123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- \documentstyle[12pt]{article}
- \begin{document}
- \begin{center} {\Large INEQ} \end{center}
- \begin{center} Herbert Melenk \\ Konrad-Zuse-Zentrum fuer
- Informationstechnik \\
- Heilbronner Str. 10, D10711 Berlin -- Wilmersdorf\\ Germany \\
- melenk@zib-berlin.de \end{center}
- This package supports the operator {\bf ineq\_solve} that
- tries to solves single inequalities and sets of coupled inequalities.
- The following types of systems are supported
- \footnote{For linear optimization problems please use the operator
- {\bf simplex} of the {\bf linalg} package}:
- \begin{itemize}
- \item only numeric coefficients (no parametric system),
- \item a linear system of mixed equations and $<=$ -- $>=$
- inequalities, applying the method of Fourier and Motzkin
- \footnote{described by G.B. Dantzig in {\em Linear Programming
- and Extensions.}},
- \item a univariate inequality with $<=$, $>=$, $>$ or $<$ operator
- and polynomial or rational left--hand and right--hand sides,
- or a system of such inequalities with only one variable.
- \end{itemize}
- Syntax:
- \begin{center}
- {\tt INEQ\_SOLVE($<$expr$>$ [,$<$vl$>$])}
- \end{center}
- where $<$expr$>$ is an inequality or a list of coupled inequalities
- and equations, and the optional argument $<$vl$>$ is a single
- variable (kernel) or a list of variables (kernels). If not
- specified, they are extracted automatically from $<$expr$>$.
- For multivariate input an explicit variable list specifies the
- elimination sequence: the last member is the most specific one.
- An error message occurs if the input cannot be processed by the
- currently implemented algorithms.
- The result is a list. It is empty if the system has no feasible solution.
- Otherwise the result presents the admissible ranges as set
- of equations where each variable is equated to
- one expression or to an interval.
- The most specific variable is the first one in the result list and
- each form contains only preceding variables (resolved form).
- The interval limits can be formal {\bf max} or {\bf min} expressions.
- Algebraic numbers are encoded as rounded number approximations.
- \noindent
- {\bf Examples}:
- \begin{verbatim}
- ineq_solve({(2*x^2+x-1)/(x-1) >= (x+1/2)^2, x>0});
- {x=(0 .. 0.326583),x=(1 .. 2.56777)}
- reg:=
- {a + b - c>=0, a - b + c>=0, - a + b + c>=0, 0>=0, 2>=0,
- 2*c - 2>=0, a - b + c>=0, a + b - c>=0, - a + b + c - 2>=0,
- 2>=0, 0>=0, 2*b - 2>=0, k + 1>=0, - a - b - c + k>=0,
- - a - b - c + k + 2>=0, - 2*b + k>=0,
- - 2*c + k>=0, a + b + c - k>=0,
- 2*b + 2*c - k - 2>=0, a + b + c - k>=0}$
- ineq_solve (reg,{k,a,b,c});
- {c=(1 .. infinity),
- b=(1 .. infinity),
- a=(max( - b + c,b - c) .. b + c - 2),
- k=a + b + c}
- \end{verbatim}
- \end{document}
|