h/(g + sin(d)),
- d := k*e+d*(a(1,1+x)+3),
- e := d*(a(1,1+x)+3) + sin(d),
- f := d*(3+a(1,x+1)) + sin(d),
- g := d*(3+a(1,x+1))+f
- INAME s
- DECLARE <<a(5,5),b(7),c,c1,c2,d,f,g,h,r:real*8; x,y:integer>>$
- INTEGER X,Y,S0,S2,S6
- DOUBLE PRECISION C,H,R,S34,S3,C1,C2,S4,S24,B(7),A(5,5),S29,K,D,S33
- . ,E,F,g
- S0=X+1
- S34=R**F*H+G
- S2=1+Y
- S6=2*X+1
- S3=S34*A(1,S6)
- C1=A(2,S0)*((R*H)/G)
- C2=DSIN(D)+S34*C1
- S4=DSQRT(C1)*C1*C1
- D=S4*S3
- A(1,S6)=(D*C)/(G*G*D)
- S24=DSIN(D)
- B(S2)=S4+S3+S24
- A(1,S0)=H/(G+S24)+B(S2)*C
- S29=3+A(1,S0)
- D=S29*D+DEXP(1.0D0)*K
- S33=S29*D
- E=S33+DSIN(D)
- F=DEXP(1.0D0)
- G=S33+F
- OFF FORT$
- \end{verbatim}}
- Observe the differences in the {\tt f} and {\tt F} assignments. When generating
- {\tt fortran77} code all right hand side occurrences of {\tt e} are
- automatically considered as appearances of the base of the natural logarithm
- and are translated accordingly.
- \index{{\tt VECTORC} switch}
- \index{SCOPE function ! {\tt VECTORCODE}}
- \index{SCOPE function ! {\tt VCLEAR}}
- The third run is influenced by turning {\tt ON} the switch {\tt VECTORC}.
- We observe that all array references are substituted back, without having
- replaced repeatedly occuring identical subscript expressions by internally
- selected cse names.
- The fourth and the last run are governed by the functions {\tt VECTORCODE} and
- {\tt VCLEAR}, after having turned {\tt OFF} the switch {\tt VECTORC}.
- {\small
- \begin{verbatim}
- ON VECTORC$
- OPTIMIZE a(1,x+1) := g+h*r^f,
- b(y+1) := a(1,2*x+1)*(g+h*r^f),
- c1 := (h*r)/g*a(2,1+x),
- c2 := c1*a(1,x+1) + sin(d),
- a(1,x+1) := c1^(5/2),
- d := b(y+1)*a(1,x+1),
- a(1,1+2*x):= (a(1,x+1)*b(y+1)*c)/(d*g^2),
- b(y+1) := a(1,1+x)+b(y+1) + sin(d),
- a(1,x+1) := b(y+1)*c+h/(g + sin(d)),
- d := k*e+d*(a(1,1+x)+3),
- e := d*(a(1,1+x)+3) + sin(d),
- f := d*(3+a(1,x+1)) + sin(d),
- g := d*(3+a(1,x+1))+f
- INAME s$
- f
- a(1,x + 1) := r *h + g
- b(y + 1) := a(1,x + 1)*a(1,2*x + 1)
- r*h
- c1 := a(2,x + 1)*-----
- g
- c2 := sin(d) + a(1,x + 1)*c1
- 2
- a(1,x + 1) := sqrt(c1)*c1
- d := a(1,x + 1)*b(y + 1)
- \end{verbatim}}
- \newpage
- {\small
- \begin{verbatim}
- d*c
- a(1,1 + 2*x) := ------
- 2
- g *d
- s20 := sin(d)
- b(y + 1) := a(1,x + 1) + b(y + 1) + s20
- h
- a(1,x + 1) := --------- + b(y + 1)*c
- g + s20
- s25 := a(1,x + 1) + 3
- d := s25*d + e*k
- s28 := s25*d
- e := s28 + sin(d)
- f := e
- g := s28 + f
- OFF VECTORC$
- VECTORCODE a,b$
- OPTIMIZE a(1,x+1) := g+h*r^f,
- b(y+1) := a(1,2*x+1)*(g+h*r^f),
- c1 := (h*r)/g*a(2,1+x),
- c2 := c1*a(1,x+1) + sin(d),
- a(1,x+1) := c1^(5/2),
- d := b(y+1)*a(1,x+1),
- a(1,1+2*x):= (a(1,x+1)*b(y+1)*c)/(d*g^2),
- b(y+1) := a(1,1+x)+b(y+1) + sin(d),
- a(1,x+1) := b(y+1)*c+h/(g + sin(d)),
- d := k*e+d*(a(1,1+x)+3),
- e := d*(a(1,1+x)+3) + sin(d),
- f := d*(3+a(1,x+1)) + sin(d),
- g := d*(3+a(1,x+1))+f
- INAME s$
- f
- a(1,x + 1) := r *h + g
- b(y + 1) := a(1,x + 1)*a(1,2*x + 1)
- r*h
- c1 := a(2,x + 1)*-----
- g
- c2 := sin(d) + a(1,x + 1)*c1
- a(1,x + 1) := sqrt(c1)*c1*c1
- d := a(1,x + 1)*b(y + 1)
- d*c
- a(1,1 + 2*x) := -------
- g*g*d
- s22 := sin(d)
- b(y + 1) := a(1,x + 1) + b(y + 1) + s22
- h
- a(1,x + 1) := --------- + b(y + 1)*c
- g + s22
- s27 := 3 + a(1,x + 1)
- d := s27*d + e*k
- s30 := s27*d
- e := s30 + sin(d)
- f := e
- g := s30 + f
- VCLEAR b$
- OPTIMIZE a(1,x+1) := g+h*r^f,
- b(y+1) := a(1,2*x+1)*(g+h*r^f),
- c1 := (h*r)/g*a(2,1+x),
- c2 := c1*a(1,x+1) + sin(d),
- a(1,x+1) := c1^(5/2),
- d := b(y+1)*a(1,x+1),
- a(1,1+2*x):= (a(1,x+1)*b(y+1)*c)/(d*g^2),
- b(y+1) := a(1,1+x)+b(y+1) + sin(d),
- a(1,x+1) := b(y+1)*c+h/(g + sin(d)),
- d := k*e+d*(a(1,1+x)+3),
- e := d*(a(1,1+x)+3) + sin(d),
- f := d*(3+a(1,x+1)) + sin(d),
- g := d*(3+a(1,x+1))+f
- INAME s$
- f
- a(1,x + 1) := r *h + g
- s1 := y + 1
- s2 := a(1,x + 1)*a(1,1 + 2*x)
- r*h
- c1 := a(2,1 + x)*-----
- g
- c2 := sin(d) + a(1,x + 1)*c1
- a(1,x + 1) := sqrt(c1)*c1*c1
- d := a(1,x + 1)*s2
- d*c
- a(1,1 + 2*x) := -------
- g*g*d
- s23 := sin(d)
- b(s1) := a(1,x + 1) + s2 + s23
- h
- a(1,x + 1) := --------- + b(s1)*c
- g + s23
- s28 := 3 + a(1,x + 1)
- d := s28*d + e*k
- s31 := s28*d
- e := s31 + sin(d)
- f := e
- g := s31 + f
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \newpage
- \section{A Combined Use of GENTRAN and SCOPE 1.5}\label{SCOPE:gopt}
- \index{{\tt GENTRANOPT} switch}
- As already stated in subsection~\ref{SCOPE:inter} each GENTRAN command is
- evaluated separately, implying that the symbol table, required
- for the production of declarations, is fresh at the beginning of a GENTRAN
- command evaluation. Turning {\tt ON} the switch {\tt GENTRANOPT} leads to
- the optimization of the arithmetic code, defined in the GENTRAN command,
- obeying the new {\tt GENTRANOPT} regime. In addition, we can observe that
- each separate GENTRAN command can produce its own declarations.
- \index{{\tt GENTRANOPT} switch}
- To increase flexibility we introduced facilities for making declarations,
- associated with a group of GENTRAN commands and for the optimization of
- the arithmetic in such a group as well.
- We implemented two function pairs of parameter-less functions:
- \hspace{1cm} ({\tt DELAYDECS}, {\tt MAKEDECS})
- \index{SCOPE function ! {\tt DELAYDECS}}
- \index{SCOPE function ! {\tt MAKEDECS}}
- and
- \hspace{1cm} ({\tt DELAYOPTS}, {\tt MAKEOPTS}).
- \index{SCOPE function ! {\tt DELAYOPTS}}
- \index{SCOPE function ! {\tt MAKEOPTS}}
- Both pairs function as "brackets" around groups of statements. The {\tt OPTS}
- pair can be used (repeatedly) inside a {\tt DECS} pair. Both pairs achieve
- an alterned GENTRAN mode of operation. All GENTRAN productions between such
- a pair are collected in an internal format, say {\tt if\_list}.
- The {\tt DELAY...} functions initialize the modified mode of operation.
- The {\tt MAKE...} functions restore the previous mode of operation in
- combination with the production either of declarations, associated with the
- contents of {\tt if\_list}, or of an optimized representation of the
- contents of {\tt if\_list}.
- Example~\ref{ex:8.1} serves to introduce a variety of approaches to code
- generation, based on the use of these pairs of brackets and of the
- switch {\tt GENTRANOPT}. We illustrate a more realistic use in
- example~\ref{ex:8.2}: generation of optimized fortran77 code for the
- computation of the entries of the inverse of a symmetric (3,3) matrix.
- It is a continuation of example~\ref{ex:3.1.8} in
- subsection~\ref{SCOPE:optim} and example~\ref{ex:3.2.5} in
- subsection ~\ref{SCOPE:algo}. It was also presented
- in ~\cite{Gates:85}, albeit in a slightly different form.
- \example\label{ex:8.1}
- \index{SCOPE ! example}
- The output of combined GENTRAN and SCOPE operations is by default given
- in fortran77 notation. We illustrate the different possibilities in the
- form of small pieces of code.
- \begin{itemize}
- \item The pair ({\tt DELAYDECS}, {\tt MAKEDECS}) encloses four GENTRAN commands.
- The first is needed to initialize the symbol table. The literal translation in
- internal format of the last three commands is stored in the {\tt if\_list}.
- The application of {\tt MAKEDECS} leads to the restoration of the default
- GENTRAN regime, applied to the {\tt if\_list} and leading to the result,
- presented in the form of fortran77 code.
- {\small
- \begin{verbatim}
- DELAYDECS$
- GENTRAN DECLARE <<a,b,c,d,q,w:real>>$
- GENTRAN a:=b+c$
- GENTRAN d:=b+c$
- GENTRAN <<q:=b+c;w:=b+c>>$
- MAKEDECS$
- REAL A,B,C,D,Q,W
- A=B+C
- D=B+C
- Q=B+C
- W=B+C
- \end{verbatim}}
- \item We repeat the previous commands, but execute them in a slightly different
- setting by turning {\tt ON} the switch {\tt GENTRANOPT}. This time the
- arithmetical rules in each of the three last GENTRAN commands are optimized
- separately. This is illustrated by the form of the output. The last piece of
- code contains the cse {\tt B+C}, which is presented under the name {\tt Q}
- in the fortran77 output.
- \index{{\tt GENTRANOPT} switch}
- \index{SCOPE function ! {\tt DELAYDECS}}
- \index{SCOPE function ! {\tt MAKEDECS}}
- \index{SCOPE function ! {\tt DELAYOPTS}}
- \index{SCOPE function ! {\tt MAKEOPTS}}
- {\small
- \begin{verbatim}
- ON GENTRANOPT$
- DELAYDECS$
- GENTRAN DECLARE <<a,b,c,d,q,w:real>>$
- GENTRAN a:=b+c$
- GENTRAN d:=b+c$
- GENTRAN <<q:=b+c;w:=b+c>>$
- MAKEDECS$
- REAL B,C,A,D,Q,W
- A=B+C
- D=B+C
- Q=B+C
- W=Q
- OFF GENTRANOPT$
- \end{verbatim}}
- \item We can improve the optimization strategy by using the function pair
- ({\tt DELAYOPTS}, {\tt MAKEOPTS}) in stead of the
- pair ({\tt DELAYDECS}, {\tt MAKEDECS}). All blockwise combinable arithmetic
- is collected. These blocks of straight line code are optimized as separate
- input sets ${\rm E_{in}}$, when activating {\tt MAKEOPTS}.
- {\small
- \begin{verbatim}
- DELAYOPTS$
- GENTRAN a:=b+c$
- GENTRAN d:=b+c$
- GENTRAN <<q:=b+c;w:=b+c>>$
- MAKEOPTS$
- A=B+C
- D=A
- Q=A
- W=A
- \end{verbatim}}
- \item We can furhter improve the optimization strategy by using the
- function pair ({\tt DELAYOPTS}, {\tt MAKEOPTS}) inside the
- pair ({\tt DELAYDECS}, {\tt MAKEDECS}). All blockwise combinable arithmetic
- is collected. These blocks of straight line code are optimized as separate
- input sets ${\rm E_{in}}$, when activating {\tt MAKEOPTS}. But this time the
- results are added in internal format to the {\tt if\_list} version,
- being maintained, as to obey the {\tt DELAYDECS} regime.
- {\small
- \begin{verbatim}
- DELAYDECS$
- GENTRAN DECLARE <<a,b,c,d,q,w:real>>$
- DELAYOPTS$
- GENTRAN a:=b+c$
- GENTRAN d:=b+c$
- GENTRAN <<q:=b+c;w:=b+c>>$
- MAKEOPTS$
- MAKEDECS$
- REAL B,C,A,D,Q,W
- A=B+C
- D=A
- Q=A
- W=A
- \end{verbatim}}
- \item A slightly more realistic example suggests how easily optimized code
- for sets of matrix entries can be obtained. We use two identical matrices
- {\tt a} and {\tt d}. The latter is not introduced at the {\REDUCE} level,
- but simply used inside a GENTRAN command. The entries of {\tt a} are
- initialized inside a double for-loop. After each initialization a GENTRAN
- command is applied, using the special assignment operator {\tt ::=:} for
- correctly combining entry names and entry values. The REDUCE algebraic mode
- assignments are again used, when identifying the matrix {\tt d} with the
- matrix {\tt a}, applying the special assignment operator {\tt :=:} in a
- separate GENTRAN command. The latter command is internally expanded into
- separate GENTRAN commands for each entry assignment. By using the pair
- ({\tt DELAYOPTS}, {\tt MAKEOPTS}) one block of straigt line code is
- constructed and optimized. It consists of two sets of assignments, one
- for the entries of the matrix {\tt a} and another for the entries of the
- matrix {\tt d}. The presented output shows that both matrices are indeed
- identical.
- {\small
- \begin{verbatim}
- MATRIX a(4,4);
- DELAYDECS$
- GENTRAN DECLARE <<a(4,4),d(4,4),b,c:real>>$
- DELAYOPTS$
- FOR i:=1:4 DO FOR j:=1:4 DO << a(i,j):=(i+j)*(b+c)+i*b+j*c;
- GENTRAN a(i,j)::=:a(i,j)>>$
- GENTRAN d:=:a$
- MAKEOPTS$
- MAKEDECS$
- REAL B,C,G56,G54,G57,G55,A(4,4),D(4,4)
- A(1,1)=3.0*(B+C)
- G56=5.0*C
- A(1,2)=G56+4.0*B
- G54=5.0*B
- G57=7.0*C
- A(1,3)=G57+G54
- A(1,4)=6.0*B+9.0*C
- A(2,1)=G54+4.0*c
- A(2,2)=2.0*A(1,1)
- G55=7.0*B
- A(2,3)=G55+8.0*C
- A(2,4)=2.0*A(1,2)
- A(3,1)=G56+G55
- A(3,2)=G57+8.0*B
- A(3,3)=3.0*A(1,1)
- A(3,4)=10.0*B+11.0*C
- A(4,1)=9.0*B+6.0*C
- A(4,2)=2.0*A(2,1)
- A(4,3)=11.0*B+10.0*C
- A(4,4)=4.0*A(1,1)
- D(1,1)=A(1,1)
- D(1,2)=A(1,2)
- D(1,3)=A(1,3)
- D(1,4)=A(1,4)
- D(2,1)=A(2,1)
- D(2,2)=A(2,2)
- D(2,3)=A(2,3)
- D(2,4)=A(2,4)
- D(3,1)=A(3,1)
- D(3,2)=A(3,2)
- D(3,3)=A(3,3)
- D(3,4)=A(3,4)
- D(4,1)=A(4,1)
- D(4,2)=A(4,2)
- D(4,3)=A(4,3)
- D(4,4)=A(4,4)
- \end{verbatim}}
- \item Finally, and again only for illustrative purposes the fifth piece of
- code is again executed in an almost identical manner. We omit the declarations
- and replace the instruction {\tt GENTRAN d:=:a}\verb+$+ by the command
- {\tt GENTRAN a:=:a}\verb+$+. Hence the matrix a is simply redefined. As
- stated in section~\ref{SCOPE:dda} redundant assignments --- producing dead
- code, for instance by copying previous assignments --- are automatically
- removed. as part of the optimization process. Therefore the optimized
- entry values of the matrix {\tt a} are presented only once.
- {\small
- \begin{verbatim}
- DELAYOPTS$
- FOR i:=1:4 DO FOR j:=1:4 DO << a(i,j):=(i+j)*(b+c)+i*b+j*c;
- GENTRAN a(i,j)::=:a(i,j)>>$
- GENTRAN a:=:a$
- MAKEOPTS$
- A(1,1)=3.0*(B+C)
- G111=5.0*C
- A(1,2)=G111+4.0*B
- G109=5.0*B
- G112=7.0*C
- A(1,3)=G112+G109
- A(1,4)=6.0*B+9.0*C
- A(2,1)=G109+4.0*C
- A(2,2)=2.0*A(1,1)
- G110=7.0*B
- A(2,3)=G110+8.0*C
- A(2,4)=2.0*A(1,2)
- A(3,1)=G111+G110
- A(3,2)=G112+8.0*B
- A(3,3)=3.0*A(1,1)
- A(3,4)=10.0*B+11.0*C
- A(4,1)=9.0*B+6.0*C
- A(4,2)=2.0*A(2,1)
- A(4,3)=11.0*B+10.0*C
- A(4,4)=4.0*A(1,1)
- \end{verbatim}}
- \end{itemize}
- {\small
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \example\label{ex:8.2}
- \index{SCOPE ! example}
- Let us now again look at the symmetric (3,3) matrix {\tt m}, already used in
- the examples ~\ref{ex:3.1.8} and ~\ref{ex:3.2.5}. For completeness we begin
- by showing the entry values. We generate optimized fortran77 code
- for the inverse {\tt mnv} of {\tt m} and store it in a file,
- named {\tt inverse.code}, using the function pair ({\tt GENTRANOUT},
- {\tt GENTRANSHUT}). Inside this pair we apply the pair ({\tt DELAYDECS},
- {\tt MAKEDECS}). The latter pair encloses in turn the pair ({\tt DELAYOPTS},
- {\tt MAKEOPTS}). Inside these innermost brackets four different sections of
- code can be distinguished. The first section consists of three {\tt LITERAL}
- commands, for inserting comment in the target code. The second is formed by
- a double for-loop. Essential are the applications of the GENTRAN functions
- {\tt tempvar} and {\tt markvar} for assigning internal names to matrix entry
- values. These applications are very similar to the approach, chosen in
- example~\ref{ex:3.2.5}. The third section is again formed by {\tt LITERAL}
- commands and the last orders the creation of the entries of the inverse
- matrix {\tt mnv}. Before introducing the file {\tt inverse.code} we selected
- {\tt S0} as initial cse name, using the function {\tt INAME}, and
- turned {\tt ON} the switches {\tt ACINFO} and {\tt DOUBLE}.
- \index{GENTRAN function ! {\tt GENTRANOUT}}
- \index{GENTRAN function ! {\tt GENTRANSHUT}}
- \index{{\tt ACINFO} switch}
- \index{{\tt DOUBLE} switch}
- \index{SCOPE function ! {\tt INAME}}
- \index{GENTRAN's {\tt DECLARE} statement}
- \index{GENTRAN's {\tt LITERAL} statement}
- \index{REDUCE function ! {\tt gensym}}
- Observe that directly after the {\tt MAKEOPTS} instruction two sets of tables
- are printed with information about the arithmetic complexity of the two blocks
- of code, which are generated in the second and the last section. We
- activated {\tt ACINFO} to show this effect. The tables are printed as
- a side effect. The output itself is directed to the file {\tt inverse.code}.
- Looking at the contents of this file, given below, shows three different
- kinds of internally generated names. A number of {\tt S}-names is created
- during the optimization of the first block of straight line code, created with
- the second section. In this piece of code we also notice {\tt T}-names,
- generated by {\tt tempvar} applications. The intial {\tt T} character is the
- default internal GENTRAN selection for {(temporarily needed) names.
- And finally {\tt G}-names, introduced by
- applications of {\tt gensym}, during the second optimization operation for
- reducing the arithmetic complexity of the entries of {\tt mnv}. Because the
- code splitting is internally performed, the second SCOPE application
- is missing its {\tt INAME} initialisation, thus leading to the application of
- {\tt gensym}. Observe as well that {\tt INAME} can be used as a separate
- facility as well.
- {\small
- \begin{verbatim}
- OFF EXP$
- MATRIX m(3,3),mnv(3,3)$
- IN "matrix.M"$
- m(1,1) := - ((j30y - j30z + 9*m30*p )*sin(q3)
- 2 2
- - 18*cos(q2)*cos(q3)*m30*p - j10y - j30y - m10*p
- 2
- - 18*m30*p )
- 2 2
- m(2,1) := m(1,2) := - ((j30y - j30z + 9*m30*p )*sin(q3)
- 2 2
- - 9*cos(q2)*cos(q3)*m30*p - j30y - 9*m30*p )
- 2
- m(3,1) := m(1,3) := - 9*sin(q2)*sin(q3)*m30*p
- 2 2 2
- m(2,2) := - ((j30y - j30z + 9*m30*p )*sin(q3) - j30y - 9*m30*p )
- m(3,2) := m(2,3) := 0
- 2
- m(3,3) := j30x + 9*m30*p
- INAME s0$
- ON ACINFO,DOUBLE$
- GENTRANOUT "inverse.code"$
- DELAYDECS$
- GENTRAN DECLARE <<mnv(3,3),p,m30,j30y,j30z,q3,m10,q2,j10y,j30x:real>>$
- DELAYOPTS$
- GENTRAN LITERAL "C",tab!*," ",cr!*$
- GENTRAN LITERAL "C",tab!*," -- Computation of relevant M-entries --",cr!*$
- GENTRAN LITERAL "C",tab!*," ",cr!*$
- FOR j:=1:3 DO FOR k:=j:3 DO
- IF m(j,k) NEQ 0 THEN
- << s:=tempvar('real); markvar s;
- GENTRAN eval(s):=:m(j,k);
- m(j,k):=m(k,j):=s
- >>$
- \end{verbatim}}
- \index{GENTRAN function ! {\tt markvar}}
- \index{GENTRAN function ! {\tt tempvar}}
- {\small
- \begin{verbatim}
- GENTRAN LITERAL "C",tab!*," ",cr!*$
- GENTRAN LITERAL "C",tab!*," -- Computation of the inverse of M --",cr!*$
- GENTRAN LITERAL "C",tab!*," ",cr!*$
- GENTRAN mnv:=:m^(-1)$
- MAKEOPTS$
- Number of operations in the input is:
- Number of (+/-) operations : 17
- Number of unary - operations : 4
- Number of * operations : 30
- Number of integer ^ operations : 14
- Number of / operations : 0
- Number of function applications : 9
- Number of operations after optimization is:
- Number of (+/-) operations : 11
- Number of unary - operations : 1
- Number of * operations : 12
- Number of integer ^ operations : 0
- Number of / operations : 0
- Number of function applications : 4
- Number of operations in the input is:
- Number of (+/-) operations : 20
- Number of unary - operations : 4
- Number of * operations : 45
- Number of integer ^ operations : 20
- Number of / operations : 9
- Number of function applications : 0
- Number of operations after optimization is:
- Number of (+/-) operations : 4
- Number of unary - operations : 2
- Number of * operations : 11
- Number of integer ^ operations : 0
- Number of / operations : 4
- Number of function applications : 0
- MAKEDECS$
- GENTRANSHUT "inverse.code"$
- \end{verbatim}}
- The contents of the file {\tt inverse.code} is:
- {\small
- \begin{verbatim}
- DOUBLE PRECISION P,M30,J30Y,J30Z,Q3,M10,Q2,J10Y,J30X,S0,S7,S5,S4,
- . S13,S11,T0,T3,T1,T2,T4,G153,G152,G151,G147,G155,G156,MNV(3,3)
- C
- C -- Computation of relevant M-entries --
- C
- S0=DSIN(Q3)
- S7=P*P
- S5=S7*M30
- S4=S5*DCOS(Q3)*DCOS(Q2)
- S13=9.0D0*S5
- S11=(S13+J30Y-J30Z)*S0*S0
- T0=J30Y+J10Y+18.0D0*(S4+S5)+S7*M10-S11
- T3=S13+J30Y-S11
- T1=T3+9.0D0*S4
- T2=-(S13*DSIN(Q2)*S0)
- T4=S13+J30X
- C
- C -- Computation of the inverse of M --
- C
- G153=T2*T2
- G152=T1*T1
- G151=T0*T4
- G147=G151*T3-(G153*T3)-(G152*T4)
- G155=T4/G147
- MNV(1,1)=G155*T3
- MNV(1,2)=-(G155*T1)
- G156=T2/G147
- MNV(1,3)=-(G156*T3)
- MNV(2,1)=MNV(1,2)
- MNV(2,2)=(G151-G153)/G147
- MNV(2,3)=G156*T1
- MNV(3,1)=MNV(1,3)
- MNV(3,2)=MNV(2,3)
- MNV(3,3)=(T0*T3-G152)/G147
- \end{verbatim}}
- Let us now repeat the generation process in a slightly different setting.
- We leave out the comment generating instructions, thus creating only one
- block of straight line code to be optimized. We choose for an {\tt S}-name
- selection based on {\tt tempvar} applications and for {\tt T}-names for cse's.
- This time the default use of {\tt gensym} is not necessary.
- The contents' of both output files illustrate quotient optimization.
- All denominators, being the determinant of the matrix {\tt m}, are identical.
- The set of rational entries of {\tt MNV} contains the cse's {\tt G155 (T45)}
- and {\tt G156 (T46)}.
- \index{GENTRAN identifier !{\tt TEMPVARNAME*}}
- \index{GENTRAN identifier !{\tt TEMPVARNUM*}}
- \index{GENTRAN function ! {\tt GENTRANOUT}}
- \index{SCOPE function ! {\tt INAME}}
- {\small
- \begin{verbatim}
- TEMPVARNAME!*:='s$
- TEMPVARNUM!*:=0$
- INAME t0$
- GENTRANOUT "inverse.code2"$
- DELAYDECS$
- GENTRAN DECLARE <<mnv(3,3),p,m30,j30y,j30z,q3,m10,q2,j10y,j30x:real>>$
- DELAYOPTS$
- FOR j:=1:3 DO FOR k:=j:3 DO
- IF m(j,k) NEQ 0 THEN
- << s:=tempvar('real); markvar(s);
- GENTRAN eval(s):=:m(j,k);
- m(j,k):=m(k,j):=s
- >>$
- GENTRAN mnv:=:m^(-1)$
- MAKEOPTS$
- Number of operations in the input is:
- Number of (+/-) operations : 37
- Number of unary - operations : 8
- Number of * operations : 75
- Number of integer ^ operations : 34
- Number of / operations : 9
- Number of function applications : 9
- Number of operations after optimization is:
- Number of (+/-) operations : 15
- Number of unary - operations : 3
- Number of * operations : 23
- Number of integer ^ operations : 0
- Number of / operations : 4
- Number of function applications : 4
- MAKEDECS$
- GENTRANSHUT "inverse.code2"$
- \end{verbatim}}
- The contents of the file {\tt inverse.code2} is:
- {\small
- \begin{verbatim}
- DOUBLE PRECISION P,M30,J30Y,J30Z,Q3,M10,Q2,J10Y,J30X,T9,T40,T32,
- . T31,T49,T47,S0,S3,S1,S2,S4,T39,T38,T36,T30,T45,T46,MNV(3,3)
- T9=DSIN(Q3)
- T40=P*P
- T32=T40*M30
- T31=T32*DCOS(Q3)*DCOS(Q2)
- T49=9.0D0*T32
- T47=(T49+J30Y-J30Z)*T9*T9
- S0=J30Y+J10Y+18.0D0*(T31+T32)+T40*M10-T47
- S3=T49+J30Y-T47
- S1=S3+9.0D0*T31
- S2=-(T49*DSIN(Q2)*T9)
- S4=T49+J30X
- T39=S2*S2
- T38=S1*S1
- T36=S0*S4
- T30=T36*S3-(T39*S3)-(T38*S4)
- T45=S4/T30
- MNV(1,1)=T45*S3
- MNV(1,2)=-(T45*S1)
- T46=S2/T30
- MNV(1,3)=-(T46*S3)
- MNV(2,1)=MNV(1,2)
- MNV(2,2)=(T36-T39)/T30
- MNV(2,3)=T46*S1
- MNV(3,1)=MNV(1,3)
- MNV(3,2)=MNV(2,3)
- MNV(3,3)=(S0*S3-T38)/T30
- \end{verbatim}}
- A comparison between the arithmetic complexities given here and in example
- ~\ref{ex:3.2.5} shows that computing the entries of {\tt MNV}(=${\tt M}^{-1}$)
- instead of the value of the determinant of {\tt M}, only requires 2
- extra additions, 1 extra negation, 6 extra multilications and 4 extra
- divisions.
- {\small
- \begin{flushright}
- $\Box$
- \end{flushright}}
- Other examples of this combined use of GENTRAN and SCOPE can be found
- in ~\cite{vanHulzen:95,Ganzha:94}. The symbolic-numeric strategy discussed in
- ~\cite{Ganzha:94} also relies on the {\tt ALGOPT} facilities, which were
- introduced earlier.
- \newpage
- \section{Symbolic Mode Use of SCOPE 1.5}~\label{SCOPE:symb}
- Both the {\tt OPTIMIZE} command and the {\tt ALGOPT} function are transformed
- into the same symbolic mode function, called {\tt SYMOPTIMIZE}. It is this
- function, which governs the optimization process as a whole, delivering
- the results of an optimization run as a side effect, for instance by making
- it visible on a screen or by storing it in a file. Using {\tt SYMOPTIMIZE}
- is straighforward, once the syntax for its five actual parameters is known.
- If we set {\tt ON INTERN} a {\tt SYMOPTIMIZE} application will deliver a
- list, containing the correctly ordered results of an optimization operation
- in the form of assignment statements in prefix form in Lisp notation. The thus
- provided results can function as one of the five actual parameters for
- {\tt SYMOPTIMIZE} as well. This simple feature helps avoiding file traffic
- when stepwise optimizing code and as illustrated earlier in example~\ref{ex:5.1}
- in section ~\ref{SCOPE:files}. Before illustrating that in example~\ref{ex:9.1}
- we present the syntax of the actual parameters for {\tt SYMOPTIMIZE}:
- \index{{\tt INTERN} switch}
- \index{SCOPE function ! {\tt SYMOPTIMIZE}}
- $<$SCOPE\_application$>~::=~\cdots~\mid$\\
- \hspace*{1cm} {\tt SYMOPTIMIZE}($<$ssetq\_list$>,<$infile\_list$>,<$outfile\_name$>,<$cse\_prefix$>,\\
- \hspace*{6cm} <$declaration\_list$>$)
- \begin{center}
- \begin{tabular}{lcl}
- $<$ssetq\_list$>$ & $::=$ & ($<$ssetq\_seq$>$)\\
- $<$ssetq\_seq$>$ & $::=$ & $<$ssetq\_stat$>~[<$ssetq\_seq$>]$\\
- $<$ssetq\_stat$>$ & $::=$ & ({\tt setq} $<$lhs\_id$>~<$rhs$>)~\mid$
- ({\tt rsetq} $<$lhs\_id$>~<$rhs$>)~\mid$\\
- & & ({\tt lsetq} $<$lhs\_id$>~<$rhs$>)~\mid$
- ({\tt lrsetq} $<$lhs\_id$>~<$rhs$>)$\\
- $<$lhs\_id$>$ & $::=$ & $<$id$>~\mid~<$subscripted\_id$>$\\
- $<$subscripted\_id$>$ & $::=$ & $(<$id$>~<$s\_subscript\_seq$>)$\\
- $<$s\_subscript\_seq$>$ & $::=$ & $<$s\_subscript$>[~<$s\_subscript\_seq$>$]\\
- $<$s\_subscript$>$ & $::=$ & $<$integer$>~\mid~<$integer prefix\_expression$>$\\
- $<$rhs$>$ & $::=$ & $<$prefix\_expression$>$\\
- $<$infile\_list$>$ & $::=$ & $(<$infile\_seq$>)$\\
- $<$infile\_seq$>$ & $::=$ & $<$infile\_name$>[~<$infile\_seq$>]$\\
- $<$infile\_name$>$ & $::=$ & $<$string\_id$>$\\
- $<$outfile\_name$>$ & $::=$ & $<$string\_id$>$\\
- $<$declaration\_list$>$ & $::=$ & $(<$declaration\_seq$>)$\\
- $<$declaration\_seq$>$ & $::=$ & $<$declaration$>~<$declaration\_seq$>$\\
- $<$declaration$>$ & $::=$ & $(<$type$>~<$lhs\_id\_seq$>)$\\
- $<$lhs\_id\_seq$>$ & $::=$ & $<$lhs\_id$>~<$lhs\_id\_seq$>$
- \end{tabular}
- \end{center}
- The above given syntax requires some explanation:
- \begin{itemize}
- \item The presented ssetq syntax is incomplete. The prefix equivalent of
- any object, introduced in subsection~\ref{SCOPE:optim} and of any a\_object,
- defined in subsection~\ref{SCOPE:algo}, is accepted as ssetq item. Such prefix
- equivalents can be obtained quite easily by using the function {\tt show}:
- \hspace*{1cm} {\tt SYMBOLIC PROCEDURE show u; prettyprint u}\verb+$+ \\
- \hspace*{1cm} {\tt SYMBOLIC OPERATOR show}\verb+$+
- The explicit presentation of a subset of the syntax rules for ssetq
- is given to suggest that local simplification in symbolic mode can be brought
- in easily by using the assignment operators {\tt lsetq}, {\tt lrsetq}
- and {\tt rsetq}. The algebraic mode equivalent of these operators is
- {\tt ::=}, {\tt ::=:} and {\tt :=:}, respectively. Their effect on
- simplification is discussed in subsection~\ref{SCOPE:inter} and already
- shown in a number of examples. In addition it is worth noting that
- any (sub)expression
- in a lhs\_id or a rhs may contain any number of calls to {\tt eval}.
- These calls lead to simplification of their arguments, prior to optimization.
- Details about the use of {\tt eval} are presented in the
- GENTRAN manual~\cite{Gates:91}.
- \item Since we operate in symbolic mode the last four formal parameters
- have possibly to be replaced by quoted actual parameters. This is illustrated
- in example ~\ref{ex:9.1}.
- \item The infile\_seq consists of file names in string notation. The contents'
- of such input files may contain any form of infix input, obeying the syntax
- rules for objects and/or a\_objects, as introduced in the subsections
- ~\ref{SCOPE:optim} and ~\ref{SCOPE:algo}, respectively.
- \item The single output file name outfile\_name ought to be given in string
- notation as well. The outfile\_name is properly closed. The default output
- is REDUCE infix in an {\tt ON NAT} fashion. Alternatives are discussed above:
- {\tt ON AGAIN} or {\tt OFF NAT}, both leading to re-readable output, or an
- application of {\tt OPTLANG} for a non {\tt nil} argument.
- \item The declaration list presents declarations in prefix notation. The list
- is used to initialize the symbol table prior to optimization. This
- information is used for dynamically typing the result of an optimization
- process. In addition it is used to determine wether subscripted names denote
- array elements or a function call. The latter is replaced by a cse name in the
- presented output, whereas the former is not.
- \item The five parameters of {\tt SYMOPTIMIZE} correspondent with optional
- extensions of the {\tt OPTIMIZE} command. When part of these options remains
- unused, {\tt nil} has to taken as value for the corresponding actual parameters.
- \end{itemize}
- \index{{\tt AGAIN} switch}
- \index{{\tt INPUTC} switch}
- \index{{\tt INTERN} switch}
- \index{{\tt NAT} switch}
- \index{SCOPE function ! {\tt OPTLANG}}
- \index{GENTRAN function ! {\tt lsetq}}
- \index{GENTRAN function ! {\tt lrsetq}}
- \index{GENTRAN function ! {\tt rsetq}}
- We illustrate the symbolic mode variant of the {\tt OPTIMIZE} command by
- repeating example~\ref{ex:5.1} from section~\ref{SCOPE:files}, albeit in
- a modified setting.
- \example\label{ex:9.1}
- \index{SCOPE ! example}
- The script explains itself.
- {\small
- \begin{verbatim}
- LISP$
- ON ACINFO,INPUTC,INTERN,AGAIN$
- prettyprint(prefixlist:=SYMOPTIMIZE(nil,'("f1" "f2"),nil,'c,nil))$
- 2
- 2 (x + y) 8 2 2
- 2*(sin(x) - cos(e ) + 3*cos(x)) *(x + y) + 4*y + 4*y
- e1 := ----------------------------------------------------------------
- 3*x + 2*y
- 2
- 2 (x + y) 2 3
- e2 := (4*(sin(x) - cos(e ) + 2*cos(x)) *(x + y)
- 2 2
- + (4*x - 4*y) - 6*x)/(8*x + 3*y - 2*x)
- Number of operations in the input is:
- Number of (+/-) operations : 16
- Number of unary - operations : 0
- Number of * operations : 16
- Number of integer ^ operations : 11
- Number of / operations : 2
- Number of function applications : 8
- Number of operations after optimization is:
- Number of (+/-) operations : 16
- Number of unary - operations : 0
- Number of * operations : 16
- Number of integer ^ operations : 6
- Number of / operations : 2
- Number of function applications : 4
- ((setq gsym c23)
- (setq cses (plus c18 c10 c20 c8 c6 c14))
- (setq c14 (plus x y))
- (setq c6 (expt c14 2))
- (setq c8 (cos x))
- (setq c20 (plus (expt (sin x) 2) (minus (cos (expt e c6)))) )
- (setq c10 (plus (times 3 x) (times 2 y)))
- (setq e1
- (quotient
- (plus
- (times 4 y)
- (times 4 (expt y 2))
- (times 2 c6 (expt (plus c20 (times 3 c8)) 8)))
- c10))
- (setq c18 (expt x 2))
- (setq e2
- (quotient
- (plus
- (times 4 c18)
- (minus (times 2 c10))
- (times 4 c6 c14 (expt (plus c20 (times 2 c8)) 2)))
- (plus (times 8 c18) (minus (times 2 x)) (times 3 y)))) )
- \end{verbatim}}
- \index{{\tt DOUBLE} switch}
- \index{{\tt FORT} switch}
- {\small
- \begin{verbatim}
- OFF INTERN,AGAIN,PERIOD$
- ON DOUBLE,FORT$
- SYMOPTIMIZE(prefixlist,'("f3"), '"f7",'d,'((real e1 e2 e3 x y)))$
- gsym := c23
- cses := c18 + c10 + c20 + c8 + c6 + c14
- c14 := x + y
- 2
- c6 := c14
- c8 := cos(x)
- 2 c6
- c20 := sin(x) - cos(e )
- c10 := 3*x + 2*y
- 2 8
- 4*y + 4*y + 2*c6*(c20 + 3*c8)
- e1 := ---------------------------------
- c10
- 2
- c18 := x
- 2
- 4*c18 - 2*c10 + 4*c6*c14*(c20 + 2*c8)
- e2 := ----------------------------------------
- 8*c18 - 2*x + 3*y
- 2
- (x + y) 2 2
- 4*sin(cos(e )) + sin(x + y) + (4*x - x + 2*y)
- e3 := --------------------------------------------------------
- 3*y + f(x,g( - cos(x)))
- Number of operations in the input is:
- Number of (+/-) operations : 23
- Number of unary - operations : 1
- Number of * operations : 20
- Number of integer ^ operations : 9
- Number of / operations : 3
- Number of function applications : 11
- Number of operations after optimization is:
- Number of (+/-) operations : 15
- Number of unary - operations : 1
- Number of * operations : 24
- Number of integer ^ operations : 0
- Number of / operations : 3
- Number of function applications : 8
- \end{verbatim}}
- The contents of the output file {\tt f7} is:
- {\small
- \begin{verbatim}
- DOUBLE PRECISION X,Y,D19,D16,C8,D1,D2,C20,D29,C10,D6,D38,D37,D31,
- . E1,C18,D9,D32,D27,D30,E2,D20,E3
- D19=X+Y
- D16=D19*D19
- C8=DCOS(X)
- D1=DSIN(X)
- D2=DCOS(DEXP(D16))
- C20=D1*D1-D2
- D29=2*Y
- C10=D29+3*X
- D6=C20+3*C8
- D38=D6*D6
- D37=D38*D38
- D31=4*Y
- E1=(D31+D31*Y+2.0D0*D16*D37*D37)/C10
- C18=X*X
- D9=C20+2*C8
- D32=4*C18
- D27=D32-X
- D30=3*Y
- E2=(D32-(2.0D0*C10)+4.0D0*D9*D9*D19*D16)/(D30+2.0D0*D27)
- D20=D29+D27
- E3=(4.0D0*DSIN(D2)+DSIN(D19)+D20*D20)/(D30+F(X,G(-C8)))
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- We especially designed these symbolic mode facilities for our joint
- research with Delft Hy\-draulics concerning code generation for an
- incompressible Navier-Stokes problem ~\cite{Goldman:95}.
- \index{{\tt PREFIX} switch}
- \index{{\tt INTERN} switch}
- A final remark: The {\tt ON PREFIX} mode of operation, in both
- algebraic and symbolic mode causes the results of a SCOPE
- application to be presented in the form of an association list,
- called {\tt Prefixlist}. The pairs are formed by lhs\_id's and
- rhs values in prefixform. This lisp S-expression can be used to
- create an alternative version of the optimization results,
- in whatever target language the user prefers to choose.
- \example\label{ex:9.2}
- \index{SCOPE ! example}
- We show the {\tt ON PREFIX} effect. When switching to symbolic mode
- (command 5) we can again obtain the output, assigned as value to the global
- identifer {\tt prefixlist}. The {\tt ON PREFIX} facility allows storage
- in a file for later use. When working in symbolic mode it is of course
- possible to apply {\tt ON INTERN} in stead and to remove the {\tt setq}
- extensions from the provided output value, if desired.
- {\small
- \begin{verbatim}
- REDUCE 3.6, 15-Jul-95 ...
- 1: LOAD_PACKAGE nscope$
- 2: OPTIMIZE a:=b+c*sin(x), d:=c*sin(x)*cos(y);
- g7 := sin(x)*c
- a := g7 + b
- d := g7*cos(y)
- 3: ON PREFIX$
- 4: input 2;
- Prefixlist:=
- ((g3 times (sin x) c) (a plus g3 b) (d times g3 (cos y)))
- 5: LISP$
- 6: prettyprint prefixlist$
- ((g3 times (sin x) c) (a plus g3 b) (d times g3 (cos y)))
- 7: caar prefixlist;
- g3
- 7: cdar prefixlist;
- (times (sin x) c)
- 9: BYE;
- \end{verbatim}
- \begin{flushright}
- $\Box$
- \end{flushright}}
- \newpage
- \section{ A Syntax Summary of SCOPE 1.5}~\label{SCOPE:syntax}
- {\REDUCE} is extended with some commands, designed to apply the facilities
- offered by SCOPE in a flexible way. The syntactical rules, defining how to
- activate SCOPE in both algebraic and symbolic mode, are given in subsection
- ~\ref{SCOPE:srules}. A short overview of the set of additional functions is
- given in subsection~\ref{SCOPE:arules} and the relevant switches are again
- presented in subsection~\ref{SCOPE:switches}.
- \subsection{SCOPE's Toplevel Commands}~\label{SCOPE:srules}
- We assume the syntax of {\tt id}'s, {\tt integer}'s and the like to be already
- known. Hence we do not present an exhaustive description of the rules.\\
- \index{SCOPE function ! {\tt OPTIMIZE}}
- \index{SCOPE function ! {\tt ALGOPT}}
- \index{SCOPE function ! {\tt SYMOPTIMIZE}}
- \index{REDUCE function ! {\tt GSTRUCTR}}
- \index{REDUCE function ! {\tt GHORNER}}
- $<${\tt REDUCE}\_command$>~::=~ \cdots ~ \mid~<${\tt SCOPE}\_application$>$\\
- \hspace*{1cm} $<${\tt GSTRUCTR}\_application$>~\mid$
- $<${\tt GHORNER}\_application$>~\mid$\\
- $<${\tt SCOPE}\_application$>~::=~<${\tt OPTIMIZE} command$>~\mid$\\
- \hspace*{1cm}
- $<${\tt ALGOPT} application$>~\mid$
- $<${\tt SYMOPTIMIZE} application$>$\\
- $<${\tt OPTIMIZE} command$>~::=$\\
- \hspace*{1cm}{\tt OPTIMIZE} $<$object\_seq$>$ [{\tt IN} $<$file\_id\_seq$>$]
- [{\tt OUT} $<$file\_id$>$]\\
- \hspace*{3cm}[{\tt INAME} $<$cse\_prefix$>$]
- [{\tt DECLARE} $<$declaration\_group$>$] $\mid$\\
- \hspace*{1cm}{\tt OPTIMIZE} [$<$object\_seq$>$] {\tt IN} $<$file\_id\_seq$>$
- [{\tt OUT} $<$file\_id$>$]\\
- \hspace*{3cm}[{\tt INAME} $<$cse\_prefix$>$]
- [{\tt DECLARE} $<$declaration\_group$>$]\\
- $<${\tt ALGOPT} application$>~::=$\\
- \hspace*{1cm}{\tt ALGOPT}($<$a\_object\_list$>$[,$<$string\_id\_list$>$][,$<$cse\_prefix$>$]) $\mid$\\
- \hspace*{1cm}{\tt ALGOPT}([$<$a\_object\_list$>$,]$<$string\_id\_list$>$[,$<$cse\_prefix$>$])\\
- $<${\tt SYMOPTIMIZE} application$>~::=$\\
- \hspace*{0.3cm} {\tt SYMOPTIMIZE}($<$ssetq\_list$>,<$infile\_list$>,<$outfile\_name$>,<$cse\_prefix$>$,\\
- \hspace*{2.3cm} $<$declaration\_list$>$)\\
- \begin{tabular}{lcl}
- $<${\tt GSTRUCTR}\_application$>$ & $::=$ &
- {\tt GSTRUCTR} $<$stat\_group$>$ [{\tt NAME} $<$cse\_prefix$>$]\\
- $<$stat\_group$>$ & $::=$ & $\ll~<$stat\_list$>~\gg$\\
- $<$stat\_list$>$ & $::=$ & $<$gstat$>$ [; $<$stat\_list$>$]\\
- $<$gstat$>$ & $::=$ & $<$name$>~:=~<$ expression$>~\mid~<$matrix\_id$>$\\
- $<${\tt GHORHER}\_application$>$ & $::=$ &
- {\tt GHORNER} $<$stat\_group$>$ [{\tt VORDER} $<$id\_seq$>$]\\
- $<$id\_seq$>$ & $::=$ & $<$id$>$[,$<$id\_seq$>$]\\
- \end{tabular}
- \index{SCOPE ! {\tt DECLARE} facility}
- \index{{\tt DECLARE} option}
- \index{{\tt IN} option}
- \index{{\tt OUT} option}
- \index{{\tt INAME} option}
- \newpage
- \index{GENTRAN function ! {\tt lsetq}}
- \index{GENTRAN function ! {\tt lrsetq}}
- \index{GENTRAN function ! {\tt rsetq}}
- \index{SCOPE function ! {\tt ALGSTRUCTR}}
- \index{SCOPE function ! {\tt ALGHORNER}}
- \index{{\tt IMPLICIT} type}
- \index{{\tt integer} type}
- \index{{\tt real} type}
- \index{{\tt real*8} type}
- \index{{\tt complex} type}
- \index{{\tt complex*16} type}
- \begin{center}
- \begin{tabular}{lcl}
- $<$object\_seq$>$ & $::=$ & $<$object$>$[,$<$object\_seq$>$]\\
- $<$object$>$ & $::=$ & $<$stat$>~\mid~<$alglist$>~\mid~<$alglist\_production$>$ \\
- $<$stat$>$ & $::=$ & $<$name$>~<$assignment operator$>~<$expression$>$\\
- $<$assignment operator$>$ & $::=$ & $:=~\mid~::=~\mid~::=:~\mid~:=:$\\
- $<$alglist$>$ & $::=$ & \{$<$eq\_seq$>$\}\\
- $<$eq\_seq$>$ & $::=$ & $<$name$>~=~<$expression$>$[,$<$eq\_seq$>$]\\
- $<$alglist\_production$>$ & $::=$ & $<$name$>~\mid~<$function\_application$>$\\
- $<$name$>$ & $::=$ & $<$id$>~\mid~<$id$>(<$a\_subscript\_seq$>)$\\
- $<$a\_subscript\_seq$>$ & $::=$ & $<$a\_subscript$>$[,$<$a\_subscript\_seq$>$]\\
- $<$a\_subscript$>$ & $::=$ & $<$integer$>~\mid~<$integer infix\_expression$>$\\
- $<$cse\_prefix$>$ & $::=$ & $<$id$>$\\
- & & $\ \ $\\
- $<$a\_object\_list$>$ & $::=$ & $<$a\_object$>~\mid$ \{$<$a\_object$>$[,$<$a\_object\_seq$>$]\}\\
- $<$a\_object\_seq$>$ & $::=$ & $<$a\_object$>$[,$<$a\_object\_seq$>$]\\
- $<$a\_object$>$ & $::=$ & $<$id$>~\mid~<$alglist$>~\mid~<$alglist\_production$>~\mid$\\
- & & \{$<$a\_object$>$\}\\
- & & $\ \ $\\
- $<$function\_application$>$ & $::=$ &
- {\tt ALGSTRUCTR} ($<$arg\_list$>$ [, $<$cse\_prefix$>$ ]) $\mid$\\
- & & {\tt ALGHORNER} ($<$arg\_list$>$ [,\{$<$id\_seq$>$\}]) $\mid$ \\
- & & $\cdots$\\
- $<$arg\_list$>$ & $::=$ & $<$arg\_list\_name$>~\mid~$\{$<$arg\_seq$>$\}\\
- $<$arg\_seq$>$ & $::=$ & $<$arg$>$[,$<$arg\_seq$>$]\\
- $<$arg$>$ & $::=$ & $<$matrix\_id$>~\mid~<$name$>$=$<$expression$>$\\
- $<$arg\_list\_name$>$ & $::=$ & $<$id$>$\\
- & & $\ \ $\\
- $<$file\_id\_seq$>$ & $::=$ & $<$file\_id$>$ [,$<$file\_id\_seq$>$]\\
- $<$file\_id$>$ & $::=$ & $<$id$>$ $\mid$ $<$string\_id$>$\\
- $<$string\_id\_list$>$ & $::=$ & $<$string\_id$>$ $\mid$
- \{$<$string\_id\_seq$>$\}\\
- $<$string\_id\_seq$>$ & $::=$ & $<$string\_id$>$ [,$<$string\_id\_seq$>$]\\
- $<$string\_id$>$ & $::=$ & {\tt "}$<$id$>${\tt "} $\mid$
- {\tt "}$<$id$>.<$f\_extension$>${\tt "}\\
- & & $\ \ $\\
- $<$declaration\_group$>$ & $::=$ & $<$declaration$>~\mid~\ll~<$declaration\_list$>~\gg$\\
- $<$declaration\_list$>$ & $::=$ & $<$declaration$>$[$;<$declaration\_list$>$]\\
- $<$declaration$>$ & $::=$ & $<$range\_list$>:$ {\tt IMPLICIT} $<$type$>~\mid$
- $<$id\_list$>:<$type$>$\\
- $<$range\_list$>$& $::=$ & $<$range$>$[,$<$range\_list$>$]\\
- $<$range$>$ & $::=$ & $<$id$>~\mid~<$id$>-<$id$>$\\
- $<$id\_list$>$ & $::=$ & $<$id$>$[,$<$id\_list$>$]\\
- $<$type$>$ & $::=$ & {\tt integer} $\mid$ {\tt real} $\mid$ {\tt complex} $\mid$
- {\tt real*8} $\mid$ {\tt complex*16}\\
- & & $\ \ $\\
- $<$ssetq\_list$>$ & $::=$ & ($<$ssetq\_seq$>$)\\
- $<$ssetq\_seq$>$ & $::=$ & $<$ssetq\_stat$>~[<$ssetq\_seq$>]$\\
- $<$ssetq\_stat$>$ & $::=$ & ({\tt setq} $<$lhs\_id$>~<$rhs$>)~\mid$
- ({\tt rsetq} $<$lhs\_id$>~<$rhs$>)~\mid$\\
- & & ({\tt lsetq} $<$lhs\_id$>~<$rhs$>)~\mid$
- ({\tt lrsetq} $<$lhs\_id$>~<$rhs$>)$\\
- \end{tabular}
- \end{center}
- \begin{center}
- \begin{tabular}{lcl}
- $<$lhs\_id$>$ & $::=$ & $<$id$>~\mid~<$subscripted\_id$>$\\
- $<$subscripted\_id$>$ & $::=$ & $(<$id$>~<$s\_subscript\_seq$>)$\\
- $<$s\_subscript\_seq$>$ & $::=$ & $<$s\_subscript$>[~<$s\_subscript\_seq$>$]\\
- $<$s\_subscript$>$ & $::=$ & $<$integer$>~\mid~<$integer prefix\_expression$>$\\
- $<$rhs$>$ & $::=$ & $<$prefix\_expression$>$\\
- $<$infile\_list$>$ & $::=$ & $(<$infile\_seq$>)$\\
- $<$infile\_seq$>$ & $::=$ & $<$infile\_name$>[~<$infile\_seq$>]$\\
- $<$infile\_name$>$ & $::=$ & $<$string\_id$>$\\
- $<$outfile\_name$>$ & $::=$ & $<$string\_id$>$\\
- $<$declaration\_list$>$ & $::=$ & $(<$declaration\_seq$>)$\\
- $<$declaration\_seq$>$ & $::=$ & $<$declaration$>~<$declaration\_seq$>$\\
- $<$declaration$>$ & $::=$ & $(<$type$>~<$lhs\_id\_seq$>)$\\
- $<$lhs\_id\_seq$>$ & $::=$ & $<$lhs\_id$>~<$lhs\_id\_seq$>$
- \end{tabular}
- \end{center}
- \subsection{Additional SCOPE-functions}~\label{SCOPE:arules}
- Fifteen additional functions can be used. We shortly summarize their name and use:
- \begin{center}
- \begin{tabular}{| l | l | l |} \hline
- Name(s) & Introduced in & See the examples:\\ \hline \hline
- {\tt SCOPE\_SWITCHES} & ~\ref{SCOPE:basic} & ~\ref{ex:3.1.1}\\
- {\tt SETLENGTH, RESETLENGTH} & ~\ref{SCOPE:optim} & ~\ref{ex:3.1.2},
- ~\ref{ex:3.1.5}, ~\ref{ex:3.2.6} and ~\ref{ex:3.2.7}\\
- {\tt ARESULTS, RESTORABLES, ARESTORE, RESTOREALL} & ~\ref{SCOPE:optim} &
- ~\ref{ex:3.1.9}, ~\ref{ex:3.2.6} and ~\ref{ex:4.1.2}\\
- {\tt OPTLANG} & ~\ref{SCOPE:decl} & ~\ref{ex:6.1}\\
- {\tt VECTORCODE, VCLEAR} & ~\ref{SCOPE:dda} & ~\ref{ex:7.1}\\
- {\tt DELAYDECS, MAKEDECS, DELAYOPTS, MAKEOPTS} & ~\ref{SCOPE:gopt} &
- ~\ref{ex:8.1} and ~\ref{ex:8.2}\\
- {\tt INAME} & ~\ref{SCOPE:gopt} & ~\ref{ex:8.2}\\ \hline
- \end{tabular}
- \end{center}
- \index{SCOPE function ! {\tt SCOPE\_SWITCHES}}
- \index{SCOPE function ! {\tt SETLENGTH}}
- \index{SCOPE function ! {\tt RESETLENGTH}}
- \index{SCOPE function ! {\tt ARESULTS}}
- \index{SCOPE function ! {\tt RESTORABLES}}
- \index{SCOPE function ! {\tt ARESTORE}}
- \index{SCOPE function ! {\tt RESTOREALL}}
- \index{SCOPE function ! {\tt OPTLANG}}
- \index{SCOPE function ! {\tt VECTORCODE}}
- \index{SCOPE function ! {\tt VCLEAR}}
- \index{SCOPE function ! {\tt DELAYDECS}}
- \index{SCOPE function ! {\tt MAKEDECS}}
- \index{SCOPE function ! {\tt DELAYOPTS}}
- \index{SCOPE function ! {\tt MAKEOPTS}}
- \index{SCOPE function ! {\tt INAME}}
- \subsection{The relevant REDUCE, GENTRAN and SCOPE switches}~\label{SCOPE:switches}
- We also shortly summarize the use of the switches, which were introduced
- in section ~\ref{SCOPE:basic} in example~\ref{ex:3.1.1}:
- \begin{center}
- \begin{tabular}{| l | l | l |}\hline
- Name & Origin & Illustrated in the examples:\\ \hline \hline
- {\tt ACINFO} & SCOPE & ~\ref{ex:3.1.8}, ~\ref{ex:3.2.5}, ~\ref{ex:8.2}
- and ~\ref{ex:9.1}\\
- {\tt AGAIN} & SCOPE & ~\ref{ex:5.1} and ~\ref{ex:9.1}\\
- {\tt DOUBLE} & GENTRAN & ~\ref{ex:9.1}\\
- {\tt EVALLHSEQP} & REDUCE & ~\ref{ex:3.2.5}\\
- {\tt EXP} & REDUCE & ~\ref{ex:3.1.8}, ~\ref{ex:3.2.7}, ~\ref{ex:4.1.3} and
- ~\ref{ex:8.2}\\
- {\tt FORT} & REDUCE & ~\ref{ex:3.1.4}, ~\ref{ex:3.1.6}, ~\ref{ex:3.1.8},
- ~\ref{ex:3.2.5}, ~\ref{ex:7.1} and ~\ref{ex:9.1}\\
- {\tt FTCH} & SCOPE & ~\ref{ex:3.1.4} and ~\ref{ex:3.1.5}\\ \hline
- \end{tabular}
- \end{center}
- \index{{\tt ACINFO} switch}
- \index{{\tt AGAIN} switch}
- \index{{\tt DOUBLE} switch}
- \index{{\tt EVALLHSEQP} switch}
- \index{{\tt EXP} switch}
- \index{{\tt FORT} switch}
- \index{{\tt FTCH} switch}
- \newpage
- \index{{\tt GENTRANOPT} switch}
- \index{{\tt INPUTC} switch}
- \index{{\tt INTERN} switch}
- \index{{\tt NAT} switch}
- \index{{\tt PERIOD} switch}
- \index{{\tt PREFIX} switch}
- \index{{\tt PRIALL} switch}
- \index{{\tt PRIMAT} switch}
- \index{{\tt ROUNDBF} switch}
- \index{{\tt ROUNDED} switch}
- \index{{\tt SIDREL} switch}
- \index{{\tt VECTORC} switch}
- \begin{center}
- \begin{tabular}{| l | l | l |}\hline
- Name & Origin & Illustrated in the examples:\\ \hline \hline
- {\tt GENTRANOPT} & GENTRAN & ~\ref{ex:8.1}\\
- {\tt INPUTC} & SCOPE & ~\ref{ex:3.1.3}, ~\ref{ex:3.1.6}, ~\ref{ex:3.1.7},
- ~\ref{ex:3.2.7}, ~\ref{ex:5.1} and ~\ref{ex:9.1}\\
- {\tt INTERN} & SCOPE & ~\ref{ex:9.1}\\
- {\tt NAT} & REDUCE & ~\ref{ex:3.1.8} and ~\ref{ex:5.1}\\
- {\tt PERIOD} & REDUCE & ~\ref{ex:3.1.4}\\
- {\tt PREFIX} & SCOPE & ~\ref{ex:9.2}\\
- {\tt PRIALL} & SCOPE & ~\ref{ex:3.1.2}\\
- {\tt PRIMAT} & SCOPE & ~\ref{ex:3.2.7}\\
- {\tt POUNDBF} & REDUCE & ~\ref{ex:6.2}\\
- {\tt ROUNDED} & REDUCE & ~\ref{ex:3.1.7} and ~\ref{ex:8.2}\\
- {\tt SIDREL} & SCOPE & ~\ref{ex:3.2.7}\\
- {\tt VECTORC} & SCOPE & ~\ref{ex:7.1}\\ \hline
- \end{tabular}
- \end{center}
- \newpage
- \section{SCOPE 1.5 Installation Guide}~\label{SCOPE:inst}
- SCOPE 1.5 is easily installed. The usual code compilation facilities of {\REDUCE}
- can be applied. In view of the frequent interaction between SCOPE and GENTRAN
- a compiled version of GENTRAN is required during the creation of the load module
- for SCOPE 1.5. The compilation process itself is vizualized below.
- {\small
- \begin{verbatim}
- faslout "~infhvh/mkscope/scope_15";
- lisp in "~infhvh/mkscope/cosmac.red"$
- lisp in "~infhvh/mkscope/codctl.red"$
- lisp in "~infhvh/mkscope/codmat.red"$
- lisp in "~infhvh/mkscope/codopt.red"$
- lisp in "~infhvh/mkscope/codad1.red"$
- lisp in "~infhvh/mkscope/codad2.red"$
- lisp in "~infhvh/mkscope/coddec.red"$
- lisp in "~infhvh/mkscope/codpri.red"$
- lisp in "~infhvh/mkscope/codgen.red"$
- lisp in "~infhvh/mkscope/codhrn.red"$
- lisp in "~infhvh/mkscope/codstr.red"$
- lisp in "~infhvh/mkscope/coddom.red"$
- %lisp in "~infhvh/mkscope/apatch.red"$
- algebraic;
- faslend ;
- end;
- \end{verbatim}}
- The subdirectory {\tt mkscope} in the author's directory system
- contains the files with the source code of SCOPE 1.5.
- The order in which the files are read in is irrelevant except
- the first and the last. The file {\tt cosmac.red} contains
- one module, named {\tt cosmac}, which consists of a set of
- smacro procedures, designed to simplify access to the lower
- levels of the expression data base, employed during optimization.
- These smacro's are used in all other code sections.
- The last file in optional and usually executed to include new
- patches into a recompilable version of the package.
- Once it is stored in the {\tt fasl} directory of the local
- REDUCE system it is available as a {\tt load\_package}.
- In short, the files contain the following code sections:
- \begin{itemize}
- \item {\tt cosmac.red} contains the module {\tt cosmac}, consisting of
- smacro procedures, allowing access to the expression data base.
- \item {\tt codctl.red} consists of the three modules {\tt codctl},
- {\tt restore} and {\tt minlenght}. The first is a large module,
- containing the optimization process managing facilities. The second
- module is added to regulate the interplay with the REDUCE simplifier,
- when entering optimizer output in algebraic mode using functions like
- {\tt ARESULTS}. The last module serves to vary the minimal length of
- cse's using {\tt SETLENGTH} and {\tt RESETLENGTH}.
- \item {\tt codmat.red} contains the module {\tt codmat}, definig the
- parsing process and the expression data base setup and access facilities.
- \item {\tt codopt.red}'s content is formed by the module {\tt codopt}.
- It is the kernel of the optimization process, the implementation of the
- extended Breuer algorithm.
- \item {\tt codad1.red} contains the module {\tt codad1}, formed by additional
- facilities for improving the lay-out of the overall result, for information
- migration between different sections of the expression data base and for the
- application of the distributive law to remodel and compactify (sub)expression
- structure at any level.
- \item {\tt codad2.red} contains the module {\tt codad2}. This module defines
- five different possible activities during the optimization process. The first
- four regulate the so called {\em finishing touch}. The last one is a new
- section, defining how to optimize {\em rational forms} as part of the overall
- optimization process.
- \item {\tt coddec.red} covers the declaration facilities, presented in
- section ~\ref{SCOPE:decl}, collected in the module {\tt coddec} and
- based on chapter 6 of ~\cite{Aho:86}. The symbol table setup of GENTRAN is used.
- \item {\tt codpri.red} is also formed by one module, called {\tt codpri}.
- It covers all printing facilities. The first section is applied when the
- switch {\tt PRIMAT} is turned {\tt ON}. The latter is used to produce
- an internal list of pairs, consisting of the left hand side and the right
- hand side of assignment statements in prefix notation, and defining the
- output of the optimization process in sequential order. This prefix list is
- delivered to GENTRAN or REDUCE to make the results visible in the user
- prefered form. The intial version of this list, created directly
- after the optimization process, is improved using a collection of functions,
- also grouped together in the module {\tt codpri}. These improvements may
- for instance be necessary to remove temporarily introduced names, internally
- employed as a result of a data dependency analysis.
- \item {\tt codgen.red} consists of the module {\tt codgen}. The interface
- between GENTRAN and SCOPE 1.5, introduced in section ~\ref{SCOPE:gopt} of
- this manual is defined in this module.
- \item {\tt codhrn.red} is formed by the module {\tt ghorner}. It defines the
- facilities, presented in section ~\ref{SSF:Hr} of this manual.
- \item {\tt codstr.red} contains the module {\tt gstructr}. This module defines
- the possibilities for expression structure recognition, as presented in section
- ~\ref{SSF:sr} of this manual.
- \item {\tt coddom.red} finally, consists of one module, called {\tt coddom}.
- It covers additional coefficient domain functions, needed to make the
- extended Breuere algorithm and the additional functions, collected in the
- modules {\tt codad1} and {\tt codad2} for instance, applicable for
- (multiple presicion) floating point coefficients.
- \end{itemize}
- A few additional remarks:
- \begin{itemize}
- \item GENTRAN plays an important role when creating declarations and output.
- The package is automatically loaded when executing one of the first
- instructions in the module {\tt codctl}. Hence it may be necessary to
- look critically to the load instruction in {\tt codctl} before installing
- SCOPE 1.5. By changing this load instruction we easily created a {\tt fortran90}
- compatable SCOPE version ~\cite{Borst:94}. At present it is only available for our own
- internal and experimental use.
- \item We believe the code to be almost version independent. Over the past
- years all uses of {\tt nil} have been critically reviewed. However
- the {\tt coddom} module may require version based maintenance when
- installing SCOPE 1.5.
- \item The present size of the source code is given in the table below.
- Comment is included in these figures
- \begin{center}
- \begin{tabular}{| c | r | r |} \hline
- File naam & number of lines & number of characters \\ \hline \hline
- {\tt cosmac.red} & 172 & 4761 \\
- {\tt codctl.red} & 1439 & 61466 \\
- {\tt codmat.red} & 1488 & 72733 \\
- {\tt codopt.red} & 1243 & 68809\\
- {\tt codad1.red} & 801 & 39175 \\
- {\tt codad2.red} & 1314 & 59217 \\
- {\tt coddec.red} & 928 & 41069\\
- {\tt codpri.red} & 1371 & 62600\\
- {\tt codgen.red} & 214 & 9120\\
- {\tt codhrn.red} & 752 & 30549\\
- {\tt codstr.red} & 308 & 11199\\
- {\tt coddom.red} & 204 & 6638\\ \hline
- \end{tabular}
- \end{center}
- \item The modules {\tt ghorner} and {\tt gstructr} can be left out without
- harming the other facilities, presented in this manual.
- \end{itemize}
- \newpage
- \addcontentsline{toc}{section}{References}
- \bibliography{scope_15}
- \bibliographystyle{plain}
- \newpage
- \addcontentsline{toc}{section}{Index}
- \printindex
- \end{document}
|