123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598 |
- /*
- * gencry.c Copyright (C) 1998, A C Norman
- *
- * This program generates C code for ACNs encryption thing...
- * For an explanation see comments further down the code.
- */
- /* Signature: 0c7d0cd2 05-Nov-1998 */
- #include <stdio.h>
- #include <stdlib.h>
- /*
- * This code is capable of generating members of a family of generators.
- * It can cope with 32 or 64-bit arithmetic and with parameterisation
- * of the size of the generator.
- */
- #ifndef WORD_LENGTH
- /*
- * This may be 32 or 64, depending on the characteristics of the
- * target computer
- */
- # define WORD_LENGTH 32
- #endif
- #ifndef UNSIGNED_TYPE
- /*
- * This must be a C type that will hold an unsigned integer of size
- * as given by WORD_LENGTH. For 64-bits it may sometimes be
- * "unsigned long" but it may "unsigned long long" when using GCC on
- * 32-bit computers. Note that the quotes are needed around the type
- * description.
- */
- # define UNSIGNED_TYPE "unsigned int"
- #endif
- #ifndef CRYPT_BLOCK_SIZE
- /*
- * The code will generate this many bytes of data for each call. Must be
- * a multiple of the number of bytes in a word.
- */
- # define CRYPT_BLOCK_SIZE 128
- #endif
- #ifndef SHIFT_REGISTER_LENGTH
- /*
- * length on underlying shift register, and must be large enough to cope
- * with the CRYPT_BLOCK_SIZE above. This is tested for during code creation.
- * Rounded up to the next size for a primitive polynomial.
- */
- # define SHIFT_REGISTER_LENGTH 65
- #endif
- #ifndef SHUFFLE_BUFFER_SIZE
- /*
- * A larger shuffle-buffer causes worse cache misses, but would enhance
- * security. Rounded to a power of 2.
- */
- # define SHUFFLE_BUFFER_SIZE 4096
- #endif
- /*
- * This generator starts by using a 55/24 (or other) Lagged Fibonacci
- * generator, except that at each stage I sometimes use XOR, sometimes "+"
- * and sometimes "-". Each of these are much like simple XOR and specifically
- * do just that on the least significant bit (so we still have a period
- * of 2^k-1 there) but they make propagation into higher parts of the
- * word non-linear. I selected the mix of operators based on digits from
- * pi in the expectation that that leaves few systematic patterns.
- * The period of the whole register is clearly some multiple of (2^k-1).
- * It will not be 2^32 as big, but experiments with short registers
- * suggests that it will be an long enough, say over 2^16 times as long. If
- * I take k=65 then this ought to be sufficient.
- *
- * I collect a block of k words from that, and then form output words
- * by combining items from there in various shifted manners so that what
- * comes out mixes bits from high and low in the basic register with the
- * result that that knowledge of one output word does not reveal a single
- * clear value in the shift register. Again I use "^", "+" and "-" for
- * the combining and a manner mixed up using pi. The selection of which
- * of the registers words are combined is also derived from digits of pi
- * rather than being simply sequential. In particular the bottom bit of
- * an word in the shift register is only used after being XORed with a value
- * from 18 bits higher by where the perios ought to be long enough
- * and the mixing sufficient to obscure them. The high order bits (which
- * one might attack since they are used to control the shuffling) are mixed
- * with data from 13 bits lower, and also benefit (sometimes) from carries and
- * borrows in the combining. In a sixty-four bit register a large number
- * of bits in the middle of the word get formed by combining bits of three
- * raw words. For 32-bit working it is roughly the case that the bottom
- * section of an output word comes from one pair (A,B) say while the top
- * comes from a different pair (A,C).
- *
- * Finally I shuffle in a N (= 4096 perhaps) entry buffer so that answers
- * do not get issued in (easily) predictable order. Each cycling of the
- * generator produces k words in this manner, but I then only keep 32 of
- * these. Discarding the rest corresponds to throwing away a tolerably
- * confusing subset of the original shift-register output, as well as
- * arranging that output data is out of order.
- *
- * To start things I initially just fill the LFSR with data based upon
- * multiple copies of the key. I then cycle things. After a bit I
- * propagate information from the top half of each word to the bottom,
- * considering that without that the low order bits will not gain information
- * from enough of the key. I also force a low order bit to be "1" at
- * various stages (despite the bias!) to guarantee that my shift register
- * is not stuck in a zero cycle. I extract values form the generator to fill
- * up the shuffling buffer. Once crudely initialised I cycle the generator
- * enough times to refresh most of the values in the shuffle buffer several
- * times. This all makes key establishment pretty slow, but I view that
- * as almost desirable. It would of couse also be possible to fill both
- * shift register and buffer with values derived from the key using
- * a secure hash function.
- *
- * The arrangements here guarantee that the least significant bit of the
- * word-stream that is generated is of period 2^k-1. Each subsequent bit
- * counts as a further maximal-period shift register of length k that is
- * being driven by data injected via the carry chain from less significant
- * bits. I can not prove that there is no bias here, nor that the
- * resulting overall system has a period as long as one would hope for from
- * 32*k bits of state. One notes the analysis of the lagged-fibonacci
- * generator where Knuth reports on ways of distinguishing its output
- * from real randomness. These concerns are why I discard quite a large
- * proportion of the bits that I generate, and why I shuffle the output.
- *
- * We all know that shift-registers when used simply are weak. The
- * steps taken here to improve matters are
- * (a) using mixtures or +, - and ^ for the combining functions;
- * (b) shuffling the output, after the style of Knuth's "Algorithm B";
- * (c) discarding a proportion of the bits generated by the raw shift
- * register;
- * (d) make each output depend on a combination of several words from
- * the shift register, with not all words used.
- *
- * A lagged fibonacci generator would give more "1" bits than "0" in
- * various lengths of initial sub-sequence. I complement every other
- * output from the raw generator to mess this up a bit. The shuffling
- * then has to conceal whether I had odd or even items.
- *
- * Lagged fibonacci has trouble with a birthday spacings test, and shuffling
- * would not cure that, but throwing away some of my generated values will
- * help to a significant extent, as will the fact that I output words that
- * are generated as combinations of three items from the register.
- * A number of adjustments to the algorithm as shown here would be
- * obvious and easy to arrange:
- * (a) use a larger shuffle-buffer. At present I use 4096 words, but
- * increasing it would hardly change the code and would tend to
- * improve security but at the cost of memory requirement. Once
- * can redefine a macro here to organise this;
- * (b) use SHA-1 or some other secure hash to initialise both the shift
- * register and the shuffle buffer from the original key. This
- * would probably be a good thing to do. I use the scheme itself here
- * to make this code more self-contained;
- * (c) use a longer shift-register than the 55- or 65-entry one used here,
- * but still only keep 32 words of output from each full cycle through
- * it. That would slow things down in direct proportion to the
- * length of the register, but would enhance security by making more
- * information discarded as well as by increasing the period. The code
- * here has a varienty of options that could be enabled;
- * (d) use 64-bit arithmetic but essentially unaltered code to get
- * 32 64-bit words out in the amount of time that this code yields
- * 32 32-bit words. The code makes provision for this;
- * (e) Base the design on a shift register with more taps, with a view
- * that very few taps (as used here) are a source of weakness. Cost
- * will grow proportional to the number of taps used.
- *
- * For (c) and (e) suitable tap positions so that the least significant bits
- * still have maximal cycle lengths would be needed.
- *
- * Performance (65/4096) at 32 bits is around
- * 1 millisecond to set up a new key
- * 100 Mbytes per second generation of guff
- * (this is on a Pentium II at 400 Mhz)
- * and a crude test suggests that the scheme here fills a 128-byte buffer
- * roughly three times as fast as RC4 does (?).
- */
- int taps[][2] =
- {
- /*
- * A pair of numbers {k, t} here represents a primitive polynomial
- * x^k + x^t + 1
- * mod 2, which should generate sequences of length 2^k-1. I include lots
- * of very small polynomials here since they may be useful when testing this
- * scheme, but at present I default to k=65.
- */
- {2, 1},
- {3, 1},
- {4, 1},
- {5, 2},
- {6, 1},
- {7, 3},
- {9, 4},
- {10, 3},
- {11, 2},
- {15, 1},
- {17, 6},
- {18, 7},
- {20, 3},
- {21,2},
- {22, 1},
- {23, 5},
- {25, 3},
- {28, 3},
- {29, 2},
- {31, 6},
- {33, 13},
- {35, 2},
- {36, 11},
- {39, 4},
- {41, 3},
- {47, 5},
- {49, 9},
- {52, 3},
- {55, 24},
- {57, 7},
- {58, 19},
- {60, 1},
- {63, 1},
- {65, 18},
- {68, 9},
- {71, 6},
- {73, 25},
- {79, 9},
- {81, 4},
- {84, 13},
- {0, 0}
- };
- /*
- * I provide enought digits of pi for all the shift register configurations
- * listed above.
- */
- static char *pi =
- "3141592653589793238462643383279502884197169399375105820974944592"
- "3078164062862089986280348253421170679821480865132823066470938446"
- "0955058223172535940812848111745028410270193852110555964462294895"
- "4930381964428810975665933446128475648233786783165271201909145648"
- "5669234603486104543266482133936072602491412737245870066063155881"
- "7488152092096282925409171536436789259036001133053054882046652138"
- "4146951941511609433057270365759591953092186117381932611793105118"
- "5480744623799627495673518857527248912279381830119491298336733624"
- "4065664308602139494639522473719070217986094370277053921717629317"
- "6752384674818467669405132000568127145263560827785771342757789609"
- "1736371787214684409012249534301465495853710507922796892589235420"
- "1995611212902196086403441815981362977477130996051870721134999999"
- "8372978049951059731732816096318595024459455346908302642522308253"
- "3446850352619311881710100031378387528865875332083814206171776691"
- "4730359825349042875546873115956286388235378759375195778185778053"
- "2171226806613001927876611195909216420198938095257201065485863278";
- static char *pip;
- /*
- * The next procedure returns "^", "+" or "-", and the selection made
- * depends on digits from pi (as tabulated above). I discard '9' digits
- * and use '0' to '8' to give a pair of three-way choices. The use of pi
- * here is not because it has special magic properties. It is more the
- * opposite: people will not suspect me of having chosen mixes of the
- * operations in any awkward way if I use a natural constant in the choice.
- */
- static next_op = -1;
- char *op()
- {
- int w;
- if (next_op >= 0)
- { w = next_op;
- next_op = -1;
- }
- else
- { do
- { if ((w = *pip++) == 0)
- { printf("I ran out of pi digits\n");
- exit(1);
- }
- w -= '0';
- } while (w == 9);
- next_op = w % 3;
- w = w / 3;
- }
- switch (w)
- {
- default: return "^";
- case 1: return "+";
- case 2: return "-";
- }
- }
- /*
- * return a value in the range 0 ... n-1 based on digits from pi.
- */
- int pirand(int n)
- {
- int c, w, t;
- for (;;)
- { w = 0;
- t = 1;
- while (w < n)
- { if ((c = *pip++) == 0)
- { printf("I ran out of pi digits\n");
- exit(1);
- }
- w = 10*w + c - '0';
- t = 10*t;
- }
- c = (t/n)*n;
- if (w < c) return w % n;
- /*
- * I sample again if the value pulled from pi is outside a range that is
- * an exact multiple of n.
- */
- }
- }
- #define BYTES_PER_WORD (WORD_LENGTH/8)
- int main(int argc, char *argv[])
- {
- int len, tap, shift, shuffle, i, w;
- int perm1[SHIFT_REGISTER_LENGTH+20],
- perm2[SHIFT_REGISTER_LENGTH+20],
- perm3[SHIFT_REGISTER_LENGTH+20];
- /*
- * First I find a primitive polynomial that will support a shift register of
- * the desired length. I allow myself to round the length up by up to 20.
- */
- for (i=0;;i++)
- { if (taps[i][0] == 0)
- { printf("Shift register taps not found\n");
- exit(1);
- }
- else if (taps[i][0] >= SHIFT_REGISTER_LENGTH &&
- taps[i][0] < SHIFT_REGISTER_LENGTH+20) break;
- }
- len = taps[i][0];
- tap = taps[i][1];
- /*
- * next I ensure that the shuffle buffer will have a size that is a power of
- * 2, and I calculate the logarithm of its size.
- */
- i = SHUFFLE_BUFFER_SIZE;
- shift = 0;
- while (i > 1)
- { shift++;
- i = i >> 1;
- }
- shuffle = 1 << shift;
- /*
- * Establish three mildly chaotic permutations that will help me use values
- * from the shift register in unhelpful orderings.
- */
- for (i=0; i<len; i++)
- perm1[i] = perm2[i] = perm3[i] = i;
- pip = pi;
- for (i=0; i<len; i++)
- { int p = pirand(len-i);
- w = perm1[i]; perm1[i] = perm1[i+p]; perm1[i+p] = w;
- p = pirand(len-i);
- w = perm2[i]; perm2[i] = perm2[i+p]; perm2[i+p] = w;
- p = pirand(len-i);
- w = perm3[i]; perm3[i] = perm3[i+p]; perm3[i+p] = w;
- }
- printf("\n/*\n");
- printf(" * word length = %d\n", WORD_LENGTH);
- printf(" * shift register length = %d\n", len);
- printf(" * tap at position %d\n", tap);
- printf(" * shuffle-buffer size = %d\n", shuffle);
- printf(" */\n\n");
- printf("#ifdef TIME_TEST\n\n");
- printf("#include <stdio.h>\n");
- printf("#include <time.h>\n\n");
- printf("#define N 10000000 /* parameters for time test */\n");
- printf("#define NSTARTS 4000\n");
- printf("#define NTINY 50000000\n");
- printf("#define KEY \"Arthurs's sample key\"\n\n");
- printf("typedef %s unsigned%d;\n\n", UNSIGNED_TYPE, WORD_LENGTH);
- printf("#endif /* TIME_TEST */\n\n");
- printf("static unsigned%d lf[%d], mix[%d];\n\n", WORD_LENGTH, len, shuffle);
- printf("#define R(x) ((x) >> %d)\n", WORD_LENGTH-shift);
- printf("#define S(x) ((x) >> 18)\n");
- printf("#define T(x) ((x) << 13)\n\n");
- printf("static unsigned char byte_order_test[] =\n");
- printf("{1, 0, 0, 0, 0, 0, 0, 0};\n\n");
- printf("#define CRYPT_BLOCK_SIZE %d\n\n", CRYPT_BLOCK_SIZE);
- printf("void crypt_get_block(unsigned char block[CRYPT_BLOCK_SIZE])\n{\n");
- printf(" unsigned%d *b = (unsigned%d *)block;\n",
- WORD_LENGTH, WORD_LENGTH);
- printf(" int n;\n");
- for (i=0; i<len; i++)
- { int j = (i + tap) % len;
- printf(" lf[%d] %s= lf[%d];", i, op(), j);
- if ((i % 2) == 1) printf("\n");
- else if (i < 10 && j < 10) printf(" ");
- else if (i < 10 || j < 10) printf(" ");
- }
- if ((len % 2) == 1) printf("\n");
- w = -1;
- for (i=0; i<len/4; i++)
- { char *op1, *op2;
- printf(" n = R(lf[%d]);", 4*i);
- if (++w < CRYPT_BLOCK_SIZE/BYTES_PER_WORD)
- printf(" b[%d] = mix[n];", w);
- op1 = op(); op2 = op();
- printf(" mix[n] = %s(lf[%d] %s S(lf[%d])) %s T(lf[%d]);\n",
- (w&1) ? "~" : "", perm1[4*i], op1, perm2[4*i], op2, perm3[4*i]);
- printf(" n = R(lf[%d]);", 4*i+1);
- if (++w < CRYPT_BLOCK_SIZE/BYTES_PER_WORD)
- printf(" b[%d] = mix[n];", w);
- op1 = op(); op2 = op();
- printf(" mix[n] = %s(lf[%d] %s S(lf[%d])) %s T(lf[%d]);\n",
- (w&1) ? "~" : "", perm1[4*i+1], op1,
- perm2[4*i+1], op2, perm3[4*i+1]);
- printf(" n = R(lf[%d]);", 4*i+2);
- if (++w < CRYPT_BLOCK_SIZE/BYTES_PER_WORD)
- printf(" b[%d] = mix[n];", w);
- op1 = op(); op2 = op();
- printf(" mix[n] = %s(lf[%d] %s S(lf[%d])) %s T(lf[%d]);\n",
- (w&1) ? "~" : "", perm1[4*i+2], op1,
- perm2[4*i+2], op2, perm3[4*i+2]);
- }
- if (w < CRYPT_BLOCK_SIZE/BYTES_PER_WORD)
- { printf("*** SHIFT_REGISTER_LENGTH (=%d) is too short ***\n",
- SHIFT_REGISTER_LENGTH);
- printf("*** given CRYPT_BLOCK_SIZE = %d ***\n", CRYPT_BLOCK_SIZE);
- exit(1);
- }
- printf("/* The test this way around favours Intel etc byte order */\n");
- printf(" if (((unsigned int *)byte_order_test)[0] != 1)\n");
- printf(" { int i;\n");
- printf(" for (i=0; i<%d; i++)\n", CRYPT_BLOCK_SIZE/BYTES_PER_WORD);
- printf(" { unsigned%d w = b[i];\n", WORD_LENGTH);
- printf(" unsigned%d b0, b1, b2, b3;\n", WORD_LENGTH);
- if (WORD_LENGTH == 64)
- printf(" unsigned%d b4, b5, b6, b7;\n", WORD_LENGTH);
- if (WORD_LENGTH == 32)
- { printf(" b0 = (w >> 24) & 0xffU;\n");
- printf(" b1 = (w >> 8) & 0xff00U;\n");
- printf(" b2 = (w << 8) & 0xff0000U;\n");
- printf(" b3 = (w << 24) & 0xff000000U;\n");
- printf(" b[i] = b0 | b1 | b2 | b3;\n");
- }
- else
- { char *suffix = "LU";
- /*
- * The following line is a messy cop-out, but is mainly here as a WARNING
- * that to support 64-bit arithmetic MIGHT sometimes need non-standard
- * code.
- */
- if (strcmp(UNSIGNED_TYPE, "unsigned long long int") == 0)
- suffix = "LLU";
- printf(" b0 = (w >> 56) & 0xff%s;\n", suffix);
- printf(" b1 = (w >> 40) & 0xff00%s;\n", suffix);
- printf(" b2 = (w >> 24) & 0xff0000%s;\n", suffix);
- printf(" b3 = (w >> 8) & 0xff000000%s;\n", suffix);
- printf(" b4 = (w << 8) & 0xff00000000%s;\n", suffix);
- printf(" b5 = (w << 24) & 0xff0000000000%s;\n", suffix);
- printf(" b6 = (w << 40) & 0xff000000000000%s;\n", suffix);
- printf(" b7 = (w << 56) & 0xff00000000000000%s;\n", suffix);
- printf(" b[i] = b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7;\n");
- }
- printf(" }\n");
- printf(" }\n");
- printf(" return;\n}\n\n");
- printf("void crypt_init(char *key)\n{\n");
- printf(" char *pk = key;\n");
- printf(" unsigned char junk[CRYPT_BLOCK_SIZE];\n");
- printf(" int i, j;\n");
- printf(" unsigned%d w = 0;\n", WORD_LENGTH);
- printf(" for (i=0; i<%d; i++)\n", BYTES_PER_WORD*len);
- printf(" { int k = *pk++;\n");
- printf(" if (k == 0) pk = key;");
- printf(" /* Cycle key (inc. terminating 0) */\n");
- printf(" w = (w << 8) | (k & 0xff);\n");
- printf(" if ((i %% %d) == %d) lf[i/%d] = w;\n",
- BYTES_PER_WORD, BYTES_PER_WORD-1, BYTES_PER_WORD);
- printf(" }\n");
- printf(" for (i=0; i<%d; i++) mix[i] = 0;\n", shuffle);
- printf(" for (i=0; i<8; i++)\n");
- printf(" { for (j=0; j<%d; j++)\n", len);
- printf(" lf[j] = (lf[j] << 10) | (lf[j] >> %d);\n",
- WORD_LENGTH-10);
- printf(" lf[0] |= 1;\n");
- printf(" for (j=0; j<64; j++)\n");
- printf(" crypt_get_block(junk);\n");
- printf(" }\n");
- printf(" for (i=0; i<%d;)\n", shuffle);
- printf(" { int j;\n");
- printf(" crypt_get_block(junk);\n");
- printf(" for (j=0; j<%d; j++)\n", CRYPT_BLOCK_SIZE/BYTES_PER_WORD);
- printf(" { unsigned%d r = junk[%d*j];\n", WORD_LENGTH, BYTES_PER_WORD);
- printf(" r = (r << 8) | junk[%d*j+1];\n", BYTES_PER_WORD);
- printf(" r = (r << 8) | junk[%d*j+2];\n", BYTES_PER_WORD);
- printf(" r = (r << 8) | junk[%d*j+3];\n", BYTES_PER_WORD);
- if (WORD_LENGTH == 64)
- { printf(" r = (r << 8) | junk[%d*j+4];\n", BYTES_PER_WORD);
- printf(" r = (r << 8) | junk[%d*j+5];\n", BYTES_PER_WORD);
- printf(" r = (r << 8) | junk[%d*j+6];\n", BYTES_PER_WORD);
- printf(" r = (r << 8) | junk[%d*j+7];\n", BYTES_PER_WORD);
- }
- printf(" if (r == 0) continue;\n");
- printf(" mix[i++] ^= junk[j];\n");
- printf(" if (i == %d) break;\n", shuffle);
- printf(" }\n");
- printf(" }\n");
- printf(" for (i=0; i<%d; i++)\n",
- (3*BYTES_PER_WORD*shuffle)/(2*CRYPT_BLOCK_SIZE));
- printf(" crypt_get_block(junk);\n");
- printf(" return;\n");
- printf("}\n\n");
- printf("#ifdef TIME_TEST\n");
- printf("/*\n");
- printf(" * The main program here does not do anything of real interest. It\n");
- printf(" * runs both the key-setup and the main loop lots of times and reports\n");
- printf(" * how long it all takes.\n");
- printf(" *\n");
- #if SHIFT_REGISTER_LENGTH==65 && SHUFFLE_BUFFER_SIZE==4096 && WORD_LENGTH==32
- printf(" * Here is some sample output from a Pentium-II 400Mhz system\n");
- printf(" *\n");
- printf(" * [02faf080] 7.60 nanoseconds to do tiny loop\n");
- printf(" * 1.25 milliseconds to startup\n");
- printf(" * rate = 104.86 megabytes per second\n");
- printf(" * 79 a7 e1 52 2e 84 09 ce d0 3d 45 b2 52 2d b6 c7\n");
- printf(" * 9b ee 57 25 68 58 b7 44 42 51 1c c7 de 69 0f 89\n");
- printf(" * 98 6c cd 45 e0 a1 d4 04 a3 be 3d 5f 93 64 c9 d9\n");
- printf(" * b9 47 28 59 d0 99 5a 35 56 fd 89 e6 48 4f a4 88\n");
- printf(" * 7e dd 31 76 2b 8e 96 fa d0 6f d7 30 9c 3c 01 97\n");
- printf(" * 8a 54 93 c0 02 1d 26 df 31 2b 7b 92 56 51 fa 47\n");
- printf(" * 92 13 39 47 45 d2 b5 33 2b f6 cc 62 ec 73 00 40\n");
- printf(" * 66 ab 37 f5 1d 21 3a a9 b8 da 35 ac 04 f1 3b 53\n");
- printf(" *\n");
- #endif
- printf(" */\n");
- printf("\n");
- printf("int main(int argc, char *argv[])\n");
- printf("{\n");
- printf(" clock_t c0, c1;\n");
- printf(" unsigned char r[CRYPT_BLOCK_SIZE];\n");
- printf(" int i, j = 0;\n");
- printf(" double rate;\n");
- printf(" c0 = clock();\n");
- printf(" for (i=0; i<(NTINY+1); i++) j ^= i;\n");
- printf(" c1 = clock();\n");
- printf(" printf(\"[%%.8x] %%.2f nanoseconds to do tiny loop\\n\", j,\n");
- printf(" 1.0e9*(double)(c1-c0)/((double)CLOCKS_PER_SEC*(double)(NTINY+1)));\n");
- printf(" c0 = clock();\n");
- printf(" for (i=0; i<NSTARTS; i++) crypt_init(KEY);\n");
- printf(" c1 = clock();\n");
- printf(" printf(\"%%.2f milliseconds to startup\\n\",\n");
- printf(" 1000.0*(double)(c1-c0)/((double)CLOCKS_PER_SEC*(double)NSTARTS));\n");
- printf(" c0 = clock();\n");
- printf(" for (i=0; i<N; i++) crypt_get_block(r);\n");
- printf(" c1 = clock();\n");
- printf(" rate = (double)N*(double)CRYPT_BLOCK_SIZE*(double)CLOCKS_PER_SEC/\n");
- printf(" ((double)(c1-c0)*1.0e6);\n");
- printf(" printf(\"rate = %%.2f megabytes per second\\n\", rate);\n");
- printf(" for (i=0; i<128; i++)\n");
- printf(" { printf(\"%%.2x \", r[i]);\n");
- printf(" if ((i %% 16) == 15) printf(\"\\n\");\n");
- printf(" }\n");
- printf(" return 0;\n");
- printf("}\n\n");
- printf("#endif /* TIME_TEST */\n\n");
- printf("#undef R\n");
- printf("#undef S\n");
- printf("#undef T\n\n");
- return 0;
- }
- /* end of gencry.c */
|