INEQ.TEX 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. \documentstyle[12pt]{article}
  2. \begin{document}
  3. \begin{center} {\Large INEQ} \end{center}
  4. \begin{center} Herbert Melenk \\ Konrad-Zuse-Zentrum fuer
  5. Informationstechnik \\
  6. Heilbronner Str. 10, D10711 Berlin -- Wilmersdorf\\ Germany \\
  7. melenk@zib-berlin.de \end{center}
  8. This package supports the operator {\bf ineq\_solve} that
  9. tries to solves single inequalities and sets of coupled inequalities.
  10. The following types of systems are supported
  11. \footnote{For linear optimization problems please use the operator
  12. {\bf simplex} of the {\bf linalg} package}:
  13. \begin{itemize}
  14. \item only numeric coefficients (no parametric system),
  15. \item a linear system of mixed equations and $<=$ -- $>=$
  16. inequalities, applying the method of Fourier and Motzkin
  17. \footnote{described by G.B. Dantzig in {\em Linear Programming
  18. and Extensions.}},
  19. \item a univariate inequality with $<=$, $>=$, $>$ or $<$ operator
  20. and polynomial or rational left--hand and right--hand sides,
  21. or a system of such inequalities with only one variable.
  22. \end{itemize}
  23. Syntax:
  24. \begin{center}
  25. {\tt INEQ\_SOLVE($<$expr$>$ [,$<$vl$>$])}
  26. \end{center}
  27. where $<$expr$>$ is an inequality or a list of coupled inequalities
  28. and equations, and the optional argument $<$vl$>$ is a single
  29. variable (kernel) or a list of variables (kernels). If not
  30. specified, they are extracted automatically from $<$expr$>$.
  31. For multivariate input an explicit variable list specifies the
  32. elimination sequence: the last member is the most specific one.
  33. An error message occurs if the input cannot be processed by the
  34. currently implemented algorithms.
  35. The result is a list. It is empty if the system has no feasible solution.
  36. Otherwise the result presents the admissible ranges as set
  37. of equations where each variable is equated to
  38. one expression or to an interval.
  39. The most specific variable is the first one in the result list and
  40. each form contains only preceding variables (resolved form).
  41. The interval limits can be formal {\bf max} or {\bf min} expressions.
  42. Algebraic numbers are encoded as rounded number approximations.
  43. \noindent
  44. {\bf Examples}:
  45. \begin{verbatim}
  46. ineq_solve({(2*x^2+x-1)/(x-1) >= (x+1/2)^2, x>0});
  47. {x=(0 .. 0.326583),x=(1 .. 2.56777)}
  48. reg:=
  49. {a + b - c>=0, a - b + c>=0, - a + b + c>=0, 0>=0, 2>=0,
  50. 2*c - 2>=0, a - b + c>=0, a + b - c>=0, - a + b + c - 2>=0,
  51. 2>=0, 0>=0, 2*b - 2>=0, k + 1>=0, - a - b - c + k>=0,
  52. - a - b - c + k + 2>=0, - 2*b + k>=0,
  53. - 2*c + k>=0, a + b + c - k>=0,
  54. 2*b + 2*c - k - 2>=0, a + b + c - k>=0}$
  55. ineq_solve (reg,{k,a,b,c});
  56. {c=(1 .. infinity),
  57. b=(1 .. infinity),
  58. a=(max( - b + c,b - c) .. b + c - 2),
  59. k=a + b + c}
  60. \end{verbatim}
  61. \end{document}