123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501 |
- \documentstyle[11pt,reduce]{article}
- \date{July 1994}
- \title{A Definite Integration Interface for REDUCE}
- \author{Kerry Gaskell \\
- Konrad--Zuse--Zentrum f\"ur Informationstechnik Berlin\\
- Heilbronner Strasse 10 \\
- D--10711 Berlin -- Wilmersdorf \\
- Federal Republic of Germany \\[0.05in]
- E--mail: neun@zib-berlin.de\footnotemark[1]}
- \begin{document}
- \maketitle
- \footnotetext[1]{This definite integration interface was written
- during my one year placement at ZIB. Any comments and/or
- problems should therefore be directed to Winfried Neun at
- neun@sc.zib-berlin.de.}
- \section{Introduction}
- This documentation describes part of \REDUCE's definite
- integration package that is able to calculate the definite integrals of
- many functions, including several special functions. There are other
- parts of this package, such as Stan Kameny's code for contour integration,
- that are not included here. The integration process described here is not
- the more normal approach of initially calculating the indefinite integral,
- but is instead the rather unusual idea of representing each function as a
- Meijer G-function (a formal definition of the Meijer G-function can be
- found in \cite {Prudnikov}), and then calculating the integral by using
- the following Meijer G integration formula.
- \begin{displaymath}
- \int_{0}^{\infty} x^{\alpha-1} G^{s t}_{u v}
- \left( \sigma x \ \Bigg\vert \ {( c_u) \atop (d_v)} \right)
- G^{m n}_{p q} \left( \omega x^{l/k} \ \Bigg\vert \ {(a_p) \atop (b_q)}
- \right) dx = k G^{i j}_{k l} \left( \xi \ \Bigg\vert \
- {(g_k) \atop (h_l)} \right) \hspace{5mm} (1)
- \end{displaymath}
- The resulting Meijer G-function is then retransformed, either directly
- or via a hypergeometric function simplification, to give
- the answer. A more detailed account of this theory can be found in
- \cite {Adamchik:90}.
- \section{Integration between zero and infinity}
- As an example, if one wishes to calculate the following integral
- \begin{displaymath}
- \int_{0}^{\infty} x^{-1} e^{-x} sin(x) \, dx
- \end{displaymath}
- then initially the correct Meijer G-functions are found, via a
- pattern matching
- process, and are substituted into (1) to give
- \begin{displaymath}
- \sqrt{\pi} \int_{0}^{\infty} x^{-1} G^{1 0}_{0 1} \left(x
- \ \Bigg\vert \
- {. \atop 0}\right) G^{1 0}_{0 2}\left(\frac{x^{2}}{4}
- \ \Bigg\vert \ {. \; . \atop \frac{1}{2} \; 0} \right) dx
- \end{displaymath}
- The cases for validity of the integral are then checked. If these
- are found to be satisfactory then the formula is calculated and we
- obtain the following Meijer G-function
- \begin{displaymath}
- G^{1 2}_{2 2} \left(1 \ \Bigg\vert \ {\frac{1}{2} \; 1 \atop
- \frac{1}{2} \; 0} \right)
- \end{displaymath}
- This is reduced to the following hypergeometric function
- \begin{math}
- \hspace{50mm} _2F_1 (\frac{1}{2},1;\frac{3}{2};-1 )
- \end{math}
- which is then calculated to give the correct answer of
- \begin{displaymath}
- \frac{\pi}{4}
- \end{displaymath}
- The above formula (1) is also true for the integration of a single
- Meijer G-function by replacing the second Meijer G-function
- with a trivial Meijer G-function.
- A list of numerous particular Meijer G-functions is available in
- \cite {Prudnikov}.
- \section{Integration over other ranges}
- Although the description so far has been limited to the computation of
- definite integrals between 0 and infinity, it can also be extended to
- calculate integrals between 0 and some specific upper bound, and
- by further extension, integrals between any two bounds. One approach is
- to use the Heaviside function, i.e.
- \begin{displaymath}
- \int_{0}^{\infty} x^{2} e^{-x} H(1-x)\,dx = \int_{0}^{1} x^{2} e^{-x}dx
- \end{displaymath}
- Another approach, again not involving the normal indefinite integration
- process, again uses Meijer G-functions, this time by means of the
- following formula
- \begin{displaymath}
- \int_{0}^{y} x^{\alpha-1} G^{m n}_{p q}
- \left( \sigma x \ \Bigg\vert \ {( a_u) \atop (b_v)} \right) dx=%
- y^{\alpha}\,G^{m \; n+1}_{p+1 \; q+1} \left( \sigma y \ \Bigg\vert \
- {( a_1..a_n,1-\alpha,a_{n+1}..a_p)
- \atop (b_1..b_m,-\alpha,b_{m+1}..b_q)} \right) (2)
- \end{displaymath}
- For a more detailed look at the theory behind this see
- \cite{Adamchik:90}.
- For example, if one wishes to calculate the following integral
- \begin{displaymath}
- \int_{0}^{y} sin(2 \sqrt{x}) \, dx
- \end{displaymath}
- then initially the correct Meijer G-function is found, by a pattern
- matching process, and is substituted
- into (2) to give
- \begin{displaymath}
- \int_{0}^{y} G^{1 0}_{0 2}\left(x
- \ \Bigg\vert \ {. \; . \atop \frac{1}{2} \; 0} \right) dx
- \end{displaymath}
- which then in turn gives
- \begin{displaymath}
- y \; G^{1 1}_{1 3}\left(y \ \Bigg\vert \ {0 \atop
- \frac{1}{2} -\!1 \; 0} \right) dx
- \end{displaymath}
- and returns the result
- \begin{displaymath}
- \frac{\sqrt{\pi} \, J_{3/2}(2 \, \sqrt{\,y}) \, y}{y^{1/4}}
- \end{displaymath}
- \section{Using the definite integration package}
- To use this package, you must first load it by the command
- \begin{verbatim}
- load_package defint;
- \end{verbatim}
- Definite integration is then possible using the \verb+int+
- command with the syntax:
- \begin{verbatim}
- INT(EXPRN:algebraic,VAR:kernel,LOW:algebraic,UP:algebraic)
- :algebraic.
- \end{verbatim}
- where LOW and UP are the lower and upper bounds respectively for
- the definite integration of EXPRN with respect to VAR.
- \subsection{Examples}
- \begin{displaymath}
- \int_{0}^{\infty} e^{-x} dx
- \end{displaymath}
- \begin{verbatim}
- int(e^(-x),x,0,infinity);
- 1
- \end{verbatim}
- \begin{displaymath}
- \int_{0}^{\infty} x sin(1/x) \, dx
- \end{displaymath}
- \begin{verbatim}
- int(x*sin(1/x),x,0,infinity);
- 1
- INT(X*SIN(---),X,0,INFINITY)
- X
- \end{verbatim}
- \begin{displaymath}
- \int_{0}^{\infty} x^2 cos(x) \, e^{-2x} dx
- \end{displaymath}
- \begin{verbatim}
- int(x^2*cos(x)*e^(-2*x),x,0,infinity);
- 4
- -----
- 125
- \end{verbatim}
- \begin{displaymath}
- \int_{0}^{\infty} x e^{-1/2x} H(1-x) \,dx = \int_{0}^{1} x e^{-1/2x} dx
- \end{displaymath}
- \begin{verbatim}
- int(x*e^(-1/2x)*Heaviside(1-x),x,0,infinity);
- 2*(2*SQRT(E) - 3)
- -------------------
- SQRT(E)
- \end{verbatim}
- \begin{displaymath}
- \int_{0}^{1} x \,log(1+x) \,dx
- \end{displaymath}
- \begin{verbatim}
- int(x*log(1+x),x,0,1);
- 1
- ---
- 4
- \end{verbatim}
- \begin{displaymath}
- \int_{0}^{y} cos(2x) \,dx
- \end{displaymath}
- \begin{verbatim}
- int(cos(2x),x,y,2y);
- SIN(4*Y) - SIN(2*Y)
- ---------------------
- 2
- \end{verbatim}
- \section{Integral Transforms}
- A useful application of the definite integration package is in the
- calculation of various integral transforms. The transforms
- available are as follows:
- \begin{itemize}
- \item Laplace transform
- \item Hankel transform
- \item Y-transform
- \item K-transform
- \item StruveH transform
- \item Fourier sine transform
- \item Fourier cosine transform
- \end{itemize}
- \subsection{Laplace transform}
- The Laplace transform
- $\hspace{20 mm} f(s) = \cal L$ \{F(t)\} =
- $\int_{0}^{\infty} e^{-st}F(t)\,dt$
- can be calculated by using the \verb+laplace_transform+ command.
- This requires as parameters
- \begin{itemize}
- \item the function to be integrated
- \item the integration variable.
- \end{itemize}
- For example
- $\hspace{56 mm} \cal L$ $\{e^{-at}\} \\$
- is entered as
- \begin{verbatim}
- laplace_transform(e^(-a*x),x);
- \end{verbatim}
- and returns the result
- \begin{displaymath}
- \frac{1}{s+a}
- \end{displaymath}
- \subsection{Hankel transform}
- The Hankel transform
- \begin{displaymath}
- f(\omega) = \int_{0}^{\infty} F(t) \,J_{\nu}(2\sqrt{\omega t}) \,dt
- \end{displaymath}
- can be calculated by using the \verb+hankel_transform+ command e.g.
- \begin{verbatim}
- hankel_transform(f(x),x);
- \end{verbatim}
- This is used in the same way as the \verb+laplace_transform+ command.
- \subsection{Y-transform}
- The Y-transform
- \begin{displaymath}
- f(\omega) = \int_{0}^{\infty} F(t) \,Y_{\nu}(2\sqrt{\omega t}) \,dt
- \end{displaymath}
- can be calculated by using the \verb+Y_transform+ command e.g.
- \begin{verbatim}
- Y_transform(f(x),x);
- \end{verbatim}
- This is used in the same way as the \verb+laplace_transform+ command.
- \subsection{K-transform}
- The K-transform
- \begin{displaymath}
- f(\omega) = \int_{0}^{\infty} F(t) \,K_{\nu}(2\sqrt{\omega t}) \,dt
- \end{displaymath}
- can be calculated by using the \verb+K_transform+ command e.g.
- \begin{verbatim}
- K_transform(f(x),x);
- \end{verbatim}
- This is used in the same way as the \verb+laplace_transform+ command.
- \subsection{StruveH transform}
- The StruveH transform
- \begin{displaymath}
- f(\omega) = \int_{0}^{\infty} F(t) \,StruveH(\nu,2\sqrt{\omega t}) \,dt
- \end{displaymath}
- can be calculated by using the \verb+struveh_transform+ command e.g.
- \begin{verbatim}
- struveh_transform(f(x),x);
- \end{verbatim}
- This is used in the same way as the \verb+laplace_transform+ command.
- \subsection{Fourier sine transform}
- The Fourier sine transform
- \begin{displaymath}
- f(s) = \int_{0}^{\infty} F(t) \,sin (st) \,dt
- \end{displaymath}
- can be calculated by using the \verb+fourier_sin+ command e.g.
- \begin{verbatim}
- fourier_sin(f(x),x);
- \end{verbatim}
- This is used in the same way as the \verb+laplace_transform+ command.
- \subsection{Fourier cosine transform}
- The Fourier cosine transform
- \begin{displaymath}
- f(s) = \int_{0}^{\infty} F(t) \,cos (st) \,dt
- \end{displaymath}
- can be calculated by using the \verb+fourier_cos+ command e.g.
- \begin{verbatim}
- fourier_cos(f(x),x);
- \end{verbatim}
- This is used in the same way as the \verb+laplace_transform+ command.
- \section{Additional Meijer G-function Definitions}
- The relevant Meijer G representation for any function is found by a
- pattern-matching process which is carried out on a list of Meijer
- G-function definitions. This list, although extensive, can never hope
- to be complete and therefore the user may wish to add more definitions.
- Definitions can be added by adding the following lines:
- \begin{verbatim}
- defint_choose(f(~x),~var => f1(n,x);
- symbolic putv(mellin!-transforms!*,n,'
- (() (m n p q) (ai) (bj) (C) (var)));
- \end{verbatim}
- where f(x) is the new function, i = 1..p, j=1..q, C = a constant,
- %where i = 1..p, j=1..q, C = a constant,
- var = variable, n = an indexing number.
- For example when considering $cos (x)$ we have
- \it Meijer G representation -
- \begin{displaymath}
- \sqrt{\pi} \,G^{1 0}_{0 2}\left(\frac{x^{2}}{4} \ \Bigg\vert
- \ { . \; . \atop 0 \; \frac{1}{2}} \right) dx
- \end{displaymath}
- \it Internal definite integration package representation -
- \begin{verbatim}
- defint_choose(cos(~x),~var) => f1(3,x);
- \end{verbatim}
- \rm where 3 is the indexing number corresponding to the 3
- in the following formula
- \begin{verbatim}
- symbolic putv(mellin!-transforms!*,3,'
- (() (1 0 0 2) () (nil (quotient 1 2))
- (sqrt pi) (quotient (expt x 2) 4)));
- \end{verbatim}
- or the more interesting example of $J_{n}(x)$:
- \it Meijer G representation -
- \begin{displaymath}
- G^{1 0}_{0 2} \left(\frac{x^{2}}{4} \ \Bigg\vert
- \ {. \; . \atop \frac{n}{2} \; {\frac{-n}{2}}} \right) dx
- \end{displaymath}
- \it Internal definite integration package representation -
- \begin{verbatim}
- defint_choose(besselj(~n,~x),~var) => f1(50,x,n);
- symbolic putv(mellin!-transforms!*,50,'
- ((n) (1 0 0 2) () ((quotient n 2)
- (minus quotient n 2)) 1
- (quotient (expt x 2) 4)));
- \end{verbatim}
- \section{The print\_conditions function}
- \rm The required conditions for the validity of the transform integrals
- can be viewed using the following command:
- \begin{verbatim}
- print_conditions().
- \end{verbatim}
- For example after calculating the following laplace transform
- \begin{verbatim}
- laplace_transform(x^k,x);
- \end{verbatim}
- using the \verb+print_conditions+ command would produce
- \begin{verbatim}
- repart(sum(ai) - sum(bj)) + 1/2 (q + 1 - p)>(q - p) repart(s)
- and ( - min(repart(bj))<repart(s))<1 - max(repart(ai))
- or mod(arg(eta))=pi*delta
- or ( - min(repart(bj))<repart(s))<1 - max(repart(ai))
- or mod(arg(eta))<pi*delta
- \end{verbatim}
- where
- \begin{displaymath}
- \begin{array}{ll}
- delta = s+t-\frac{u-v}{2}\\
- eta = 1-\alpha(v-u)-\mu-\rho\\
- \mu = \sum_{j=1}^{q} b_{j} - \sum_{i=1}^{p} a_{i} + \frac{p-q}{2} + 1\\
- \rho = \sum_{j=1}^{v} d{j} - \sum_{i=1}^{u} c_{i} + \frac{u-v}{2} + 1\\
- s,t,u,v,p,q,\alpha \; {\rm as \; in \; (1)}
- \end{array}
- \end{displaymath}
- \section{Acknowledgements}
- I would like to thank Victor Adamchik whose implementation of the
- definite integration package for \REDUCE is vital to this
- interface.
- \begin{thebibliography}{}
- \bibitem{Prudnikov} A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev,
- {\em Integrals and Series, Volume 3: More Special Functions} Gordon
- and Breach Science Publishers (1990)
- \bibitem{Adamchik:90} V.S. Adamchik and O.I. Marichev, {\em The
- Algorithm for Calculating Integrals of Hypergeometric Type Functions
- and its Realization in Reduce System} from {\em ISSAC 90:Symbolic and
- Algebraic Computation} Addison-Wesley Publishing Company (1990)
- \bibitem{Luke} Yudell L. Luke, {\em The Special Functions and their
- Approximations, Volume 1} Academic Press (1969).
- \end{thebibliography}
- \end{document}
|