123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- % Tests of PM.
- % TESTS OF BASIC CONSTRUCTS.
- operator f, h$
- % A "literal" template.
- m(f(a),f(a));
- % Not literally equal.
- m(f(a),f(b));
- %Nested operators.
- m(f(a,h(b)),f(a,h(b)));
- % A "generic" template.
- m(f(a,b),f(a,?a));
- m(f(a,b),f(?a,?b));
- % ??a takes "rest" of arguments.
- m(f(a,b),f(??a));
- % But ?a does not.
- m(f(a,b),f(?a));
- % Conditional matches.
- m(f(a,b),f(?a,?b _=(?a=?b)));
- m(f(a,a),f(?a,?b _=(?a=?b)));
- % "plus" is symmetric.
- m(a+b+c,c+?a+?b);
- %It is also associative.
- m(a+b+c,c+?a);
- % Note the effect of using multi-generic symbol is different.
- m(a+b+c,c+??c);
- %Flag h as associative.
- flag('(h),'assoc);
- m(h(a,b,d,e),h(?a,d,?b));
- % Substitution tests.
- s(f(a,b),f(a,?b)->?b^2);
- s(a+b,a+b->a*b);
- % "associativity" is used to group a+b+c in to (a+b) + c.
- s(a+b+c,a+b->a*b);
- % Only substitute top at top level.
- s(a+b+f(a+b),a+b->a*b,inf,0);
- % SIMPLE OPERATOR DEFINITIONS.
- % Numerical factorial.
- operator nfac$
- s(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)},1);
- s(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)},2);
- si(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)});
- % General factorial.
- operator gamma,fac;
- fac(?x _=Natp(?x)) ::- ?x*fac(?x-1);
- fac(0) :- 1;
- fac(?x) :- Gamma(?x+1);
- fac(3);
- fac(3/2);
- % Legendre polynomials in ?x of order ?n, ?n a natural number.
- operator legp;
- legp(?x,0) :- 1;
- legp(?x,1) :- ?x;
- legp(?x,?n _=natp(?n))
- ::- ((2*?n-1)*?x*legp(?x,?n-1)-(?n-1)*legp(?x,?n-2))/?n;
- legp(z,5);
- legp(a+b,3);
- legp(x,y);
- % TESTS OF EXTENSIONS TO BASIC PATTERN MATCHER.
- comment *: MSet[?exprn,?val] or ?exprn ::: ?val
- assigns the value ?val to the projection ?exprn in such a way
- as to store explicitly each form of ?exprn requested. *;
-
- Nosimp('mset,(t t));
- Newtok '((!: !: !: !-) Mset);
- infix :::-;
- precedence Mset,RSetd;
- ?exprn :::- ?val ::- (?exprn ::- (?exprn :- ?val ));
- scs := sin(?x)^2 + Cos(?x)^2 -> 1;
- % The following pattern substitutes the rule sin^2 + cos^2 into a sum of
- % such terms. For 2n terms (ie n sin and n cos) the pattern has a worst
- % case complexity of O(n^3).
- operator trig,u;
- trig(?i) :::- Ap(+, Ar(?i,sin(u(?1))^2+Cos(u(?1))^2));
- if si(trig 1,scs) = 1 then write("Pm ok") else Write("PM failed");
- if si(trig 10,scs) = 10 then write("Pm ok") else Write("PM failed");
- % The next one takes about 70 seconds on an HP 9000/350, calling UNIFY
- % 1927 times.
- % if si(trig 50,scs) = 50 then write("Pm ok") else Write("PM failed");
- % Hypergeometric Function simplification.
- newtok '((!#) !#);
- flag('(#), 'symmetric);
- operator #,@,ghg;
- xx := ghg(4,3,@(a,b,c,d),@(d,1+a-b,1+a-c),1);
- S(xx,sghg(3));
- s(ws,sghg(2));
- yy := ghg(3,2,@(a-1,b,c/2),@((a+b)/2,c),1);
- S(yy,sghg(1));
- yy := ghg(3,2,@(a-1,b,c/2),@(a/2+b/2,c),1);
- S(yy,sghg(1));
- % Some Ghg theorems.
- flag('(@), 'symmetric);
- % Watson's Theorem.
- SGhg(1) := Ghg(3,2,@(?a,?b,?c),@(?d _=?d=(1+?a+?b)/2,?e _=?e=2*?c),1) ->
- Gamma(1/2)*Gamma(?c+1/2)*Gamma((1+?a+?b)/2)*Gamma((1-?a-?b)/2+?c)/
- (Gamma((1+?a)/2)*Gamma((1+?b)/2)*Gamma((1-?a)/2+?c)
- *Gamma((1-?b)/2+?c));
- % Dixon's theorem.
- SGhg(2) := Ghg(3,2,@(?a,?b,?c),@(?d _=?d=1+?a-?b,?e _=?e=1+?a-?c),1) ->
- Gamma(1+?a/2)*Gamma(1+?a-?b)*Gamma(1+?a-?c)*Gamma(1+?a/2-?b-?c)/
- (Gamma(1+?a)*Gamma(1+?a/2-?b)*Gamma(1+?a/2-?c)*Gamma(1+?a-?b-?c));
- SGhg(3) := Ghg(?p,?q,@(?a,??b),@(?a,??c),?z)
- -> Ghg(?p-1,?q-1,@(??b),@(??c),?z);
- SGhg(9) := Ghg(1,0,@(?a),?b,?z ) -> (1-?z)^(-?a);
- SGhg(10) := Ghg(0,0,?a,?b,?z) -> E^?z;
- SGhg(11) := Ghg(?p,?q,@(??t),@(??b),0) -> 1;
- % If one of the bottom parameters is zero or a negative integer the
- % hypergeometric functions may be singular, so the presence of a
- % functions of this type causes a warning message to be printed.
- % Note it seems to have an off by one level spec., so this may need
- % changing in future.
- %
- % Reference: AS 15.1; Slater, Generalized Hypergeometric Functions,
- % Cambridge University Press,1966.
- s(Ghg(3,2,@(a,b,c),@(b,c),z),SGhg(3));
- si(Ghg(3,2,@(a,b,c),@(b,c),z),{SGhg(3),Sghg(9)});
- S(Ghg(3,2,@(a-1,b,c),@(a-b,a-c),1),sghg 2);
- end;
|