taylor.log 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804
  1. Codemist Standard Lisp 3.54 for DEC Alpha: May 23 1994
  2. Dump file created: Mon May 23 10:39:11 1994
  3. REDUCE 3.5, 15-Oct-93 ...
  4. Memory allocation: 6023424 bytes
  5. +++ About to read file ndotest.red
  6. comment
  7. Test and demonstration file for the Taylor expansion package,
  8. by Rainer M. Schoepf. Works with version 1.8b (03-Sep-93);
  9. showtime;
  10. Time: 0 ms
  11. on errcont;
  12. % disable interruption on errors
  13. comment Simple Taylor expansion;
  14. xx := taylor (e**x, x, 0, 4);
  15. 1 2 1 3 1 4 5
  16. xx := 1 + x + ---*x + ---*x + ----*x + O(x )
  17. 2 6 24
  18. yy := taylor (e**y, y, 0, 4);
  19. 1 2 1 3 1 4 5
  20. yy := 1 + y + ---*y + ---*y + ----*y + O(y )
  21. 2 6 24
  22. comment Basic operations, i.e. addition, subtraction, multiplication,
  23. and division are possible: this is not done automatically if
  24. the switch TAYLORAUTOCOMBINE is OFF. In this case it is
  25. necessary to use taylorcombine;
  26. taylorcombine (xx**2);
  27. 2 4 3 2 4 5
  28. 1 + 2*x + 2*x + ---*x + ---*x + O(x )
  29. 3 3
  30. taylorcombine (ws - xx);
  31. 3 2 7 3 5 4 5
  32. x + ---*x + ---*x + ---*x + O(x )
  33. 2 6 8
  34. comment The result is again a Taylor kernel;
  35. if taylorseriesp ws then write "OK";
  36. OK
  37. comment It is not possible to combine Taylor kernels that were
  38. expanded with respect to different variables;
  39. taylorcombine (xx**yy);
  40. 1 2 1 3 1 4 5
  41. (1 + x + ---*x + ---*x + ----*x + O(x ))
  42. 2 6 24
  43. 1 2 1 3 1 4 5
  44. **(1 + y + ---*y + ---*y + ----*y + O(y ))
  45. 2 6 24
  46. comment But we can take the exponential or the logarithm
  47. of a Taylor kernel;
  48. taylorcombine (e**xx);
  49. 2 5*e 3 5*e 4 5
  50. e + e*x + e*x + -----*x + -----*x + O(x )
  51. 6 8
  52. taylorcombine log ws;
  53. 1 2 1 3 1 4 5
  54. 1 + x + ---*x + ---*x + ----*x + O(x )
  55. 2 6 24
  56. comment A more complicated example;
  57. hugo := taylor(log(1/(1-x)),x,0,5);
  58. 1 2 1 3 1 4 1 5 6
  59. hugo := x + ---*x + ---*x + ---*x + ---*x + O(x )
  60. 2 3 4 5
  61. taylorcombine(exp(hugo/(1+hugo)));
  62. 1 4 6
  63. 1 + x + ----*x + O(x )
  64. 12
  65. comment We may try to expand about another point;
  66. taylor (xx, x, 1, 2);
  67. 65 8 5 2 3
  68. ---- + ---*(x - 1) + ---*(x - 1) + O((x - 1) )
  69. 24 3 4
  70. comment Arc tangent is one of the functions this package knows of;
  71. xxa := taylorcombine atan ws;
  72. xxa :=
  73. 65 1536 2933040 2 3
  74. atan(----) + ------*(x - 1) - ----------*(x - 1) + O((x - 1) )
  75. 24 4801 23049601
  76. comment The trigonometric functions;
  77. taylor (tan x / x, x, 0, 2);
  78. 1 2 3
  79. 1 + ---*x + O(x )
  80. 3
  81. taylorcombine sin ws;
  82. cos(1) 2 3
  83. sin(1) + --------*x + O(x )
  84. 3
  85. taylor (cot x / x, x, 0, 4);
  86. -2 1 1 2 2 4 5
  87. x - --- - ----*x - -----*x + O(x )
  88. 3 45 945
  89. comment Expansion with respect to more than one kernel is possible;
  90. xy := taylor (e**(x+y), x, 0, 2, y, 0, 2);
  91. 1 2 3 3
  92. xy := 1 + y + ---*y + x + y*x + (4 terms) + O(x ,y )
  93. 2
  94. taylorcombine (ws**2);
  95. 2 3 3
  96. 1 + 2*y + 2*y + 2*x + 4*y*x + (4 terms) + O(x ,y )
  97. comment We take the inverse and convert back to REDUCE's standard
  98. representation;
  99. taylorcombine (1/ws);
  100. 2 3 3
  101. 1 - 2*x + 2*x - 2*y + 4*y*x + (4 terms) + O(x ,y )
  102. taylortostandard ws;
  103. 2 2 2 2 2 2
  104. 4*x *y - 4*x *y + 2*x - 4*x*y + 4*x*y - 2*x + 2*y - 2*y + 1
  105. comment Some examples of Taylor kernel divsion;
  106. xx1 := taylor (sin (x), x, 0, 4);
  107. 1 3 5
  108. xx1 := x - ---*x + O(x )
  109. 6
  110. taylorcombine (xx/xx1);
  111. -1 2 1 2 3
  112. x + 1 + ---*x + ---*x + O(x )
  113. 3 3
  114. taylorcombine (1/xx1);
  115. -1 1 3
  116. x + ---*x + O(x )
  117. 6
  118. tt1 := taylor (exp (x), x, 0, 3);
  119. 1 2 1 3 4
  120. tt1 := 1 + x + ---*x + ---*x + O(x )
  121. 2 6
  122. tt2 := taylor (sin (x), x, 0, 3);
  123. 1 3 4
  124. tt2 := x - ---*x + O(x )
  125. 6
  126. tt3 := taylor (1 + tt2, x, 0, 3);
  127. 1 3 4
  128. tt3 := 1 + x - ---*x + O(x )
  129. 6
  130. taylorcombine(tt1/tt2);
  131. -1 2 2
  132. x + 1 + ---*x + O(x )
  133. 3
  134. taylorcombine(tt1/tt3);
  135. 1 2 1 3 4
  136. 1 + ---*x - ---*x + O(x )
  137. 2 6
  138. taylorcombine(tt2/tt1);
  139. 2 1 3 4
  140. x - x + ---*x + O(x )
  141. 3
  142. taylorcombine(tt3/tt1);
  143. 1 2 1 3 4
  144. 1 - ---*x + ---*x + O(x )
  145. 2 6
  146. comment Here's what I call homogeneous expansion;
  147. xx := taylor (e**(x*y), {x,y}, 0, 2);
  148. 3
  149. xx := 1 + y*x + O({x,y} )
  150. xx1 := taylor (sin (x+y), {x,y}, 0, 2);
  151. 3
  152. xx1 := y + x + O({x,y} )
  153. xx2 := taylor (cos (x+y), {x,y}, 0, 2);
  154. 1 2 1 2 3
  155. xx2 := 1 - ---*y - y*x - ---*x + O({x,y} )
  156. 2 2
  157. temp := taylorcombine (xx/xx2);
  158. 1 2 1 2 3
  159. temp := 1 + ---*y + 2*y*x + ---*x + O({x,y} )
  160. 2 2
  161. taylorcombine (ws*xx2);
  162. 3
  163. 1 + y*x + O({x,y} )
  164. comment The following shows a principal difficulty:
  165. since xx1 is symmetric in x and y but has no constant term
  166. it is impossible to compute 1/xx1;
  167. taylorcombine (1/xx1);
  168. ***** Not a unit in argument to invtaylor
  169. comment Substitution in Taylor expressions is possible;
  170. sub (x=z, xy);
  171. 1 2 3 3
  172. 1 + y + ---*y + z + y*z + (4 terms) + O(z ,y )
  173. 2
  174. comment Expression dependency in substitution is detected;
  175. sub (x=y, xy);
  176. ***** Substitution of dependent variables y y
  177. comment It is possible to replace a Taylor variable by a constant;
  178. sub (x=4, xy);
  179. 13 2 3
  180. 13 + 13*y + ----*y + O(y )
  181. 2
  182. sub (x=4, xx1);
  183. 3
  184. 4 + y + O(y )
  185. comment This package has three switches:
  186. TAYLORKEEPORIGINAL, TAYLORAUTOEXPAND, and TAYLORAUTOCOMBINE;
  187. on taylorkeeporiginal;
  188. temp := taylor (e**(x+y), x, 0, 5);
  189. y y y
  190. y y e 2 e 3 e 4 6
  191. temp := e + e *x + ----*x + ----*x + ----*x + (1 term) + O(x )
  192. 2 6 24
  193. taylorcombine (log (temp));
  194. 6
  195. y + x + O(x )
  196. taylororiginal ws;
  197. x + y
  198. taylorcombine (temp * e**x);
  199. y y y
  200. x y y e 2 e 3 e 4 6
  201. e *(e + e *x + ----*x + ----*x + ----*x + (1 term) + O(x ))
  202. 2 6 24
  203. on taylorautoexpand;
  204. taylorcombine ws;
  205. y y
  206. y y y 2 4*e 3 2*e 4 6
  207. e + 2*e *x + 2*e *x + ------*x + ------*x + (1 term) + O(x )
  208. 3 3
  209. taylororiginal ws;
  210. 2*x + y
  211. e
  212. taylorcombine (xx1 / x);
  213. -1 2
  214. y*x + 1 + O({x,y} )
  215. on taylorautocombine;
  216. xx / xx2;
  217. 1 2 1 2 3
  218. 1 + ---*y + 2*y*x + ---*x + O({x,y} )
  219. 2 2
  220. ws * xx2;
  221. 3
  222. 1 + y*x + O({x,y} )
  223. comment Another example that shows truncation if Taylor kernels
  224. of different expansion order are combined;
  225. comment First we increase the number of terms to be printed;
  226. taylorprintterms := all;
  227. taylorprintterms := all
  228. p := taylor (x**2 + 2, x, 0, 10);
  229. 2 11
  230. p := 2 + x + O(x )
  231. p - x**2;
  232. 2 11 2
  233. (2 + x + O(x )) - x
  234. p - taylor (x**2, x, 0, 5);
  235. 6
  236. 2 + O(x )
  237. taylor (p - x**2, x, 0, 6);
  238. 7
  239. 2 + O(x )
  240. off taylorautocombine;
  241. taylorcombine(p-x**2);
  242. 11
  243. 2 + O(x )
  244. taylorcombine(p - taylor(x**2,x,0,5));
  245. 6
  246. 2 + O(x )
  247. comment Switch back to finite number of terms;
  248. taylorprintterms := 6;
  249. taylorprintterms := 6
  250. comment Some more examples;
  251. taylor ((1 + x)**n, x, 0, 3);
  252. 2
  253. n*(n - 1) 2 n*(n - 3*n + 2) 3 4
  254. 1 + n*x + -----------*x + ------------------*x + O(x )
  255. 2 6
  256. taylor (e**(-a*t) * (1 + sin(t)), t, 0, 4);
  257. 3 2
  258. a*(a - 2) 2 - a + 3*a - 1 3
  259. 1 + ( - a + 1)*t + -----------*t + ------------------*t
  260. 2 6
  261. 3 2
  262. a*(a - 4*a + 4) 4 5
  263. + -------------------*t + O(t )
  264. 24
  265. operator f;
  266. taylor (1 + f(t), t, 0, 3);
  267. sub(t=0,df(f(t),t,2)) 2
  268. (f(0) + 1) + sub(t=0,df(f(t),t))*t + -----------------------*t
  269. 2
  270. sub(t=0,df(f(t),t,3)) 3 4
  271. + -----------------------*t + O(t )
  272. 6
  273. clear f;
  274. taylor (sqrt(1 + a*x + sin(x)), x, 0, 3);
  275. 2 3 2
  276. a + 1 - a - 2*a - 1 2 3*a + 9*a + 9*a - 1 3
  277. 1 + -------*x + -----------------*x + -----------------------*x
  278. 2 8 48
  279. 4
  280. + O(x )
  281. taylorcombine (ws**2);
  282. 1 3 4
  283. 1 + (a + 1)*x - ---*x + O(x )
  284. 6
  285. taylor (sqrt(1 + x), x, 0, 5);
  286. 1 1 2 1 3 5 4 7 5 6
  287. 1 + ---*x - ---*x + ----*x - -----*x + -----*x + O(x )
  288. 2 8 16 128 256
  289. taylor ((cos(x) - sec(x))^3, x, 0, 5);
  290. 6
  291. 0 + O(x )
  292. taylor ((cos(x) - sec(x))^-3, x, 0, 5);
  293. -6 1 -4 11 -2 347 6767 2 15377 4
  294. - x + ---*x + -----*x - ------- - --------*x - ---------*x
  295. 2 120 15120 604800 7983360
  296. 6
  297. + O(x )
  298. taylor (sqrt(1 - k^2*sin(x)^2), x, 0, 6);
  299. 2 2 2 2 4 2
  300. k 2 k *( - 3*k + 4) 4 k *( - 45*k + 60*k - 16) 6
  301. 1 - ----*x + ------------------*x + ----------------------------*x
  302. 2 24 720
  303. 7
  304. + O(x )
  305. taylor (sin(x + y), x, 0, 3, y, 0, 3);
  306. 1 3 1 2 1 2 1 2 3
  307. x - ---*x + y - ---*y*x - ---*y *x + ----*y *x + (2 terms)
  308. 6 2 2 12
  309. 4 4
  310. + O(x ,y )
  311. taylor (e^x - 1 - x,x,0,6);
  312. 1 2 1 3 1 4 1 5 1 6 7
  313. ---*x + ---*x + ----*x + -----*x + -----*x + O(x )
  314. 2 6 24 120 720
  315. taylorcombine sqrt ws;
  316. 1 1 2 1 3 1 4
  317. ---------*x + -----------*x + ------------*x + -------------*x
  318. sqrt(2) 6*sqrt(2) 36*sqrt(2) 270*sqrt(2)
  319. 1 5 6
  320. + --------------*x + O(x )
  321. 2592*sqrt(2)
  322. comment A more complicated example contributed by Stan Kameny;
  323. zz2 := (z*(z-2*pi*i)*(z-pi*i/2)^2)/(sinh z-i);
  324. 3 2 2 3
  325. z*(2*i*pi - 12*i*pi*z - 9*pi *z + 4*z )
  326. zz2 := -------------------------------------------
  327. 4*(sinh(z) - i)
  328. dz2 := df(zz2,z);
  329. 3 3 2 2
  330. dz2 := ( - 2*cosh(z)*i*pi *z + 12*cosh(z)*i*pi*z + 9*cosh(z)*pi *z
  331. 4 3 2
  332. - 4*cosh(z)*z + 2*sinh(z)*i*pi - 36*sinh(z)*i*pi*z
  333. 2 3 2 3
  334. - 18*sinh(z)*pi *z + 16*sinh(z)*z + 18*i*pi *z - 16*i*z
  335. 3 2 2
  336. + 2*pi - 36*pi*z )/(4*(sinh(z) - 2*sinh(z)*i - 1))
  337. z0 := pi*i/2;
  338. i*pi
  339. z0 := ------
  340. 2
  341. taylor(dz2,z,z0,6);
  342. 2
  343. - pi + 16 i*pi pi i*pi 2
  344. - 2*pi + -------------*(z - ------) + ----*(z - ------)
  345. 4*i 2 2 2
  346. 2
  347. 3*pi - 80 i*pi 3 pi i*pi 4
  348. + ------------*(z - ------) - ----*(z - ------)
  349. 120*i 2 24 2
  350. 2
  351. - 5*pi + 168 i*pi 5 i*pi 7
  352. + ----------------*(z - ------) + (1 term) + O((z - ------) )
  353. 3360*i 2 2
  354. comment A problem are non-analytic terms: there are no precautions
  355. taken to detect or handle them;
  356. taylor (sqrt (x), x, 0, 2);
  357. taylor(sqrt(x),x,0,2)
  358. taylor (e**(1/x), x, 0, 2);
  359. 1/x
  360. taylor(e ,x,0,2)
  361. comment Even worse: you can substitute a non analytical kernel;
  362. sub (y = sqrt (x), yy);
  363. 1 2 1 3 1 4
  364. 1 + sqrt(x) + ---*sqrt(x) + ---*sqrt(x) + ----*sqrt(x)
  365. 2 6 24
  366. 5
  367. + O(sqrt(x) )
  368. comment Expansion about infinity is possible in principle...;
  369. taylor (e**(1/x), x, infinity, 5);
  370. 1 1 1 1 1 1 1 1 1 1
  371. 1 + --- + ---*---- + ---*---- + ----*---- + -----*---- + O(----)
  372. x 2 2 6 3 24 4 120 5 6
  373. x x x x x
  374. xi := taylor (sin (1/x), x, infinity, 5);
  375. 1 1 1 1 1 1
  376. xi := --- - ---*---- + -----*---- + O(----)
  377. x 6 3 120 5 6
  378. x x x
  379. y1 := taylor(x/(x-1), x, infinity, 3);
  380. 1 1 1 1
  381. y1 := 1 + --- + ---- + ---- + O(----)
  382. x 2 3 4
  383. x x x
  384. z := df(y1, x);
  385. 1 1 1 1
  386. z := - ---- - 2*---- - 3*---- + O(----)
  387. 2 3 4 5
  388. x x x x
  389. comment ...but far from being perfect;
  390. taylor (1 / sin (x), x, infinity, 5);
  391. 1
  392. taylor(--------,x,infinity,5)
  393. sin(x)
  394. clear z;
  395. comment The template of a Taylor kernel can be extracted;
  396. taylortemplate yy;
  397. {{y,0,4}}
  398. taylortemplate xxa;
  399. {{x,1,2}}
  400. taylortemplate xi;
  401. {{x,infinity,5}}
  402. taylortemplate xy;
  403. {{x,0,2},{y,0,2}}
  404. taylortemplate xx1;
  405. {{{x,y},0,2}}
  406. comment Here is a slightly less trivial example;
  407. exp := (sin (x) * sin (y) / (x * y))**2;
  408. 2 2
  409. sin(x) *sin(y)
  410. exp := -----------------
  411. 2 2
  412. x *y
  413. taylor (exp, x, 0, 1, y, 0, 1);
  414. 2 2
  415. 1 + O(x ,y )
  416. taylor (exp, x, 0, 2, y, 0, 2);
  417. 1 2 1 2 1 2 2 3 3
  418. 1 - ---*x - ---*y + ---*y *x + O(x ,y )
  419. 3 3 9
  420. tt := taylor (exp, {x,y}, 0, 2);
  421. 1 2 1 2 3
  422. tt := 1 - ---*y - ---*x + O({x,y} )
  423. 3 3
  424. comment An example that uses factorization;
  425. on factor;
  426. ff := y**5 - 1;
  427. 4 3 2
  428. ff := (y + y + y + y + 1)*(y - 1)
  429. zz := sub (y = taylor(e**x, x, 0, 3), ff);
  430. 1 2 1 3 4 4
  431. zz := ((1 + x + ---*x + ---*x + O(x ))
  432. 2 6
  433. 1 2 1 3 4 3
  434. + (1 + x + ---*x + ---*x + O(x ))
  435. 2 6
  436. 1 2 1 3 4 2
  437. + (1 + x + ---*x + ---*x + O(x ))
  438. 2 6
  439. 1 2 1 3 4
  440. + (1 + x + ---*x + ---*x + O(x )) + 1)
  441. 2 6
  442. 1 2 1 3 4
  443. *((1 + x + ---*x + ---*x + O(x )) - 1)
  444. 2 6
  445. on exp;
  446. zz;
  447. 1 2 1 3 4 5
  448. (1 + x + ---*x + ---*x + O(x )) - 1
  449. 2 6
  450. comment A simple example of Taylor kernel differentiation;
  451. hugo := taylor(e^x,x,0,5);
  452. 1 2 1 3 1 4 1 5 6
  453. hugo := 1 + x + ---*x + ---*x + ----*x + -----*x + O(x )
  454. 2 6 24 120
  455. df(hugo^2,x);
  456. 2 8 3 4 4 5
  457. 2 + 4*x + 4*x + ---*x + ---*x + O(x )
  458. 3 3
  459. comment The following shows the (limited) capabilities to integrate
  460. Taylor kernels. Only a toplevel Taylor kernel is supported,
  461. in all other cases a warning is printed and the Taylor kernels
  462. are converted to standard representation;
  463. zz := taylor (sin x, x, 0, 5);
  464. 1 3 1 5 6
  465. zz := x - ---*x + -----*x + O(x )
  466. 6 120
  467. ww := taylor (cos y, y, 0, 5);
  468. 1 2 1 4 6
  469. ww := 1 - ---*y + ----*y + O(y )
  470. 2 24
  471. int (zz, x);
  472. 1 2 1 4 1 6 7
  473. ---*x - ----*x + -----*x + O(x )
  474. 2 24 720
  475. int (ww, x);
  476. x 2 x 4 6
  477. x - ---*y + ----*y + O(y )
  478. 2 24
  479. int (zz + ww, x);
  480. *** Converting Taylor kernels to standard representation
  481. 5 3 4 2
  482. x*(x - 30*x + 360*x + 30*y - 360*y + 720)
  483. -----------------------------------------------
  484. 720
  485. comment And here we present Taylor series reversion.
  486. We start with the example given by Knuth for the algorithm;
  487. taylor (t - t**2, t, 0, 5);
  488. 2 6
  489. t - t + O(t )
  490. taylorrevert (ws, t, x);
  491. 2 3 4 5 6
  492. x + x + 2*x + 5*x + 14*x + O(x )
  493. tan!-series := taylor (tan x, x, 0, 5);
  494. 1 3 2 5 6
  495. tan-series := x + ---*x + ----*x + O(x )
  496. 3 15
  497. taylorrevert (tan!-series, x, y);
  498. 1 3 1 5 6
  499. y - ---*y + ---*y + O(y )
  500. 3 5
  501. atan!-series:=taylor (atan y, y, 0, 5);
  502. 1 3 1 5 6
  503. atan-series := y - ---*y + ---*y + O(y )
  504. 3 5
  505. tmp := taylor (e**x, x, 0, 5);
  506. 1 2 1 3 1 4 1 5 6
  507. tmp := 1 + x + ---*x + ---*x + ----*x + -----*x + O(x )
  508. 2 6 24 120
  509. taylorrevert (tmp, x, y);
  510. 1 2 1 3 1 4 1 5
  511. y - 1 - ---*(y - 1) + ---*(y - 1) - ---*(y - 1) + ---*(y - 1)
  512. 2 3 4 5
  513. 6
  514. + O((y - 1) )
  515. taylor (log y, y, 1, 5);
  516. 1 2 1 3 1 4 1 5
  517. y - 1 - ---*(y - 1) + ---*(y - 1) - ---*(y - 1) + ---*(y - 1)
  518. 2 3 4 5
  519. 6
  520. + O((y - 1) )
  521. comment The following example calculates the perturbation expansion
  522. of the root x = 20 of the following polynomial in terms of
  523. EPS, in ROUNDED mode;
  524. poly := for r := 1 : 20 product (x - r);
  525. 20 19 18 17 16
  526. poly := x - 210*x + 20615*x - 1256850*x + 53327946*x
  527. 15 14 13
  528. - 1672280820*x + 40171771630*x - 756111184500*x
  529. 12 11
  530. + 11310276995381*x - 135585182899530*x
  531. 10 9
  532. + 1307535010540395*x - 10142299865511450*x
  533. 8 7
  534. + 63030812099294896*x - 311333643161390640*x
  535. 6 5
  536. + 1206647803780373360*x - 3599979517947607200*x
  537. 4 3
  538. + 8037811822645051776*x - 12870931245150988800*x
  539. 2
  540. + 13803759753640704000*x - 8752948036761600000*x
  541. + 2432902008176640000
  542. on rounded;
  543. tpoly := taylor (poly, x, 20, 4);
  544. 2
  545. tpoly := 1.21649393692e+17*(x - 20) + 4.31564847287e+17*(x - 20)
  546. 3 4
  547. + 6.68609351672e+17*(x - 20) + 6.10115975015e+17*(x - 20)
  548. 5
  549. + O((x - 20) )
  550. taylorrevert (tpoly, x, eps);
  551. 2
  552. 20 + 8.22034512177e-18*eps - 2.39726594661e-34*eps
  553. 3 4 5
  554. + 1.09290580231e-50*eps - 5.9711415946e-67*eps + O(eps )
  555. comment Some more examples using rounded mode;
  556. taylor(sin x/x,x,0,4);
  557. 2 4 5
  558. 1 - 0.166666666667*x + 0.00833333333333*x + O(x )
  559. taylor(sin x,x,pi/2,4);
  560. 2
  561. 1 + 6.12323399574e-17*(x - 1.57079632679) - 0.5*(x - 1.57079632679)
  562. 3
  563. - 1.02053899929e-17*(x - 1.57079632679)
  564. 4 5
  565. + 0.0416666666667*(x - 1.57079632679) + O((x - 1.57079632679) )
  566. taylor(tan x,x,pi/2,4);
  567. -1
  568. - (x - 1.57079632679) + 0.333333333333*(x - 1.57079632679)
  569. 3 5
  570. + 0.0222222222222*(x - 1.57079632679) + O((x - 1.57079632679) )
  571. off rounded;
  572. comment An example that involves computing limits of type 0/0 if
  573. expansion is done via differentiation;
  574. taylor(sqrt((e^x - 1)/x),x,0,15);
  575. 1 5 2 1 3 79 4 3 5
  576. 1 + ---*x + ----*x + -----*x + -------*x + -------*x + (10 terms)
  577. 4 96 128 92160 40960
  578. 16
  579. + O(x )
  580. comment Examples involving non-analytical terms;
  581. taylor(log(e^x-1),x,0,5);
  582. 1 1 2 1 4 5
  583. log(x) + (---*x + ----*x - ------*x + O(x ))
  584. 2 24 2880
  585. taylor(e^(1/x)*(e^x-1),x,0,5);
  586. 1/x 1 2 1 3 1 4 1 5 6
  587. e *(x + ---*x + ---*x + ----*x + -----*x + O(x ))
  588. 2 6 24 120
  589. taylor(log(x)*x^10,x,0,5);
  590. 10 15
  591. log(x)*(x + O(x ))
  592. taylor(log(x)*x^10,x,0,11);
  593. 10 21
  594. log(x)*(x + O(x ))
  595. taylor(log(x-a)/((a-b)*(a-c)) + log(2(x-b))/((b-c)*(b-a))
  596. + log(x-c)/((c-a)*(c-b)),x,infinity,2);
  597. log(2) 1 1 1
  598. - ---------------------- - ---*---- + O(----)
  599. 2 2 2 3
  600. a*b - a*c - b + b*c x x
  601. ss := (sqrt(x^(2/5) +1) - x^(1/3)-1)/x^(1/3);
  602. 2/5 1/3
  603. sqrt(x + 1) - x - 1
  604. ss := ---------------------------
  605. 1/3
  606. x
  607. taylor(exp ss,x,0,2);
  608. 2/5 3
  609. sqrt(x + (1 + O(x )))
  610. exp(--------------------------)
  611. 1/3
  612. x
  613. ---------------------------------
  614. 3
  615. 1 + O(x ) 3
  616. exp(-----------)*(e + O(x ))
  617. 1/3
  618. x
  619. taylor(exp sub(x=x^15,ss),x,0,2);
  620. 1 1 1 2 3
  621. --- + -----*x + -----*x + O(x )
  622. e 2*e 8*e
  623. comment In the following we demonstrate the possibiblity to compute the
  624. expansion of a function which is given by a simple first order
  625. differential equation: the function myexp(x) is exp(-x^2);
  626. operator myexp,myerf;
  627. let {df(myexp(~x),~x) => -2*x*myexp(x), myexp(0) => 1,
  628. df(myerf(~x),~x) => 2/sqrt(pi)*myexp(x), myerf(0) => 0};
  629. taylor(myexp(x),x,0,5);
  630. 2 1 4 6
  631. 1 - x + ---*x + O(x )
  632. 2
  633. taylor(myerf(x),x,0,5);
  634. 2*sqrt(pi) 2*sqrt(pi) 3 sqrt(pi) 5 6
  635. ------------*x - ------------*x + ----------*x + O(x )
  636. pi 3*pi 5*pi
  637. clear {df(myexp(~x),~x) => -2*x*myexp(x), myexp(0) => 1,
  638. df(myerf(~x),~x) => 2/sqrt(pi)*myexp(x), myerf(0) => 0};
  639. clear myexp,erf;
  640. showtime;
  641. Time: 13350 ms plus GC time: 534 ms
  642. comment An application is the problem posed by Prof. Stanley:
  643. we prove that the finite difference expression below
  644. corresponds to the given derivative expression;
  645. operator diff,a,f,gg;
  646. % We use gg to avoid conflict with high energy
  647. % physics operator.
  648. let diff(~f,~arg) => df(f,arg);
  649. derivative_expression :=
  650. diff(a(x,y)*diff(gg(x,y),x)*diff(gg(x,y),y)*diff(f(x,y),y),x) +
  651. diff(a(x,y)*diff(gg(x,y),x)*diff(gg(x,y),y)*diff(f(x,y),x),y) ;
  652. derivative_expression :=
  653. 2*a(x,y)*df(f(x,y),x,y)*df(gg(x,y),x)*df(gg(x,y),y)
  654. + a(x,y)*df(f(x,y),x)*df(gg(x,y),x,y)*df(gg(x,y),y)
  655. + a(x,y)*df(f(x,y),x)*df(gg(x,y),x)*df(gg(x,y),y,2)
  656. + a(x,y)*df(f(x,y),y)*df(gg(x,y),x,y)*df(gg(x,y),x)
  657. + a(x,y)*df(f(x,y),y)*df(gg(x,y),x,2)*df(gg(x,y),y)
  658. + df(a(x,y),x)*df(f(x,y),y)*df(gg(x,y),x)*df(gg(x,y),y)
  659. + df(a(x,y),y)*df(f(x,y),x)*df(gg(x,y),x)*df(gg(x,y),y)
  660. finite_difference_expression :=
  661. +a(x+dx,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
  662. +a(x+dx,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
  663. +a(x,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
  664. +a(x,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
  665. -f(x,y)*a(x+dx,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
  666. -f(x,y)*a(x+dx,y)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
  667. -f(x,y)*a(x,y+dy)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
  668. -a(x,y)*f(x,y)*gg(x+dx,y+dy)^2/(32*dx^2*dy^2)
  669. -gg(x,y)*a(x+dx,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
  670. -gg(x,y)*a(x+dx,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
  671. -gg(x,y)*a(x,y+dy)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
  672. -a(x,y)*gg(x,y)*f(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
  673. +f(x,y)*gg(x,y)*a(x+dx,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
  674. +f(x,y)*gg(x,y)*a(x+dx,y)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
  675. +f(x,y)*gg(x,y)*a(x,y+dy)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
  676. +a(x,y)*f(x,y)*gg(x,y)*gg(x+dx,y+dy)/(16*dx^2*dy^2)
  677. -gg(x+dx,y)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
  678. +gg(x,y+dy)*gg(x+dx,y)*a(x+dx,y+dy)*f(x+dx,y+dy)/(16*dx^2*dy^2)
  679. -gg(x,y+dy)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
  680. +gg(x,y)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
  681. -a(x+dx,y)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
  682. -a(x,y+dy)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
  683. -a(x,y)*gg(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
  684. +gg(x,y+dy)*a(x+dx,y)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
  685. +a(x,y+dy)*gg(x,y+dy)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
  686. +a(x,y)*gg(x,y+dy)*gg(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
  687. -gg(x,y+dy)^2*a(x+dx,y)*f(x+dx,y+dy)/(32*dx^2*dy^2)
  688. +gg(x,y)^2*a(x+dx,y)*f(x+dx,y+dy)/(32*dx^2*dy^2)
  689. -a(x,y+dy)*gg(x,y+dy)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
  690. -a(x,y)*gg(x,y+dy)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
  691. +gg(x,y)^2*a(x,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
  692. +a(x,y)*gg(x,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
  693. +f(x,y)*gg(x+dx,y)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
  694. -f(x,y)*gg(x,y+dy)*gg(x+dx,y)*a(x+dx,y+dy)/(16*dx^2*dy^2)
  695. +f(x,y)*gg(x,y+dy)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
  696. -f(x,y)*gg(x,y)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
  697. +a(x+dx,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
  698. +a(x+dx,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
  699. +a(x,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
  700. +a(x,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
  701. -f(x,y)*a(x+dx,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
  702. -f(x,y)*a(x+dx,y)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
  703. -f(x,y)*a(x,y-dy)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
  704. -a(x,y)*f(x,y)*gg(x+dx,y-dy)^2/(32*dx^2*dy^2)
  705. -gg(x,y)*a(x+dx,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
  706. -gg(x,y)*a(x+dx,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
  707. -gg(x,y)*a(x,y-dy)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
  708. -a(x,y)*gg(x,y)*f(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
  709. +f(x,y)*gg(x,y)*a(x+dx,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
  710. +f(x,y)*gg(x,y)*a(x+dx,y)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
  711. +f(x,y)*gg(x,y)*a(x,y-dy)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
  712. +a(x,y)*f(x,y)*gg(x,y)*gg(x+dx,y-dy)/(16*dx^2*dy^2)
  713. -gg(x+dx,y)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
  714. +gg(x,y-dy)*gg(x+dx,y)*a(x+dx,y-dy)*f(x+dx,y-dy)/(16*dx^2*dy^2)
  715. -gg(x,y-dy)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
  716. +gg(x,y)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
  717. -a(x+dx,y)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
  718. -a(x,y-dy)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
  719. -a(x,y)*gg(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
  720. +gg(x,y-dy)*a(x+dx,y)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
  721. +a(x,y-dy)*gg(x,y-dy)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
  722. +a(x,y)*gg(x,y-dy)*gg(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
  723. -gg(x,y-dy)^2*a(x+dx,y)*f(x+dx,y-dy)/(32*dx^2*dy^2)
  724. +gg(x,y)^2*a(x+dx,y)*f(x+dx,y-dy)/(32*dx^2*dy^2)
  725. -a(x,y-dy)*gg(x,y-dy)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
  726. -a(x,y)*gg(x,y-dy)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
  727. +gg(x,y)^2*a(x,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
  728. +a(x,y)*gg(x,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
  729. +f(x,y)*gg(x+dx,y)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
  730. -f(x,y)*gg(x,y-dy)*gg(x+dx,y)*a(x+dx,y-dy)/(16*dx^2*dy^2)
  731. +f(x,y)*gg(x,y-dy)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
  732. -f(x,y)*gg(x,y)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
  733. +f(x,y)*a(x+dx,y)*gg(x+dx,y)^2/(16*dx^2*dy^2)
  734. +f(x,y)*a(x,y+dy)*gg(x+dx,y)^2/(32*dx^2*dy^2)
  735. +f(x,y)*a(x,y-dy)*gg(x+dx,y)^2/(32*dx^2*dy^2)
  736. +a(x,y)*f(x,y)*gg(x+dx,y)^2/(16*dx^2*dy^2)
  737. -f(x,y)*gg(x,y+dy)*a(x+dx,y)*gg(x+dx,y)/(16*dx^2*dy^2)
  738. -f(x,y)*gg(x,y-dy)*a(x+dx,y)*gg(x+dx,y)/(16*dx^2*dy^2)
  739. -f(x,y)*a(x,y+dy)*gg(x,y+dy)*gg(x+dx,y)/(16*dx^2*dy^2)
  740. -a(x,y)*f(x,y)*gg(x,y+dy)*gg(x+dx,y)/(16*dx^2*dy^2)
  741. -f(x,y)*a(x,y-dy)*gg(x,y-dy)*gg(x+dx,y)/(16*dx^2*dy^2)
  742. -a(x,y)*f(x,y)*gg(x,y-dy)*gg(x+dx,y)/(16*dx^2*dy^2)
  743. +f(x,y)*gg(x,y+dy)^2*a(x+dx,y)/(32*dx^2*dy^2)
  744. +f(x,y)*gg(x,y-dy)^2*a(x+dx,y)/(32*dx^2*dy^2)
  745. -f(x,y)*gg(x,y)^2*a(x+dx,y)/(16*dx^2*dy^2)
  746. +a(x-dx,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
  747. +a(x-dx,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
  748. +a(x,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
  749. +a(x,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
  750. -f(x,y)*a(x-dx,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
  751. -f(x,y)*a(x-dx,y)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
  752. -f(x,y)*a(x,y+dy)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
  753. -a(x,y)*f(x,y)*gg(x-dx,y+dy)^2/(32*dx^2*dy^2)
  754. -gg(x,y)*a(x-dx,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
  755. -gg(x,y)*a(x-dx,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
  756. -gg(x,y)*a(x,y+dy)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
  757. -a(x,y)*gg(x,y)*f(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
  758. +f(x,y)*gg(x,y)*a(x-dx,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
  759. +f(x,y)*gg(x,y)*a(x-dx,y)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
  760. +f(x,y)*gg(x,y)*a(x,y+dy)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
  761. +a(x,y)*f(x,y)*gg(x,y)*gg(x-dx,y+dy)/(16*dx^2*dy^2)
  762. -gg(x-dx,y)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
  763. +gg(x,y+dy)*gg(x-dx,y)*a(x-dx,y+dy)*f(x-dx,y+dy)/(16*dx^2*dy^2)
  764. -gg(x,y+dy)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
  765. +gg(x,y)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
  766. -a(x-dx,y)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
  767. -a(x,y+dy)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
  768. -a(x,y)*gg(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
  769. +gg(x,y+dy)*a(x-dx,y)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
  770. +a(x,y+dy)*gg(x,y+dy)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
  771. +a(x,y)*gg(x,y+dy)*gg(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
  772. -gg(x,y+dy)^2*a(x-dx,y)*f(x-dx,y+dy)/(32*dx^2*dy^2)
  773. +gg(x,y)^2*a(x-dx,y)*f(x-dx,y+dy)/(32*dx^2*dy^2)
  774. -a(x,y+dy)*gg(x,y+dy)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
  775. -a(x,y)*gg(x,y+dy)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
  776. +gg(x,y)^2*a(x,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
  777. +a(x,y)*gg(x,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
  778. +f(x,y)*gg(x-dx,y)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
  779. -f(x,y)*gg(x,y+dy)*gg(x-dx,y)*a(x-dx,y+dy)/(16*dx^2*dy^2)
  780. +f(x,y)*gg(x,y+dy)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
  781. -f(x,y)*gg(x,y)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
  782. +a(x-dx,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
  783. +a(x-dx,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
  784. +a(x,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
  785. +a(x,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
  786. -f(x,y)*a(x-dx,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
  787. -f(x,y)*a(x-dx,y)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
  788. -f(x,y)*a(x,y-dy)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
  789. -a(x,y)*f(x,y)*gg(x-dx,y-dy)^2/(32*dx^2*dy^2)
  790. -gg(x,y)*a(x-dx,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
  791. -gg(x,y)*a(x-dx,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
  792. -gg(x,y)*a(x,y-dy)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
  793. -a(x,y)*gg(x,y)*f(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
  794. +f(x,y)*gg(x,y)*a(x-dx,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
  795. +f(x,y)*gg(x,y)*a(x-dx,y)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
  796. +f(x,y)*gg(x,y)*a(x,y-dy)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
  797. +a(x,y)*f(x,y)*gg(x,y)*gg(x-dx,y-dy)/(16*dx^2*dy^2)
  798. -gg(x-dx,y)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
  799. +gg(x,y-dy)*gg(x-dx,y)*a(x-dx,y-dy)*f(x-dx,y-dy)/(16*dx^2*dy^2)
  800. -gg(x,y-dy)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
  801. +gg(x,y)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
  802. -a(x-dx,y)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
  803. -a(x,y-dy)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
  804. -a(x,y)*gg(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
  805. +gg(x,y-dy)*a(x-dx,y)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
  806. +a(x,y-dy)*gg(x,y-dy)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
  807. +a(x,y)*gg(x,y-dy)*gg(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
  808. -gg(x,y-dy)^2*a(x-dx,y)*f(x-dx,y-dy)/(32*dx^2*dy^2)
  809. +gg(x,y)^2*a(x-dx,y)*f(x-dx,y-dy)/(32*dx^2*dy^2)
  810. -a(x,y-dy)*gg(x,y-dy)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
  811. -a(x,y)*gg(x,y-dy)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
  812. +gg(x,y)^2*a(x,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
  813. +a(x,y)*gg(x,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
  814. +f(x,y)*gg(x-dx,y)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
  815. -f(x,y)*gg(x,y-dy)*gg(x-dx,y)*a(x-dx,y-dy)/(16*dx^2*dy^2)
  816. +f(x,y)*gg(x,y-dy)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
  817. -f(x,y)*gg(x,y)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
  818. +f(x,y)*a(x-dx,y)*gg(x-dx,y)^2/(16*dx^2*dy^2)
  819. +f(x,y)*a(x,y+dy)*gg(x-dx,y)^2/(32*dx^2*dy^2)
  820. +f(x,y)*a(x,y-dy)*gg(x-dx,y)^2/(32*dx^2*dy^2)
  821. +a(x,y)*f(x,y)*gg(x-dx,y)^2/(16*dx^2*dy^2)
  822. -f(x,y)*gg(x,y+dy)*a(x-dx,y)*gg(x-dx,y)/(16*dx^2*dy^2)
  823. -f(x,y)*gg(x,y-dy)*a(x-dx,y)*gg(x-dx,y)/(16*dx^2*dy^2)
  824. -f(x,y)*a(x,y+dy)*gg(x,y+dy)*gg(x-dx,y)/(16*dx^2*dy^2)
  825. -a(x,y)*f(x,y)*gg(x,y+dy)*gg(x-dx,y)/(16*dx^2*dy^2)
  826. -f(x,y)*a(x,y-dy)*gg(x,y-dy)*gg(x-dx,y)/(16*dx^2*dy^2)
  827. -a(x,y)*f(x,y)*gg(x,y-dy)*gg(x-dx,y)/(16*dx^2*dy^2)
  828. +f(x,y)*gg(x,y+dy)^2*a(x-dx,y)/(32*dx^2*dy^2)
  829. +f(x,y)*gg(x,y-dy)^2*a(x-dx,y)/(32*dx^2*dy^2)
  830. -f(x,y)*gg(x,y)^2*a(x-dx,y)/(16*dx^2*dy^2)
  831. +f(x,y)*a(x,y+dy)*gg(x,y+dy)^2/(16*dx^2*dy^2)
  832. +a(x,y)*f(x,y)*gg(x,y+dy)^2/(16*dx^2*dy^2)
  833. -f(x,y)*gg(x,y)^2*a(x,y+dy)/(16*dx^2*dy^2)
  834. +f(x,y)*a(x,y-dy)*gg(x,y-dy)^2/(16*dx^2*dy^2)
  835. +a(x,y)*f(x,y)*gg(x,y-dy)^2/(16*dx^2*dy^2)
  836. -f(x,y)*gg(x,y)^2*a(x,y-dy)/(16*dx^2*dy^2)
  837. -a(x,y)*f(x,y)*gg(x,y)^2/(8*dx^2*dy^2)$
  838. comment We define abbreviations for the partial derivatives;
  839. operator ax,ay,fx,fy,gx,gy;
  840. operator axx,axy,ayy,fxx,fxy,fyy,gxx,gxy,gyy;
  841. operator axxx,axxy,axyy,ayyy,fxxx,fxxy,fxyy,fyyy,gxxx,gxxy,gxyy,gyyy;
  842. operator axxxy,axxyy,axyyy,fxxxy,fxxyy,fxyyy,
  843. gxxxx,gxxxy,gxxyy,gxyyy,gyyyy;
  844. operator axxxyy,axxyyy,fxxyyy,fxxxyy,gxxxxy,gxxxyy,gxxyyy,gxyyyy;
  845. operator gxxxxyy,gxxxyyy,gxxyyyy;
  846. operator_diff_rules := {
  847. df(a(~x,~y),~x) => ax(x,y),
  848. df(a(~x,~y),~y) => ay(x,y),
  849. df(f(~x,~y),~x) => fx(x,y),
  850. df(f(~x,~y),~y) => fy(x,y),
  851. df(gg(~x,~y),~x) => gx(x,y),
  852. df(gg(~x,~y),~y) => gy(x,y),
  853. df(ax(~x,~y),~x) => axx(x,y),
  854. df(ax(~x,~y),~y) => axy(x,y),
  855. df(ay(~x,~y),~x) => axy(x,y),
  856. df(ay(~x,~y),~y) => ayy(x,y),
  857. df(fx(~x,~y),~x) => fxx(x,y),
  858. df(fx(~x,~y),~y) => fxy(x,y),
  859. df(fy(~x,~y),~x) => fxy(x,y),
  860. df(fy(~x,~y),~y) => fyy(x,y),
  861. df(gx(~x,~y),~x) => gxx(x,y),
  862. df(gx(~x,~y),~y) => gxy(x,y),
  863. df(gy(~x,~y),~x) => gxy(x,y),
  864. df(gy(~x,~y),~y) => gyy(x,y),
  865. df(axx(~x,~y),~x) => axxx(x,y),
  866. df(axy(~x,~y),~x) => axxy(x,y),
  867. df(ayy(~x,~y),~x) => axyy(x,y),
  868. df(ayy(~x,~y),~y) => ayyy(x,y),
  869. df(fxx(~x,~y),~x) => fxxx(x,y),
  870. df(fxy(~x,~y),~x) => fxxy(x,y),
  871. df(fxy(~x,~y),~y) => fxyy(x,y),
  872. df(fyy(~x,~y),~x) => fxyy(x,y),
  873. df(fyy(~x,~y),~y) => fyyy(x,y),
  874. df(gxx(~x,~y),~x) => gxxx(x,y),
  875. df(gxx(~x,~y),~y) => gxxy(x,y),
  876. df(gxy(~x,~y),~x) => gxxy(x,y),
  877. df(gxy(~x,~y),~y) => gxyy(x,y),
  878. df(gyy(~x,~y),~x) => gxyy(x,y),
  879. df(gyy(~x,~y),~y) => gyyy(x,y),
  880. df(axyy(~x,~y),~x) => axxyy(x,y),
  881. df(axxy(~x,~y),~x) => axxxy(x,y),
  882. df(ayyy(~x,~y),~x) => axyyy(x,y),
  883. df(fxxy(~x,~y),~x) => fxxxy(x,y),
  884. df(fxyy(~x,~y),~x) => fxxyy(x,y),
  885. df(fyyy(~x,~y),~x) => fxyyy(x,y),
  886. df(gxxx(~x,~y),~x) => gxxxx(x,y),
  887. df(gxxy(~x,~y),~x) => gxxxy(x,y),
  888. df(gxyy(~x,~y),~x) => gxxyy(x,y),
  889. df(gyyy(~x,~y),~x) => gxyyy(x,y),
  890. df(gyyy(~x,~y),~y) => gyyyy(x,y),
  891. df(axxyy(~x,~y),~x) => axxxyy(x,y),
  892. df(axyyy(~x,~y),~x) => axxyyy(x,y),
  893. df(fxxyy(~x,~y),~x) => fxxxyy(x,y),
  894. df(fxyyy(~x,~y),~x) => fxxyyy(x,y),
  895. df(gxxxy(~x,~y),~x) => gxxxxy(x,y),
  896. df(gxxyy(~x,~y),~x) => gxxxyy(x,y),
  897. df(gxyyy(~x,~y),~x) => gxxyyy(x,y),
  898. df(gyyyy(~x,~y),~x) => gxyyyy(x,y),
  899. df(gxxxyy(~x,~y),~x) => gxxxxyy(x,y),
  900. df(gxxyyy(~x,~y),~x) => gxxxyyy(x,y),
  901. df(gxyyyy(~x,~y),~x) => gxxyyyy(x,y)
  902. };
  903. operator_diff_rules := {df(a(~x,~y),~x) => ax(x,y),
  904. df(a(~x,~y),~y) => ay(x,y),
  905. df(f(~x,~y),~x) => fx(x,y),
  906. df(f(~x,~y),~y) => fy(x,y),
  907. df(gg(~x,~y),~x) => gx(x,y),
  908. df(gg(~x,~y),~y) => gy(x,y),
  909. df(ax(~x,~y),~x) => axx(x,y),
  910. df(ax(~x,~y),~y) => axy(x,y),
  911. df(ay(~x,~y),~x) => axy(x,y),
  912. df(ay(~x,~y),~y) => ayy(x,y),
  913. df(fx(~x,~y),~x) => fxx(x,y),
  914. df(fx(~x,~y),~y) => fxy(x,y),
  915. df(fy(~x,~y),~x) => fxy(x,y),
  916. df(fy(~x,~y),~y) => fyy(x,y),
  917. df(gx(~x,~y),~x) => gxx(x,y),
  918. df(gx(~x,~y),~y) => gxy(x,y),
  919. df(gy(~x,~y),~x) => gxy(x,y),
  920. df(gy(~x,~y),~y) => gyy(x,y),
  921. df(axx(~x,~y),~x) => axxx(x,y),
  922. df(axy(~x,~y),~x) => axxy(x,y),
  923. df(ayy(~x,~y),~x) => axyy(x,y),
  924. df(ayy(~x,~y),~y) => ayyy(x,y),
  925. df(fxx(~x,~y),~x) => fxxx(x,y),
  926. df(fxy(~x,~y),~x) => fxxy(x,y),
  927. df(fxy(~x,~y),~y) => fxyy(x,y),
  928. df(fyy(~x,~y),~x) => fxyy(x,y),
  929. df(fyy(~x,~y),~y) => fyyy(x,y),
  930. df(gxx(~x,~y),~x) => gxxx(x,y),
  931. df(gxx(~x,~y),~y) => gxxy(x,y),
  932. df(gxy(~x,~y),~x) => gxxy(x,y),
  933. df(gxy(~x,~y),~y) => gxyy(x,y),
  934. df(gyy(~x,~y),~x) => gxyy(x,y),
  935. df(gyy(~x,~y),~y) => gyyy(x,y),
  936. df(axyy(~x,~y),~x) => axxyy(x,y),
  937. df(axxy(~x,~y),~x) => axxxy(x,y),
  938. df(ayyy(~x,~y),~x) => axyyy(x,y),
  939. df(fxxy(~x,~y),~x) => fxxxy(x,y),
  940. df(fxyy(~x,~y),~x) => fxxyy(x,y),
  941. df(fyyy(~x,~y),~x) => fxyyy(x,y),
  942. df(gxxx(~x,~y),~x) => gxxxx(x,y),
  943. df(gxxy(~x,~y),~x) => gxxxy(x,y),
  944. df(gxyy(~x,~y),~x) => gxxyy(x,y),
  945. df(gyyy(~x,~y),~x) => gxyyy(x,y),
  946. df(gyyy(~x,~y),~y) => gyyyy(x,y),
  947. df(axxyy(~x,~y),~x) => axxxyy(x,y),
  948. df(axyyy(~x,~y),~x) => axxyyy(x,y),
  949. df(fxxyy(~x,~y),~x) => fxxxyy(x,y),
  950. df(fxyyy(~x,~y),~x) => fxxyyy(x,y),
  951. df(gxxxy(~x,~y),~x) => gxxxxy(x,y),
  952. df(gxxyy(~x,~y),~x) => gxxxyy(x,y),
  953. df(gxyyy(~x,~y),~x) => gxxyyy(x,y),
  954. df(gyyyy(~x,~y),~x) => gxyyyy(x,y),
  955. df(gxxxyy(~x,~y),~x) => gxxxxyy(x,y),
  956. df(gxxyyy(~x,~y),~x) => gxxxyyy(x,y),
  957. df(gxyyyy(~x,~y),~x) => gxxyyyy(x,y)}
  958. let operator_diff_rules;
  959. texp := taylor (finite_difference_expression, dx, 0, 1, dy, 0, 1);
  960. texp := a(x,y)*fx(x,y)*gx(x,y)*gyy(x,y)
  961. + a(x,y)*fx(x,y)*gxy(x,y)*gy(x,y)
  962. + 2*a(x,y)*fxy(x,y)*gx(x,y)*gy(x,y)
  963. + a(x,y)*fy(x,y)*gx(x,y)*gxy(x,y)
  964. + a(x,y)*fy(x,y)*gxx(x,y)*gy(x,y)
  965. + ax(x,y)*fy(x,y)*gx(x,y)*gy(x,y)
  966. 2 2
  967. + ay(x,y)*fx(x,y)*gx(x,y)*gy(x,y) + O(dx ,dy )
  968. comment You may also try to expand further but this needs a lot
  969. of CPU time. Therefore the following line is commented out;
  970. %texp := taylor (finite_difference_expression, dx, 0, 2, dy, 0, 2);
  971. factor dx,dy;
  972. result := taylortostandard texp;
  973. result := a(x,y)*fx(x,y)*gx(x,y)*gyy(x,y)
  974. + a(x,y)*fx(x,y)*gxy(x,y)*gy(x,y)
  975. + 2*a(x,y)*fxy(x,y)*gx(x,y)*gy(x,y)
  976. + a(x,y)*fy(x,y)*gx(x,y)*gxy(x,y)
  977. + a(x,y)*fy(x,y)*gxx(x,y)*gy(x,y)
  978. + ax(x,y)*fy(x,y)*gx(x,y)*gy(x,y)
  979. + ay(x,y)*fx(x,y)*gx(x,y)*gy(x,y)
  980. derivative_expression - result;
  981. 0
  982. clear diff(~f,~arg);
  983. clearrules operator_diff_rules;
  984. clear diff,a,f,gg;
  985. clear ax,ay,fx,fy,gx,gy;
  986. clear axx,axy,ayy,fxx,fxy,fyy,gxx,gxy,gyy;
  987. clear axxx,axxy,axyy,ayyy,fxxx,fxxy,fxyy,fyyy,gxxx,gxxy,gxyy,gyyy;
  988. clear axxxy,axxyy,axyyy,fxxxy,fxxyy,fxyyy,gxxxx,gxxxy,gxxyy,gxyyy,gyyyy;
  989. clear axxxyy,axxyyy,fxxyyy,fxxxyy,gxxxxy,gxxxyy,gxxyyy,gxyyyy;
  990. clear gxxxxyy,gxxxyyy,gxxyyyy;
  991. taylorprintterms := 5;
  992. taylorprintterms := 5
  993. off taylorautoexpand,taylorkeeporiginal;
  994. comment That's all, folks;
  995. showtime;
  996. Time: 11283 ms plus GC time: 300 ms
  997. end;
  998. (TIME: taylor 24633 25467)
  999. End of Lisp run after 24.64+1.58 seconds