123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- \documentstyle[11pt,reduce]{article}
- \title{{\tt ghyper}, a package for simplification of \\
- generalized hypergeometric functions}
- \date{}
- \author{Victor S. Adamchik\\
- Wolfram Research Inc. \\
- former address : \\
- Byelorussian University, Minsk, Byelorussia\\
- \\
- \\
- Present \REDUCE{} form by \\
- Winfried Neun \\
- ZIB Berlin \\
- Email: {\tt Neun@sc.ZIB-Berlin.de}}
- \begin{document}
- \maketitle
- This note describes the {\tt ghyper} package of \REDUCE{}, which is able
- to do simplification of several cases of generalized hypergeometric functions.
- The simplifications are performed towards polynomials, elementary or
- special functions or simpler hypergeometric functions.
- Therefore this package should be used together with the \REDUCE{}
- special function package.
- \section{Introduction}
- The (generalized) hypergeometric functions
- \begin{displaymath}
- _pF_q \left( {{a_1, \ldots , a_p} \atop {b_1, \ldots ,b_q}} \Bigg\vert z \right)
- \end{displaymath}
- are defined in textbooks on special functions, e.g. in
- \cite{Prudnikov:90}. Many well-known functions belong to this class,
- e.g. exponentials, logarithms, trigonometric functions and Bessel functions.
- In \cite{Graham:89} an introduction into the analysis of sums, basic
- identities and applications can be found.
- Several hundreds of particular values can be found in \cite{Prudnikov:90}.
- \section{\REDUCE{} operator {\tt hypergeometric}}
- The operator {\tt hypergeometric} expects 3 arguments, namely the
- list of upper parameters (which may be empty), the list of lower
- parameters (which may be empty too), and the argument, e.g:
- \begin{verbatim}
- hypergeometric ({},{},z);
- Z
- E
- hypergeometric ({1/2,1},{3/2},-x^2);
- ATAN(X)
- ---------
- X
- \end{verbatim}
- \section{Enlarging the {\tt hypergeometric} operator}
- Since hundreds of particular cases for the generalized hypergeometric
- functions can be found in the literature, one cannot expect that all
- cases are known to the {\tt hypergeometric} operator.
- Nevertheless the set of special cases can be augmented by adding
- rules to the \REDUCE{} system, e.g.
- \begin{verbatim}
- let {hypergeometric({1/2,1/2},{3/2},-(~x)^2) => asinh(x)/x};
- \end{verbatim}
- \begin{thebibliography}{9}
- \bibitem{Prudnikov:90} A.~P.~Prudnikov, Yu.~A.~Brychkov, O.~I.~Marichev,
- {\em Integrals and Series, Volume 3: More special functions},
- Gordon and Breach Science Publishers (1990).
- \bibitem{Graham:89} R.~L.~Graham, D.~E.~Knuth, O.~Patashnik,
- {\em Concrete Mathematics}, Addison-Wesley Publishing Company (1989).
- \end{thebibliography}
- \end{document}
|