GHYPER.TEX 2.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384
  1. \documentstyle[11pt,reduce]{article}
  2. \title{{\tt ghyper}, a package for simplification of \\
  3. generalized hypergeometric functions}
  4. \date{}
  5. \author{Victor S. Adamchik\\
  6. Wolfram Research Inc. \\
  7. former address : \\
  8. Byelorussian University, Minsk, Byelorussia\\
  9. \\
  10. \\
  11. Present \REDUCE{} form by \\
  12. Winfried Neun \\
  13. ZIB Berlin \\
  14. Email: {\tt Neun@sc.ZIB-Berlin.de}}
  15. \begin{document}
  16. \maketitle
  17. This note describes the {\tt ghyper} package of \REDUCE{}, which is able
  18. to do simplification of several cases of generalized hypergeometric functions.
  19. The simplifications are performed towards polynomials, elementary or
  20. special functions or simpler hypergeometric functions.
  21. Therefore this package should be used together with the \REDUCE{}
  22. special function package.
  23. \section{Introduction}
  24. The (generalized) hypergeometric functions
  25. \begin{displaymath}
  26. _pF_q \left( {{a_1, \ldots , a_p} \atop {b_1, \ldots ,b_q}} \Bigg\vert z \right)
  27. \end{displaymath}
  28. are defined in textbooks on special functions, e.g. in
  29. \cite{Prudnikov:90}. Many well-known functions belong to this class,
  30. e.g. exponentials, logarithms, trigonometric functions and Bessel functions.
  31. In \cite{Graham:89} an introduction into the analysis of sums, basic
  32. identities and applications can be found.
  33. Several hundreds of particular values can be found in \cite{Prudnikov:90}.
  34. \section{\REDUCE{} operator {\tt hypergeometric}}
  35. The operator {\tt hypergeometric} expects 3 arguments, namely the
  36. list of upper parameters (which may be empty), the list of lower
  37. parameters (which may be empty too), and the argument, e.g:
  38. \begin{verbatim}
  39. hypergeometric ({},{},z);
  40. Z
  41. E
  42. hypergeometric ({1/2,1},{3/2},-x^2);
  43. ATAN(X)
  44. ---------
  45. X
  46. \end{verbatim}
  47. \section{Enlarging the {\tt hypergeometric} operator}
  48. Since hundreds of particular cases for the generalized hypergeometric
  49. functions can be found in the literature, one cannot expect that all
  50. cases are known to the {\tt hypergeometric} operator.
  51. Nevertheless the set of special cases can be augmented by adding
  52. rules to the \REDUCE{} system, e.g.
  53. \begin{verbatim}
  54. let {hypergeometric({1/2,1/2},{3/2},-(~x)^2) => asinh(x)/x};
  55. \end{verbatim}
  56. \begin{thebibliography}{9}
  57. \bibitem{Prudnikov:90} A.~P.~Prudnikov, Yu.~A.~Brychkov, O.~I.~Marichev,
  58. {\em Integrals and Series, Volume 3: More special functions},
  59. Gordon and Breach Science Publishers (1990).
  60. \bibitem{Graham:89} R.~L.~Graham, D.~E.~Knuth, O.~Patashnik,
  61. {\em Concrete Mathematics}, Addison-Wesley Publishing Company (1989).
  62. \end{thebibliography}
  63. \end{document}