LAPLACE.DOC 2.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. SOFIA LAPLACE AND INVERSE LAPLACE TRANSFORM PACKAGE
  2. C. Kazasov, M. Spiridonova, V. Tomov
  3. Reference: Christomir Kazasov, Laplace Transformations in REDUCE 3, Proc.
  4. Eurocal '87, Lecture Notes in Comp. Sci., Springer-Verlag
  5. (1987) 132-133.
  6. Some hints on how to use to use this package:
  7. Syntax:
  8. LAPLACE(<exp>,<var-s>,<var-t>)
  9. INVLAP(<exp>,<var-s>,<var-t>)
  10. where <exp> is the expression to be transformed, <var-s> is the source
  11. variable (in most cases <exp> depends explicitly of this variable) and
  12. <var-t> is the target variable. If <var-t> is omitted, the package uses
  13. an internal variable lp!& or il!&, respectively.
  14. The following switches can be used to control the transformations:
  15. lmon: If on, sin, cos, sinh and cosh are converted by LAPLACE into
  16. exponentials,
  17. lhyp: If on, expressions e**(~x) are converted by INVLAP into hyperbolic
  18. functions sinh and cosh,
  19. ltrig: If on, expressions e**(~x) are converted by INVLAP into
  20. trigonometric functions sin and cos.
  21. The system can be extended by adding Laplace transformation rules for
  22. single functions by rules or rule sets. In such a rule the source
  23. variable MUST be free, the target variable MUST be il!& for LAPLACE and
  24. lp!& for INVLAP and the third parameter should be omitted. Also rules for
  25. transforming derivatives are entered in such a form.
  26. Examples:
  27. let {laplace(log(~x),x) => -log(gam * il!&)/il!&,
  28. invlap(log(gam * ~x)/x,x) => -log(lp!&)};
  29. operator f;
  30. let{
  31. laplace(df(f(~x),x),x) => il!&*laplace(f(x),x) - sub(x=0,f(x)),
  32. laplace(df(f(~x),x,~n),x) => il!&**n*laplace(f(x),x) -
  33. for i:=n-1 step -1 until 0 sum
  34. sub(x=0, df(f(x),x,n-1-i)) * il!&**i
  35. when fixp n,
  36. laplace(f(~x),x) = f(il!&)
  37. };
  38. Remarks about some functions:
  39. The DELTA and GAMMA functions are known.
  40. ONE is the name of the unit step function.
  41. INTL is a parametrized integral function
  42. intl(<expr>,<var>,0,<obj.var>)
  43. which means "Integral of <expr> wrt <var> taken from 0 to <obj.var>",
  44. e.g. intl(2*y**2,y,0,x) which is formally a function in x.
  45. We recommend reading the file LAPLACE.TST for a further introduction.