123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- \documentstyle[11pt,reduce]{article}
- \title{{\bf RESIDUE Package for {\tt REDUCE}}}
- \author{Wolfram Koepf\\ email: {\tt Koepf@zib-berlin.de}}
- \date{April 1995 : ZIB Berlin}
- \begin{document}
- \maketitle
- \def\Res{\mathop{\rm Res}\limits}
- \newcommand{\C}{{\rm {\mbox{C{\llap{{\vrule height1.52ex}\kern.4em}}}}}}
- This package supports the calculation of residues. The residue
- $\Res_{z=a} f(z)$ of a function $f(z)$ at the point $a\in\C$ is defined
- as
- \[
- \Res_{z=a} f(z)=
- \frac{1}{2 \pi i}\oint f(z)\,dz
- \;,
- \]
- with integration along a closed curve around $z=a$ with winding number 1.
- If $f(z)$ is given by a Laurent series development at $z=a$
- \[
- f(z)=\sum_{k=-\infty}^\infty a_k\,(z-a)^k
- \;,
- \]
- then
- \begin{equation}
- \Res\limits_{z=a} f(z)=a_{-1}
- \;.
- \label{eq:Laurent}
- \end{equation}
- If $a=\infty$, one defines on the other hand
- \begin{equation}
- \Res\limits_{z=\infty} f(z)=-a_{-1}
- \label{eq:Laurent2}
- \end{equation}
- for given Laurent representation
- \[
- f(z)=\sum_{k=-\infty}^\infty a_k\,\frac{1}{z^k}
- \;.
- \]
- The package is loaded by the statement
- \begin{verbatim}
- 1: load residue;
- \end{verbatim}
- It contains two REDUCE operators:
- \begin{itemize}
- \item
- {\tt residue(f,z,a)} determines the residue of $f$ at the point $z=a$
- if $f$ is meromorphic at $z=a$. The calculation of residues at essential
- singularities of $f$ is not supported.
- \item
- {\tt poleorder(f,z,a)} determines the pole order of $f$ at the point $z=a$
- if $f$ is meromorphic at $z=a$.
- \end{itemize}
- Note that both functions use the {\tt taylor} package in
- connection with representations (\ref{eq:Laurent})--(\ref{eq:Laurent2}).
- Here are some examples:
- \begin{verbatim}
- 2: residue(x/(x^2-2),x,sqrt(2));
- 1
- ---
- 2
- 3: poleorder(x/(x^2-2),x,sqrt(2));
- 1
- 4: residue(sin(x)/(x^2-2),x,sqrt(2));
- sqrt(2)*sin(sqrt(2))
- ----------------------
- 4
- 5: poleorder(sin(x)/(x^2-2),x,sqrt(2));
- 1
- 6: residue(1/(x-1)^m/(x-2)^2,x,2);
- - m
- 7: poleorder(1/(x-1)/(x-2)^2,x,2);
- 2
- 8: residue(sin(x)/x^2,x,0);
- 1
- 9: poleorder(sin(x)/x^2,x,0);
- 1
- 10: residue((1+x^2)/(1-x^2),x,1);
- -1
- 11: poleorder((1+x^2)/(1-x^2),x,1);
- 1
- 12: residue((1+x^2)/(1-x^2),x,-1);
- 1
- 13: poleorder((1+x^2)/(1-x^2),x,-1);
- 1
- 14: residue(tan(x),x,pi/2);
- -1
- 15: poleorder(tan(x),x,pi/2);
- 1
- 16: residue((x^n-y^n)/(x-y),x,y);
- 0
- 17: poleorder((x^n-y^n)/(x-y),x,y);
- 0
- 18: residue((x^n-y^n)/(x-y)^2,x,y);
- n
- y *n
- ------
- y
- 19: poleorder((x^n-y^n)/(x-y)^2,x,y);
- 1
- 20: residue(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2);
- -2
- 21: poleorder(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2);
- 1
- 22: for k:=1:2 sum residue((a+b*x+c*x^2)/(d+e*x+f*x^2),x,
- part(part(solve(d+e*x+f*x^2,x),k),2));
- b*f - c*e
- -----------
- 2
- f
- 23: residue(x^3/sin(1/x)^2,x,infinity);
- - 1
- ------
- 15
- 24: residue(x^3*sin(1/x)^2,x,infinity);
- -1
- \end{verbatim}
- \iffalse
- 7: for k:=1:3 sum
- 7: residue((a+b*x+c*x^2+d*x^3)/(e+f*x+g*x^2+h*x^3),x,
- 7: part(part(solve(e+f*x+g*x^2+h*x^3,x),k),2));
- ***** CATASTROPHIC ERROR *****
- ("gcdf failed" (root_of (plus e (times f x_) (times g (expt x_ 2)) (times h (
- expt x_ 3))) x_ tag_2) (times (root_of (plus e (times f x_) (times g (expt
- x_ 2)) (times h (expt x_ 3))) x_ tag_2) h))
- ***** Please send output and input listing to A. C. Hearn
- \fi
- Note that the residues of factorial and $\Gamma$ function terms are
- not yet supported.
- \end{document}
|