123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584 |
- \documentstyle[11pt,reduce]{article}
- \title{EXCALC: A System for Doing Calculations in the Calculus of Modern
- Differential Geometry}
- \author{Eberhard Schr\"{u}fer \\
- Institute SCAI.Alg \\
- German National Research Center for Information Technology (GMD) \\
- Schloss Birlinghoven \\
- D-53754 Sankt Augustin \\
- Germany \\[0.05in]
- Email: schruefer@gmd.de}
- \begin{document}
- \maketitle
- \index{EXCALC package}
- \section*{Acknowledgments}
- This program was developed over several years. I would like to express
- my deep gratitude to Dr. Anthony Hearn for his continuous interest in
- this work, and especially for his hospitality and support during a
- visit in 1984/85 at the RAND Corporation, where substantial progress
- on this package could be achieved. The Heinrich Hertz-Stiftung
- supported this visit. Many thanks are also due to Drs. F.W. Hehl,
- University of Cologne, and J.D. McCrea, University College Dublin, for
- their suggestions and work on testing this program.
- \section{Introduction}
- \index{differential geometry}
- {\bf EXCALC} is designed for easy use by all who are familiar with the
- calculus of Modern Differential Geometry. Its syntax is kept as close
- as possible to standard textbook notations. Therefore, no great
- experience in writing computer algebra programs is required. It is
- almost possible to input to the computer the same as what would have
- been written down for a hand-calculation. For example, the statement
- \begin{verbatim}
- f*x^y + u _| (y^z^x)
- \end{verbatim}
- \index{exterior calculus}
- would be recognized by the program as a formula involving exterior
- products and an inner product. The program is currently able to
- handle scalar-valued exterior forms, vectors and operations between
- them, as well as non-scalar valued forms (indexed forms). With this,
- it should be an ideal tool for studying differential equations,
- doing calculations in general relativity and field theories, or doing
- such simple things as calculating the Laplacian of a tensor field for
- an arbitrary given frame. With the increasing popularity of this
- calculus, this program should have an application in almost any field
- of physics and mathematics.
- Since the program is completely embedded in {\REDUCE}, all features and
- facilities of {\REDUCE} are available in a calculation. Even for those
- who are not quite comfortable in this calculus, there is a good chance
- of learning it by just playing with the program.
- This is the last release of version 2. A much extended differential
- geometry package (which includes complete symbolic index simplification,
- tensors, mappings, bundles and others) is under development.
- Complaints and comments are appreciated and should be send to the author.
- If the use of this program leads to a publication, this document should
- be cited, and a copy of the article to the above address would be
- welcome.
- \section{Declarations}
- Geometrical objects like exterior forms or vectors are introduced to the
- system by declaration commands. The declarations can appear anywhere in
- a program, but must, of course, be made prior to the use of the object.
- Everything that has no declaration is treated as a constant; therefore
- zero-forms must also be declared.
- An exterior form is introduced by\label{PFORM} \index{PFORM statement}
- \index{exterior form ! declaration}
- \hspace*{2em} \k{PFORM} \s{declaration$_1$}, \s{declaration$_2$}, \ldots;
- where
- \begin{tabbing}
- \s{declaration} ::= \s{name} $\mid$ \s{list of names}=\s{number} $\mid$ \s{identifier} $\mid$ \\
- \s{expression} \\
- \s{name} ::= \s{identifier} $\mid$ \s{identifier}(\s{arguments})
- \end{tabbing}
- For example
- \begin{verbatim}
- pform u=k,v=4,f=0,w=dim-1;
- \end{verbatim}
- declares {\tt U} to be an exterior form of degree {\tt K}, {\tt V} to be a
- form of degree 4, {\tt F} to be a form of degree 0 (a function), and {\tt W}
- to be a form of degree {\tt DIM}-1.
- If the exterior form should have indices, the declaration would be
- \index{exterior form ! with indices}
- \begin{verbatim}
- pform curv(a,b)=2,chris(a,b)=1;
- \end{verbatim}
- The names of the indices are arbitrary.
- Exterior forms of the same degree can be grouped into lists to save typing.
- \begin{verbatim}
- pform {x,y,z}=0,{rho(k,l),u,v(k)}=1;
- \end{verbatim}
- The declaration of vectors is similar. The command {\tt TVECTOR}\label{TVECTOR}
- takes a list of names. \index{TVECTOR command} \index{exterior form ! vector}
- \hspace*{2em} \k{TVECTOR} \s{name$_1$}, \s{name$_2$}, \ldots;
- For example, to declare {\tt X} as a vector and {\tt COMM} as a vector with
- two indices, one would say
- \begin{verbatim}
- tvector x,comm(a,b);
- \end{verbatim}
- If a declaration of an already existing name is made, the old
- declaration is removed, and the new one is taken.
- The exterior degree of a symbol or a general expression can be obtained
- with the function \label{EXDEGREE} \index{EXDEGREE command}
- \hspace*{2em} \k{EXDEGREE} \s{expression};
- Example:
- \begin{verbatim}
- exdegree(u + 3*chris(k,-k));
- 1
- \end{verbatim}
- \section{Exterior Multiplication}
- \index{"\^{} ! exterior multiplication} \index{exterior product}
- Exterior multiplication between exterior forms is carried out with the
- nary infix operator \^{ } (wedge)\label{wedge}. Factors are ordered
- according to the usual ordering in {\REDUCE} using the commutation
- rule for exterior products.
- \example\index{EXCALC package ! example}
- \begin{verbatim}
- pform u=1,v=1,w=k;
- u^v;
- U^V
- v^u;
- - U^V
- u^u;
- 0
- w^u^v;
- K
- ( - 1) *U^V^W
- (3*u-a*w)^(w+5*v)^u;
- A*(5*U^V^W - U^W^W)
- \end{verbatim}
- It is possible to declare the dimension of the underlying space
- by\label{SPACEDIM} \index{SPACEDIM command} \index{dimension}
- \hspace*{2em} \k{SPACEDIM} \s{number} $\mid$ \s{identifier};
- If an exterior product has a degree higher than the dimension of the
- space, it is replaced by 0:
- \begin{verbatim}
- spacedim 4;
- pform u=2,v=3;
- u^v;
- 0
- \end{verbatim}
- \section{Partial Differentiation}
- Partial differentiation is denoted by the operator {\tt @}\label{at}. Its
- capability is the same as the {\REDUCE} {\tt DF} operator.
- \index{"@ operator} \index{partial differentiation}
- \index{differentiation ! partial}
- \example\index{EXCALC package ! example}
- \begin{verbatim}
- @(sin x,x);
- COS(X)
- @(f,x);
- 0
- \end{verbatim}
- An identifier can be declared to be a function of certain variables.
- \index{FDOMAIN command}
- This is done with the command {\tt FDOMAIN}\label{FDOMAIN}. The
- following would tell the partial differentiation operator that {\tt F}
- is a function of the variables {\tt X} and {\tt Y} and that {\tt H} is
- a function of {\tt X}.
- \begin{verbatim}
- fdomain f=f(x,y),h=h(x);
- \end{verbatim}
- Applying {\tt @} to {\tt F} and {\tt H} would result in
- \begin{verbatim}
- @(x*f,x);
- F + X*@ F
- X
- @(h,y);
- 0
- \end{verbatim}
- \index{tangent vector}
- The partial derivative symbol can also be an operator with a single
- argument. It then represents a natural base element of a tangent
- vector\label{at1}.
- \example\index{EXCALC package ! example}
- \begin{verbatim}
- a*@ x + b*@ y;
- A*@ + B*@
- X Y
- \end{verbatim}
- \section{Exterior Differentiation}
- \index{exterior differentiation}
- Exterior differentiation of exterior forms is carried out by the
- operator {\tt d}\label{d}. Products are normally differentiated out,
- {\em i.e.}
- \begin{verbatim}
- pform x=0,y=k,z=m;
- d(x * y);
- X*d Y + d X^Y
- d(r*y);
- R*d Y
- d(x*y^z);
- K
- ( - 1) *X*Y^d Z + X*d Y^Z + d X^Y^Z
- \end{verbatim}
- This expansion can be suppressed by the command {\tt NOXPND D}\label{NOXPNDD}.
- \index{NOXPND ! D}
- \begin{verbatim}
- noxpnd d;
- d(y^z);
- d(Y^Z)
- \end{verbatim}
- To obtain a canonical form for an exterior product when the expansion
- is switched off, the operator {\tt D} is shifted to the right if it
- appears in the leftmost place.
- \begin{verbatim}
- d y ^ z;
- K
- - ( - 1) *Y^d Z + d(Y^Z)
- \end{verbatim}
- Expansion is performed again when the command {\tt XPND D}\label{XPNDD}
- is executed. \index{XPND ! D}
- Functions which are implicitly defined by the {\tt FDOMAIN} command are
- expanded into partial derivatives:
- \begin{verbatim}
- pform x=0,y=0,z=0,f=0;
- fdomain f=f(x,y);
- d f;
- @ F*d X + @ F*d Y
- X Y
- \end{verbatim}
- If an argument of an implicitly defined function has further
- dependencies the chain rule will be applied {\em e.g.} \index{chain rule}
- \begin{verbatim}
- fdomain y=y(z);
- d f;
- @ F*d X + @ F*@ Y*d Z
- X Y Z
- \end{verbatim}
- Expansion into partial derivatives can be inhibited by
- {\tt NOXPND @}\label{NOXPNDA}
- and enabled again by {\tt XPND @}\label{XPNDA}.
- \index{NOXPND ! "@} \index{XPND ! "@}
- The operator is of course aware of the rules that a repeated
- application always leads to zero and that there is no exterior form of
- higher degree than the dimension of the space.
- \begin{verbatim}
- d d x;
- 0
- pform u=k;
- spacedim k;
- d u;
- 0
- \end{verbatim}
- \section{Inner Product}
- \index{inner product ! exterior form}
- The inner product between a vector and an exterior form is represented
- by the diphthong \_$|$ \label{innerp} (underscore or-bar), which is the
- notation of many textbooks. If the exterior form is an exterior
- product, the inner product is carried through any factor.
- \index{\_$\mid$ operator}
- \example\index{EXCALC package ! example}
- \begin{verbatim}
- pform x=0,y=k,z=m;
- tvector u,v;
- u _| (x*y^z);
- K
- X*(( - 1) *Y^U _| Z + U _| Y^Z)
- \end{verbatim}
- In repeated applications of the inner product to the same exterior
- form the vector arguments are ordered {\em e.g.}
- \begin{verbatim}
- (u+x*v) _| (u _| (3*z));
- - 3*U _| V _| Z
- \end{verbatim}
- The duality of natural base elements is also known by the system, {\em i.e.}
- \begin{verbatim}
- pform {x,y}=0;
- (a*@ x+b*@(y)) _| (3*d x-d y);
- 3*A - B
- \end{verbatim}
- \section{Lie Derivative}
- \index{Lie Derivative}
- The Lie derivative can be taken between a vector and an exterior form
- or between two vectors. It is represented by the infix operator $|$\_
- \label{lie}. In the case of Lie differentiating, an exterior form by
- a vector, the Lie derivative is expressed through inner products and
- exterior differentiations, {\em i.e.} \index{$\mid$\_ operator}
- \begin{verbatim}
- pform z=k;
- tvector u;
- u |_ z;
- U _| d Z + d(U _| Z)
- \end{verbatim}
- If the arguments of the Lie derivative are vectors, the vectors are
- ordered using the anticommutivity property, and functions (zero forms)
- are differentiated out.
- \example\index{EXCALC package ! example}
- \begin{verbatim}
- tvector u,v;
- v |_ u;
- - U |_ V
- pform x=0,y=0;
- (x*u) |_ (y*v);
- - U*Y*V _| d X + V*X*U _| d Y + X*Y*U |_ V
- \end{verbatim}
- \section{Hodge-* Duality Operator}
- \index{Hodge-* duality operator} \index{"\# ! Hodge-* operator}
- The Hodge-*\label{hodge} duality operator maps an exterior form of degree
- {\tt K} to an exterior form of degree {\tt N-K}, where {\tt N} is the
- dimension of the space. The double application of the operator must
- lead back to the original exterior form up to a factor. The following
- example shows how the factor is chosen here
- \begin{verbatim}
- spacedim n;
- pform x=k;
- # # x;
- 2
- (K + K*N)
- ( - 1) *X*SGN
- \end{verbatim}
- \pagebreak
- \index{SGN ! indeterminate sign} \index{coframe}
- The indeterminate SGN in the above example denotes the sign of the
- determinant of the metric. It can be assigned a value or will be
- automatically set if more of the metric structure is specified (via
- COFRAME), {\em i.e.} it is then set to $g/|g|$, where $g$ is the
- determinant of the metric. If the Hodge-* operator appears in an
- exterior product of maximal degree as the leftmost factor, the Hodge-*
- is shifted to the right according to
- \begin{verbatim}
- pform {x,y}=k;
- # x ^ y;
- 2
- (K + K*N)
- ( - 1) *X^# Y
- \end{verbatim}
- More simplifications are performed if a coframe is defined.
- \section{Variational Derivative}
- \index{derivative ! variational} \index{variational derivative}
- \ttindex{VARDF}
- The function {\tt VARDF}\label{VARDF} returns as its value the
- variation of a given Lagrangian n-form with respect to a specified
- exterior form (a field of the Lagrangian). In the shared variable
- \ttindex{BNDEQ"!*}
- {\tt BNDEQ!*}, the expression is stored that has to yield zero if
- integrated over the boundary.
- Syntax:
- \hspace*{2em} \k{VARDF}(\s{Lagrangian n-form},\s{exterior form})
- \example\index{EXCALC package ! example}
- \begin{verbatim}
- spacedim 4;
- pform l=4,a=1,j=3;
- l:=-1/2*d a ^ # d a - a^# j$ %Lagrangian of the e.m. field
- vardf(l,a);
- - (# J + d # d A) %Maxwell's equations
- bndeq!*;
- - 'A^# d A %Equation at the boundary
- \end{verbatim}
- Restrictions:
- In the current implementation, the Lagrangian must be built up by the
- fields and the operations {\tt d}, {\tt \#}, and {\tt @}. Variation
- with respect to indexed quantities is currently not allowed.
- For the calculation of the conserved currents induced by symmetry
- operators (vector fields), the function {\tt NOETHER}\label{NOETHER}
- \index{NOETHER function}
- is provided. It has the syntax:
- \hspace*{2em}
- \k{NOETHER}(\s{Lagrangian n-form},\s{field},\s{symmetry generator})
- \example\index{EXCALC package ! example}
- \begin{verbatim}
- pform l=4,a=1,f=2;
- spacedim 4;
- l:= -1/2*d a^#d a; %Free Maxwell field;
- tvector x(k); %An unspecified generator;
- noether(l,a,x(-k));
- ( - 2*d(X _|A)^# d A - (X _|d A)^# d A + d A^(X _|# d A))/2
- K K K
- \end{verbatim}
- The above expression would be the canonical energy
- momentum 3-forms of the Maxwell field, if X is interpreted
- as a translation;
- \section{Handling of Indices}
- \index{exterior form ! with indices}
- Exterior forms and vectors may have indices. On input, the indices
- are given as arguments of the object. A positive argument denotes a
- superscript and a negative argument a subscript. On output, the
- indexed quantity is displayed two dimensionally if {\tt NAT} is on.
- \index{NAT flag}
- Indices may be identifiers or numbers.
- \example\index{EXCALC package ! example}
- \begin{verbatim}
- pform om(k,l)=m,e(k)=1;
- e(k)^e(-l);
- K
- E ^E
- L
- om(4,-2);
- 4
- OM
- 2
- \end{verbatim}
- In the current release, full simplification is performed only if an
- index range is specified. It is hoped that this restriction can be
- removed soon. If the index range (the values that the indices can
- obtain) is specified, the given expression is evaluated for all
- possible index values, and the summation convention is understood.
- \example\label{INDEXRANGE}\index{EXCALC package ! example}
- \begin{verbatim}
- indexrange t,r,ph,z;
- pform e(k)=1,s(k,l)=2;
- w := e(k)*e(-k);
- T R PH Z
- W := E *E + E *E + E *E + E *E
- T R PH Z
- s(k,l):=e(k)^e(l);
- T T
- S := 0
- R T T R
- S := - E ^E
- PH T T PH
- S := - E ^E
- .
- .
- .
- \end{verbatim}
- If the expression to be evaluated is not an assignment, the values of
- the expression are displayed as an assignment to an indexed variable
- with name {\tt NS}. This is done only on output, {\em i.e.} no actual
- binding to the variable NS occurs.
- \index{NS dummy variable}
- \begin{verbatim}
- e(k)^e(l);
- T T
- NS := 0
- R T T R
- NS := - E ^E
- .
- .
- .
- \end{verbatim}
- It should be noted, however, that the index positions on the variable
- NS can sometimes not be uniquely determined by the system (because of
- possible reorderings in the expression). Generally it is advisable to
- use assignments to display complicated expressions.
- A range can also be assigned to individual index-names. For example,
- the declaration
- \begin{verbatim}
- indexrange {k,l}={x,y,z},{u,v,w}={1,2};
- \end{verbatim}
- would assign to the index identifiers k,l the range values x,y,z and
- to the index identifiers u,v,w the range values 1,2. The use of an
- index identifier not listed in previous indexrange statements has the
- range of the union of all given index ranges.
- With the above example of an indexrange statement, the following
- index evaluations would take place
- \begin{verbatim}
- pform w n=0;
- w(k)*w(-k);
- X Y Z
- W *W + W *W + W *W
- X Y Z
- w(u)*w(-u);
- 1 2
- W *W + W *W
- 1 2
- w(r)*w(-r);
- 1 2 X Y Z
- W *W + W *W + W *W + W *W + W *W
- 1 2 X Y Z
- \end{verbatim}
- In certain cases, one would like to inhibit the summation over
- specified index names, or at all. For this the command
- \index{NOSUM command}
- \hspace*{2em} \k{NOSUM} \s{indexname$_1$}, \ldots;\label{NOSUM}
- and the switch {\tt NOSUM} are \index{NOSUM switch}
- available. The command {\tt NOSUM} has the effect that summation is
- not performed over those indices which had been listed. The command
- {\tt RENOSUM}\label{RENOSUM} enables summation again. The switch {\tt
- NOSUM}, if on, inhibits any summation. \index{RENOSUM command}
- \label{INDEXSYMMETRIES} \index{INDEXSYMMETRIES command}
- It is possible to declare symmetry properties for an indexed quantity by
- the command {\tt INDEX\_SYMMETRIES}. A prototypical example is as
- follows
- \begin{verbatim}
- index_symmetries u(k,l,m,n): symmetric in {k,l},{m,n}
- antisymmetric in {{k,l},{m,n}},
- g(k,l),h(k,l): symmetric;
- \end{verbatim}
- It declares the object {\tt u} symmetric in the first two and last
- two indices and antisymmetric with respect to commutation of the given
- index pairs. If an object is completely symmetric or antisymmetric,
- the indices need not to be given after the corresponding keyword as
- shown above for {\tt g} and {\tt h}.
- If applicable, this command should
- be issued, since great savings in memory and execution time result.
- Only strict components are printed.
- The commands symmetric and antisymmetric of earlier releases have no
- effect.
- \section{Metric Structures}
- \index{metric structure} \index{coframe}
- A metric structure is defined in {\bf EXCALC} by specifying a set of
- basis one-forms (the coframe) together with the metric.
- Syntax:\label{COFRAME}
- \begin{tabbing}
- \hspace*{2em} \k{COFRAME} \=
- \s{identifier}\s{(index$_1$)}=\s{expression$_1$}, \\
- \> \s{identifier}\s{(index$_2$)}=\s{expression$_2$}, \\
- \> . \\
- \> . \\
- \> . \\
- \> \s{identifier}\s{(index$_n$)}=\s{expression$_n$} \\
- \> \hspace{1em} \k{WITH} \k{METRIC} \s{name}=\s{expression}; \\
- \end{tabbing}
- \index{euclidean metric} \index{COFRAME ! WITH METRIC}
- This statement automatically sets the dimension of the space and the
- index range. The clause {\tt WITH METRIC} can be omitted if the metric
- \index{COFRAME ! WITH SIGNATURE}
- is Euclidean and the shorthand {\tt WITH SIGNATURE \s{diagonal elements}}
- \label{SIGNATURE} can be used in the case of a pseudo-Euclidean metric. The
- splitting of a metric structure in its metric tensor coefficients and
- basis one-forms is completely arbitrary including the extremes of an
- orthonormal frame and a coordinate frame.
- \example\index{EXCALC package ! example}
- \begin{verbatim}
- coframe e r=d r, e(ph)=r*d ph
- with metric g=e(r)*e(r)+e(ph)*e(ph); %Polar coframe
- coframe e(r)=d r,e(ph)=r*d(ph); %Same as before
- coframe o(t)=d t, o x=d x
- with signature -1,1; %A Lorentz coframe
- coframe b(xi)=d xi, b(eta)=d eta %A lightcone coframe
- with metric w=-1/2*(b(xi)*b(eta)+b(eta)*b(xi));
- coframe e r=d r, e ph=d ph %Polar coordinate
- with metric g=e r*e r+r**2*e ph*e ph; %basis
- \end{verbatim}
- Individual elements of the metric can be accessed just by calling them
- with the desired indices. The value of the determinant of the
- \index{determinant ! in DETM"!*} \ttindex{DETM"!*}
- covariant metric is stored in the variable {\tt DETM!*}. The metric
- is not needed for lowering or raising of indices as the system
- performs this automatically, {\em i.e.} no matter in what index
- position values were assigned to an indexed quantity, the values can
- be retrieved for any index position just by writing the indexed
- quantity with the desired indices.
- \example\index{EXCALC package ! example}
- \begin{verbatim}
- coframe e t=d t,e x=d x,e y=d y
- with signature -1,1,1;
- pform f(k,l)=0;
- antisymmetric f;
- f(-t,-x):=ex$ f(-x,-y):=b$ f(-t,-y):=0$
- on nero;
- f(k,-l):=f(k,-l);
- X
- F := - EX
- T
- T
- F := - EX
- X
- Y
- F := - B
- X
- X
- F := B
- Y
- \end{verbatim}
- Any expression containing differentials of the coordinate functions will
- be transformed into an expression of the basis one-forms.The system also
- knows how to take the exterior derivative of the basis one-forms.
- \index{spherical coordinates}
- \example (Spherical coordinates)\index{EXCALC package ! example}
- \begin{verbatim}
- coframe e(r)=d(r), e(th)=r*d(th), e(ph)=r*sin(th)*d(ph);
- d r^d th;
- R TH
- (E ^E )/R
- d(e(th));
- R TH
- (E ^E )/R
- pform f=0;
- fdomain f=f(r,th,ph);
- factor e;
- on rat;
- d f; %The "gradient" of F in spherical coordinates;
- R TH PH
- E *@ F + (E *@ F)/R + (E *@ F)/(R*SIN(TH))
- R TH PH
- \end{verbatim}
- The frame dual to the frame defined by the {\tt COFRAME} command can
- be introduced by \k{FRAME} command. \index{FRAME command}
- \hspace*{2em} \k{FRAME} \s{identifier};\label{FRAME}
- This command causes the
- dual property to be recognized, and the tangent vectors of the
- coordinate functions are replaced by the frame basis vectors.
- \example\index{EXCALC package ! example}
- \begin{verbatim}
- coframe b r=d r,b ph=r*d ph,e z=d z; %Cylindrical coframe;
- frame x;
- on nero;
- x(-k) _| b(l);
- R
- NS := 1
- R
- PH
- NS := 1
- PH
- Z
- NS := 1
- Z
- x(-k) |_ x(-l); %The commutator of the dual frame;
- NS := X /R
- PH R PH
- NS := ( - X )/R %i.e. it is not a coordinate base;
- R PH PH
- \end{verbatim}
- \index{DISPLAYFRAME command} \index{tracing ! EXCALC}
- As a convenience, the frames can be displayed at any point in a program
- by the command {\tt DISPLAYFRAME;}\label{DISPLAYFRAME}.
- \index{Hodge-* duality operator}
- The Hodge-* duality operator returns the explicitly constructed dual
- element if applied to coframe base elements. The metric is properly
- taken into account.
- \index{Levi-Cevita tensor} \ttindex{EPS}
- The total antisymmetric Levi-Cevita tensor {\tt EPS}\label{EPS} is
- also available. The value of {\tt EPS} with an even permutation of the
- indices in a covariant position is taken to be +1.
- \section{Riemannian Connections}
- \index{Riemannian Connections}
- The command {\tt RIEMANNCONX} is provided for calculating the
- \index{RIEMANNCONX command} \label{RIEMANNCONX}
- connection 1 forms. The values are stored on the name given to {\tt
- RIEMANNCONX}. This command is far more efficient than calculating the
- connection from the differential of the basis one-forms and using
- inner products.
- \example (Calculate the connection 1-form and curvature 2-form on S(2))
- \index{EXCALC package ! example}
- \begin{verbatim}
- coframe e th=r*d th,e ph=r*sin(th)*d ph;
- riemannconx om;
- om(k,-l); %Display the connection forms;
- TH
- NS := 0
- TH
- PH PH
- NS := (E *COS(TH))/(SIN(TH)*R)
- TH
- TH PH
- NS := ( - E *COS(TH))/(SIN(TH)*R)
- PH
- PH
- NS := 0
- PH
- pform curv(k,l)=2;
- curv(k,-l):=d om(k,-l) + om(k,-m)^om(m-l);
- %The curvature forms
- TH
- CURV := 0
- TH
- PH TH PH 2
- CURV := ( - E ^E )/R
- TH %Of course it was a sphere with
- %radius R.
- TH TH PH 2
- CURV := (E ^E )/R
- PH
- PH
- CURV := 0
- PH
- \end{verbatim}
- \section{Ordering and Structuring}
- \index{ordering ! exterior form} \index{FORDER command}
- The ordering of an exterior form or vector can be changed by the
- command {\tt FORDER}.\label{FORDER} In an expression, the first
- identifier or kernel in the arguments of {\tt FORDER} is ordered ahead
- of the second, and so on, and ordered ahead of all not appearing as
- arguments. This ordering is done on the internal level and not only
- on output. The execution of this statement can therefore have
- tremendous effects on computation time and memory requirements. {\tt
- REMFORDER}\label{REMFORDER} brings back standard ordering for those
- elements that are listed as arguments. \index{REMFORDER command}
- An expression can be put in a more structured form by renaming a
- subexpression. This is done with the command {\tt KEEP} which
- has the syntax \index{KEEP command}\label{KEEP}
- \hspace*{2em} \k{KEEP}
- \s{name$_1$}=\s{expression$_1$},\s{name$_2$}=\s{expression$_2$}, \ldots
- The effect is that rules are set up for simplifying \s{name} without
- introducing its definition in an expression. In an expression the system
- also tries by reordering to generate as many instances of \s{name} as
- possible.
- \example\index{EXCALC package ! example}
- \begin{verbatim}
- pform x=0,y=0,z=0,f=0,j=3;
- keep j=d x^d y^d z;
- j;
- J
- d j;
- 0
- j^d x;
- 0
- fdomain f=f(x);
- d f^d y^d z;
- @ F*J
- X
- \end{verbatim}
- \index{exterior product}
- The capabilities of {\tt KEEP} are currently very limited. Only exterior
- products should occur as righthand sides in {\tt KEEP}.
- \section{Summary of Operators and Commands}
- Table~\ref{EXCALC:sum} summarizes EXCALC commands and the page number they are
- defined on.
- \begin{table}
- \begin{tabular}{l l r}
- \index{"\^{} ! exterior multiplication} \index{wedge}
- \^{ } & Exterior Multiplication & \pageref{wedge} \\
- \index{"@ ! partial differentiation}
- @ & Partial Differentiation & \pageref{at} \\
- \index{"@ ! tangent vector}
- @ & Tangent Vector & \pageref{at1} \\
- \index{"\# ! Hodge-* operator}
- \# & Hodge-* Operator & \pageref{hodge} \\
- \index{\_$\mid$ operator}
- \_$|$ & Inner Product & \pageref{innerp} \\
- \index{$\mid$\_ operator}
- $|$\_ & Lie Derivative & \pageref{lie} \\
- \index{COFRAME command}
- COFRAME & Declaration of a coframe & \pageref{COFRAME} \\
- \index{d ! exterior differentiation}
- d & Exterior differentiation & \pageref{d} \\
- \index{DISPLAYFRAME command}
- DISPLAYFRAME & Displays the frame & \pageref{DISPLAYFRAME}\\
- \index{EPS ! Levi-Civita tensor}
- EPS & Levi-Civita tensor & \pageref{EPS} \\
- \index{EXDEGREE}
- EXDEGREE & Calculates the exterior degree of an expression & \pageref{EXDEGREE} \\
- \index{FDOMAIN command}
- FDOMAIN & Declaration of implicit dependencies &\pageref{FDOMAIN} \\
- \index{FORDER command}
- FORDER & Ordering command & \pageref{FORDER} \\
- \index{FRAME command}
- FRAME & Declares the frame dual to the coframe & \pageref{FRAME} \\
- \index{INDEXRANGE command}
- INDEXRANGE & Declaration of indices & \pageref{INDEXRANGE} \\
- \index{INDEX\_SYMMETRIES command}
- INDEX\_SYMMETRIES & Declares arbitrary index symmetry properties & \pageref{INDEXSYMMETRIES} \\
- \index{KEEP command}
- KEEP & Structuring command & \pageref{KEEP} \\
- \index{METRIC command}
- METRIC & Clause of COFRAME to specify a metric & \pageref{COFRAME} \\
- \index{NOETHER function}
- NOETHER & Calculates the Noether current & \pageref{NOETHER} \\
- \index{NOSUM command}
- NOSUM & Inhibits summation convention & \pageref{NOSUM} \\
- \index{NOXPND command}
- NOXPND d & Inhibits the use of product rule for d &
- \pageref{NOXPNDD} \\
- \index{NOXPND "@ command}
- NOXPND @ & Inhibits expansion into partial derivatives &
- \pageref{NOXPNDA} \\
- \index{PFORM command}
- PFORM & Declaration of exterior forms & \pageref{PFORM} \\
- \index{REMFORDER command}
- REMFORDER & Clears ordering & \pageref{REMFORDER} \\
- \index{RENOSUM command}
- RENOSUM & Enables summation convention & \pageref{RENOSUM} \\
- \index{RIEMANNCONX command}
- RIEMANNCONX & Calculation of a Riemannian Connection &
- \pageref{RIEMANNCONX} \\
- \index{SIGNATURE command}
- SIGNATURE & Clause of COFRAME to specify a pseudo- & \pageref{SIGNATURE} \\
- & Euclidean metric & \\
- \index{SPACEDIM command}
- SPACEDIM & Command to set the dimension of a space &
- \pageref{SPACEDIM} \\
- \index{TVECTOR command}
- TVECTOR & Declaration of vectors & \pageref{TVECTOR} \\
- \ttindex{VARDF}
- VARDF & Variational derivative & \pageref{VARDF} \\
- \index{XPND command}
- XPND d & Enables the use of product rule for d & \pageref{XPNDD} \\
- & (default) & \\
- \index{XPND ! "@}
- XPND @ & Enables expansion into partial derivatives & \pageref{XPNDA} \\
- & (default)
- \end{tabular}
- \caption{EXCALC Command Summary}\label{EXCALC:sum}
- \end{table}
- \newpage
- \section{Examples}
- The following examples should illustrate the use of {\bf EXCALC}. It is not
- intended to show the most efficient or most elegant way of stating the
- problems; rather the variety of syntactic constructs are exemplified.
- The examples are on a test file distributed with {\bf EXCALC}.
- \index{EXCALC package ! example}
- {\small
- \begin{verbatim}
- % Problem: Calculate the PDE's for the isovector of the heat equation.
- % --------
- % (c.f. B.K. Harrison, f.B. Estabrook, "Geometric Approach...",
- % J. Math. Phys. 12, 653, 1971)
- % The heat equation @ psi = @ psi is equivalent to the set of exterior
- % xx t
- % equations (with u=@ psi, y=@ psi):
- % T x
- pform {psi,u,x,y,t}=0,a=1,{da,b}=2;
- a := d psi - u*d t - y*d x;
- da := - d u^d t - d y^d x;
- b := u*d x^d t - d y^d t;
- % Now calculate the PDE's for the isovector.
- tvector v;
- pform {vpsi,vt,vu,vx,vy}=0;
- fdomain vpsi=vpsi(psi,t,u,x,y),vt=vt(psi,t,u,x,y),vu=vu(psi,t,u,x,y),
- vx=vx(psi,t,u,x,y),vy=vy(psi,t,u,x,y);
- v := vpsi*@ psi + vt*@ t + vu*@ u + vx*@ x + vy*@ y;
- factor d;
- on rat;
- i1 := v |_ a - l*a;
- pform o=1;
- o := ot*d t + ox*d x + ou*d u + oy*d y;
- fdomain f=f(psi,t,u,x,y);
- i11 := v _| d a - l*a + d f;
- let vx=-@(f,y),vt=-@(f,u),vu=@(f,t)+u*@(f,psi),vy=@(f,x)+y*@(f,psi),
- vpsi=f-u*@(f,u)-y*@(f,y);
- factor ^;
- i2 := v |_ b - xi*b - o^a + zeta*da;
- let ou=0,oy=@(f,u,psi),ox=-u*@(f,u,psi),
- ot=@(f,x,psi)+u*@(f,y,psi)+y*@(f,psi,psi);
- i2;
- let zeta=-@(f,u,x)-@(f,u,y)*u-@(f,u,psi)*y;
- i2;
- let xi=-@(f,t,u)-u*@(f,u,psi)+@(f,x,y)+u*@(f,y,y)+y*@(f,y,psi)+@(f,psi);
- i2;
- let @(f,u,u)=0;
- i2; % These PDE's have to be solved.
- clear a,da,b,v,i1,i11,o,i2,xi,t;
- remfdomain f,vpsi,vt,vu,vx,vy;
- clear @(f,u,u);
- % Problem:
- % --------
- % Calculate the integrability conditions for the system of PDE's:
- % (c.f. B.F. Schutz, "Geometrical Methods of Mathematical Physics"
- % Cambridge University Press, 1984, p. 156)
- % @ z /@ x + a1*z + b1*z = c1
- % 1 1 2
- % @ z /@ y + a2*z + b2*z = c2
- % 1 1 2
- % @ z /@ x + f1*z + g1*z = h1
- % 2 1 2
- % @ z /@ y + f2*z + g2*z = h2
- % 2 1 2 ;
- pform w(k)=1,integ(k)=4,{z(k),x,y}=0,{a,b,c,f,g,h}=1,
- {a1,a2,b1,b2,c1,c2,f1,f2,g1,g2,h1,h2}=0;
- fdomain a1=a1(x,y),a2=a2(x,y),b1=b1(x,y),b2=b2(x,y),
- c1=c1(x,y),c2=c2(x,y),f1=f1(x,y),f2=f2(x,y),
- g1=g1(x,y),g2=g2(x,y),h1=h1(x,y),h2=h2(x,y);
- a:=a1*d x+a2*d y$
- b:=b1*d x+b2*d y$
- c:=c1*d x+c2*d y$
- f:=f1*d x+f2*d y$
- g:=g1*d x+g2*d y$
- h:=h1*d x+h2*d y$
- % The equivalent exterior system:
- factor d;
- w(1) := d z(-1) + z(-1)*a + z(-2)*b - c;
- w(2) := d z(-2) + z(-1)*f + z(-2)*g - h;
- indexrange 1,2;
- factor z;
- % The integrability conditions:
- integ(k) := d w(k) ^ w(1) ^ w(2);
- clear a,b,c,f,g,h,x,y,w(k),integ(k),z(k);
- remfdomain a1,a2,b1,c1,c2,f1,f2,g1,g2,h1,h2;
- % Problem:
- % --------
- % Calculate the PDE's for the generators of the d-theta symmetries of
- % the Lagrangian system of the planar Kepler problem.
- % c.f. W.Sarlet, F.Cantrijn, Siam Review 23, 467, 1981
- % Verify that time translation is a d-theta symmetry and calculate the
- % corresponding integral.
- pform {t,q(k),v(k),lam(k),tau,xi(k),eta(k)}=0,theta=1,f=0,
- {l,glq(k),glv(k),glt}=0;
- tvector gam,y;
- indexrange 1,2;
- fdomain tau=tau(t,q(k),v(k)),xi=xi(t,q(k),v(k)),f=f(t,q(k),v(k));
- l := 1/2*(v(1)**2 + v(2)**2) + m/r$ % The Lagrangian.
- pform r=0;
- fdomain r=r(q(k));
- let @(r,q 1)=q(1)/r,@(r,q 2)=q(2)/r,q(1)**2+q(2)**2=r**2;
- lam(k) := -m*q(k)/r; % The force.
- gam := @ t + v(k)*@(q(k)) + lam(k)*@(v(k))$
- eta(k) := gam _| d xi(k) - v(k)*gam _| d tau$
- y := tau*@ t + xi(k)*@(q(k)) + eta(k)*@(v(k))$ % Symmetry generator.
- theta := l*d t + @(l,v(k))*(d q(k) - v(k)*d t)$
- factor @;
- s := y |_ theta - d f$
- glq(k) := @(q k) _| s;
- glv(k) := @(v k) _| s;
- glt := @(t) _| s;
- % Translation in time must generate a symmetry.
- xi(k) := 0;
- tau := 1;
- glq k := glq k;
- glv k := glv k;
- glt;
- % The corresponding integral is of course the energy.
- integ := - y _| theta;
- clear l,lam k,gam,eta k,y,theta,s,glq k,glv k,glt,t,q k,v k,tau,xi k;
- remfdomain r,f,tau,xi;
- % Problem:
- % --------
- % Calculate the "gradient" and "Laplacian" of a function and the "curl"
- % and "divergence" of a one-form in elliptic coordinates.
- coframe e u = sqrt(cosh(v)**2 - sin(u)**2)*d u,
- e v = sqrt(cosh(v)**2 - sin(u)**2)*d v,
- e phi = cos u*sinh v*d phi;
- pform f=0;
- fdomain f=f(u,v,phi);
- factor e,^;
- on rat,gcd;
- order cosh v, sin u;
- % The gradient:
- d f;
- factor @;
- % The Laplacian:
- # d # d f;
- % Another way of calculating the Laplacian:
- -#vardf(1/2*d f^#d f,f);
- remfac @;
- % Now calculate the "curl" and the "divergence" of a one-form.
- pform w=1,a(k)=0;
- fdomain a=a(u,v,phi);
- w := a(-k)*e k;
- % The curl:
- x := # d w;
- factor @;
- % The divergence:
- y := # d # w;
- remfac @;
- clear x,y,w,u,v,phi,e k,a k;
- remfdomain a,f;
- % Problem:
- % --------
- % Calculate in a spherical coordinate system the Navier Stokes equations.
- coframe e r=d r, e theta =r*d theta, e phi = r*sin theta *d phi;
- frame x;
- fdomain v=v(t,r,theta,phi),p=p(r,theta,phi);
- pform v(k)=0,p=0,w=1;
- % We first calculate the convective derivative.
- w := v(-k)*e(k)$
- factor e; on rat;
- cdv := @(w,t) + (v(k)*x(-k)) |_ w - 1/2*d(v(k)*v(-k));
- %next we calculate the viscous terms;
- visc := nu*(d#d# w - #d#d w) + mu*d#d# w;
- % Finally we add the pressure term and print the components of the
- % whole equation.
- pform nasteq=1,nast(k)=0;
- nasteq := cdv - visc + 1/rho*d p$
- factor @;
- nast(-k) := x(-k) _| nasteq;
- remfac @,e;
- clear v k,x k,nast k,cdv,visc,p,w,nasteq,e k;
- remfdomain p,v;
- % Problem:
- % --------
- % Calculate from the Lagrangian of a vibrating rod the equation of
- % motion and show that the invariance under time translation leads
- % to a conserved current.
- pform {y,x,t,q,j}=0,lagr=2;
- fdomain y=y(x,t),q=q(x),j=j(x);
- factor ^;
- lagr := 1/2*(rho*q*@(y,t)**2 - e*j*@(y,x,x)**2)*d x^d t;
- vardf(lagr,y);
- % The Lagrangian does not explicitly depend on time; therefore the
- % vector field @ t generates a symmetry. The conserved current is
- pform c=1;
- factor d;
- c := noether(lagr,y,@ t);
- % The exterior derivative of this must be zero or a multiple of the
- % equation of motion (weak conservation law) to be a conserved current.
- remfac d;
- d c;
- % i.e. it is a multiple of the equation of motion.
- clear lagr,c,j,y,q;
- remfdomain y,q,j;
- % Problem:
- % --------
- % Show that the metric structure given by Eguchi and Hanson induces a
- % self-dual curvature.
- % c.f. T. Eguchi, P.B. Gilkey, A.J. Hanson, "Gravitation, Gauge Theories
- % and Differential Geometry", Physics Reports 66, 213, 1980
- for all x let cos(x)**2=1-sin(x)**2;
- pform f=0,g=0;
- fdomain f=f(r), g=g(r);
- coframe o(r) = f*d r,
- o(theta) = (r/2)*(sin(psi)*d theta - sin(theta)*cos(psi)*d phi),
- o(phi) = (r/2)*(-cos(psi)*d theta - sin(theta)*sin(psi)*d phi),
- o(psi) = (r/2)*g*(d psi + cos(theta)*d phi);
- frame e;
- pform gamma(a,b)=1,curv2(a,b)=2;
- index_symmetries gamma(a,b),curv2(a,b): antisymmetric;
- factor o;
- gamma(-a,-b) := -(1/2)*( e(-a) _| (e(-c) _| (d o(-b)))
- -e(-b) _| (e(-a) _| (d o(-c)))
- +e(-c) _| (e(-b) _| (d o(-a))) )*o(c)$
- curv2(-a,b) := d gamma(-a,b) + gamma(-c,b)^gamma(-a,c)$
- let f=1/g,g=sqrt(1-(a/r)**4);
- pform chck(k,l)=2;
- index_symmetries chck(k,l): antisymmetric;
- % The following has to be zero for a self-dual curvature.
- chck(k,l) := 1/2*eps(k,l,m,n)*curv2(-m,-n) + curv2(k,l);
- clear gamma(a,b),curv2(a,b),f,g,chck(a,b),o(k),e(k),r,phi,psi;
- remfdomain f,g;
- % Example: 6-dimensional FRW model with quadratic curvature terms in
- % -------
- % the Lagrangian (Lanczos and Gauss-Bonnet terms).
- % cf. Henriques, Nuclear Physics, B277, 621 (1986)
- for all x let cos(x)**2+sin(x)**2=1;
- pform {r,s}=0;
- fdomain r=r(t),s=s(t);
- coframe o(t) = d t,
- o(1) = r*d u/(1 + k*(u**2)/4),
- o(2) = r*u*d theta/(1 + k*(u**2)/4),
- o(3) = r*u*sin(theta)*d phi/(1 + k*(u**2)/4),
- o(4) = s*d v1,
- o(5) = s*sin(v1)*d v2
- with metric g =-o(t)*o(t)+o(1)*o(1)+o(2)*o(2)+o(3)*o(3)
- +o(4)*o(4)+o(5)*o(5);
- frame e;
- on nero; factor o,^;
- riemannconx om;
- pform curv(k,l)=2,{riemann(a,b,c,d),ricci(a,b),riccisc}=0;
- index_symmetries curv(k,l): antisymmetric,
- riemann(k,l,m,n): antisymmetric in {k,l},{m,n}
- symmetric in {{k,l},{m,n}},
- ricci(k,l): symmetric;
- curv(k,l) := d om(k,l) + om(k,-m)^om(m,l);
- riemann(a,b,c,d) := e(d) _| (e (c) _| curv(a,b));
- % The rest is done in the Ricci calculus language,
- ricci(-a,-b) := riemann(c,-a,-d,-b)*g(-c,d);
- riccisc := ricci(-a,-b)*g(a,b);
- pform {laglanc,inv1,inv2} = 0;
- index_symmetries riemc3(k,l),riemri(k,l),
- hlang(k,l),einst(k,l): symmetric;
- pform {riemc3(i,j),riemri(i,j)}=0;
- riemc3(-i,-j) := riemann(-i,-k,-l,-m)*riemann(-j,k,l,m)$
- inv1 := riemc3(-i,-j)*g(i,j);
- riemri(-i,-j) := 2*riemann(-i,-k,-j,-l)*ricci(k,l)$
- inv2 := ricci(-a,-b)*ricci(a,b);
- laglanc := (1/2)*(inv1 - 4*inv2 + riccisc**2);
- pform {einst(a,b),hlang(a,b)}=0;
- hlang(-i,-j) := 2*(riemc3(-i,-j) - riemri(-i,-j) -
- 2*ricci(-i,-k)*ricci(-j,K) +
- riccisc*ricci(-i,-j) - (1/2)*laglanc*g(-i,-j));
- % The complete Einstein tensor:
- einst(-i,-j) := (ricci(-i,-j) - (1/2)*riccisc*g(-i,-j))*alp1 +
- hlang(-i,-j)*alp2$
- alp1 := 1$
- factor alp2;
- einst(-i,-j) := einst(-i,-j);
- clear o(k),e(k),riemc3(i,j),riemri(i,j),curv(k,l),riemann(a,b,c,d),
- ricci(a,b),riccisc,t,u,v1,v2,theta,phi,r,om(k,l),einst(a,b),
- hlang(a,b);
- remfdomain r,s;
- % Problem:
- % --------
- % Calculate for a given coframe and given torsion the Riemannian part and
- % the torsion induced part of the connection. Calculate the curvature.
- % For a more elaborate example see E.Schruefer, F.W. Hehl, J.D. McCrea,
- % "Application of the REDUCE package EXCALC to the Poincare gauge field
- % theory of gravity", GRG Journal, vol. 19, (1988) 197--218
- pform {ff, gg}=0;
- fdomain ff=ff(r), gg=gg(r);
- coframe o(4) = d u + 2*b0*cos(theta)*d phi,
- o(1) = ff*(d u + 2*b0*cos(theta)*d phi) + d r,
- o(2) = gg*d theta,
- o(3) = gg*sin(theta)*d phi
- with metric g = -o(4)*o(1)-o(4)*o(1)+o(2)*o(2)+o(3)*o(3);
- frame e;
- pform {tor(a),gwt(a)}=2,gamma(a,b)=1,
- {u1,u3,u5}=0;
- index_symmetries gamma(a,b): antisymmetric;
- fdomain u1=u1(r),u3=u3(r),u5=u5(r);
- tor(4) := 0$
- tor(1) := -u5*o(4)^o(1) - 2*u3*o(2)^o(3)$
- tor(2) := u1*o(4)^o(2) + u3*o(4)^o(3)$
- tor(3) := u1*o(4)^o(3) - u3*o(4)^o(2)$
- gwt(-a) := d o(-a) - tor(-a)$
- % The following is the combined connection.
- % The Riemannian part could have equally well been calculated by the
- % RIEMANNCONX statement.
- gamma(-a,-b) := (1/2)*( e(-b) _| (e(-c) _| gwt(-a))
- +e(-c) _| (e(-a) _| gwt(-b))
- -e(-a) _| (e(-b) _| gwt(-c)) )*o(c);
- pform curv(a,b)=2;
- index_symmetries curv(a,b): antisymmetric;
- factor ^;
- curv(-a,b) := d gamma(-a,b) + gamma(-c,b)^gamma(-a,c);
- clear o(k),e(k),curv(a,b),gamma(a,b),theta,phi,x,y,z,r,s,t,u,v,p,q,c,cs;
- remfdomain u1,u3,u5,ff,gg;
- showtime;
- end;
- \end{verbatim}
- }
- \end{document}
|