RESIDUE.TEX 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190
  1. \documentstyle[11pt,reduce]{article}
  2. \title{{\bf RESIDUE Package for {\tt REDUCE}}}
  3. \author{Wolfram Koepf\\ email: {\tt Koepf@zib-berlin.de}}
  4. \date{April 1995 : ZIB Berlin}
  5. \begin{document}
  6. \maketitle
  7. \def\Res{\mathop{\rm Res}\limits}
  8. \newcommand{\C}{{\rm {\mbox{C{\llap{{\vrule height1.52ex}\kern.4em}}}}}}
  9. This package supports the calculation of residues. The residue
  10. $\Res_{z=a} f(z)$ of a function $f(z)$ at the point $a\in\C$ is defined
  11. as
  12. \[
  13. \Res_{z=a} f(z)=
  14. \frac{1}{2 \pi i}\oint f(z)\,dz
  15. \;,
  16. \]
  17. with integration along a closed curve around $z=a$ with winding number 1.
  18. If $f(z)$ is given by a Laurent series development at $z=a$
  19. \[
  20. f(z)=\sum_{k=-\infty}^\infty a_k\,(z-a)^k
  21. \;,
  22. \]
  23. then
  24. \begin{equation}
  25. \Res\limits_{z=a} f(z)=a_{-1}
  26. \;.
  27. \label{eq:Laurent}
  28. \end{equation}
  29. If $a=\infty$, one defines on the other hand
  30. \begin{equation}
  31. \Res\limits_{z=\infty} f(z)=-a_{-1}
  32. \label{eq:Laurent2}
  33. \end{equation}
  34. for given Laurent representation
  35. \[
  36. f(z)=\sum_{k=-\infty}^\infty a_k\,\frac{1}{z^k}
  37. \;.
  38. \]
  39. The package is loaded by the statement
  40. \begin{verbatim}
  41. 1: load residue;
  42. \end{verbatim}
  43. It contains two REDUCE operators:
  44. \begin{itemize}
  45. \item
  46. {\tt residue(f,z,a)} determines the residue of $f$ at the point $z=a$
  47. if $f$ is meromorphic at $z=a$. The calculation of residues at essential
  48. singularities of $f$ is not supported.
  49. \item
  50. {\tt poleorder(f,z,a)} determines the pole order of $f$ at the point $z=a$
  51. if $f$ is meromorphic at $z=a$.
  52. \end{itemize}
  53. Note that both functions use the {\tt taylor} package in
  54. connection with representations (\ref{eq:Laurent})--(\ref{eq:Laurent2}).
  55. Here are some examples:
  56. \begin{verbatim}
  57. 2: residue(x/(x^2-2),x,sqrt(2));
  58. 1
  59. ---
  60. 2
  61. 3: poleorder(x/(x^2-2),x,sqrt(2));
  62. 1
  63. 4: residue(sin(x)/(x^2-2),x,sqrt(2));
  64. sqrt(2)*sin(sqrt(2))
  65. ----------------------
  66. 4
  67. 5: poleorder(sin(x)/(x^2-2),x,sqrt(2));
  68. 1
  69. 6: residue(1/(x-1)^m/(x-2)^2,x,2);
  70. - m
  71. 7: poleorder(1/(x-1)/(x-2)^2,x,2);
  72. 2
  73. 8: residue(sin(x)/x^2,x,0);
  74. 1
  75. 9: poleorder(sin(x)/x^2,x,0);
  76. 1
  77. 10: residue((1+x^2)/(1-x^2),x,1);
  78. -1
  79. 11: poleorder((1+x^2)/(1-x^2),x,1);
  80. 1
  81. 12: residue((1+x^2)/(1-x^2),x,-1);
  82. 1
  83. 13: poleorder((1+x^2)/(1-x^2),x,-1);
  84. 1
  85. 14: residue(tan(x),x,pi/2);
  86. -1
  87. 15: poleorder(tan(x),x,pi/2);
  88. 1
  89. 16: residue((x^n-y^n)/(x-y),x,y);
  90. 0
  91. 17: poleorder((x^n-y^n)/(x-y),x,y);
  92. 0
  93. 18: residue((x^n-y^n)/(x-y)^2,x,y);
  94. n
  95. y *n
  96. ------
  97. y
  98. 19: poleorder((x^n-y^n)/(x-y)^2,x,y);
  99. 1
  100. 20: residue(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2);
  101. -2
  102. 21: poleorder(tan(x)/sec(x-pi/2)+1/cos(x),x,pi/2);
  103. 1
  104. 22: for k:=1:2 sum residue((a+b*x+c*x^2)/(d+e*x+f*x^2),x,
  105. part(part(solve(d+e*x+f*x^2,x),k),2));
  106. b*f - c*e
  107. -----------
  108. 2
  109. f
  110. 23: residue(x^3/sin(1/x)^2,x,infinity);
  111. - 1
  112. ------
  113. 15
  114. 24: residue(x^3*sin(1/x)^2,x,infinity);
  115. -1
  116. \end{verbatim}
  117. \iffalse
  118. 7: for k:=1:3 sum
  119. 7: residue((a+b*x+c*x^2+d*x^3)/(e+f*x+g*x^2+h*x^3),x,
  120. 7: part(part(solve(e+f*x+g*x^2+h*x^3,x),k),2));
  121. ***** CATASTROPHIC ERROR *****
  122. ("gcdf failed" (root_of (plus e (times f x_) (times g (expt x_ 2)) (times h (
  123. expt x_ 3))) x_ tag_2) (times (root_of (plus e (times f x_) (times g (expt
  124. x_ 2)) (times h (expt x_ 3))) x_ tag_2) h))
  125. ***** Please send output and input listing to A. C. Hearn
  126. \fi
  127. Note that the residues of factorial and $\Gamma$ function terms are
  128. not yet supported.
  129. \end{document}