1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- % Initial load up list
- off echo$
- lisp(depl!*:=nil)$ % clearing of all dependences
- setcrackflags()$
- lisp write
- "...................................................................",
- "......."$
- write "An example of the determination of point symmetries for ODEs"$
- depend y,x$
- de := {df(y,x,2) = (df(y,x)*(2*x*y+x**3) - 4*y**2)/x**4,
- y, x}$
- mo := {0,nil,nil}$
- LIEPDE(de,mo)$
- nodepend y,x$
- lisp write
- "...................................................................",
- "......."$
- write "An example of the determination of point symmetries for PDEs"$
- depend u,x,y$
- de := {df(u,x,x)-df(u,y),u,{x,y}}$
- mo := {0,nil,nil}$
- LIEPDE(de,mo)$
- nodepend u,x,y$
- lisp write
- "...................................................................",
- "......."$
- write "An example of the determination of first integrals of ODEs"$
- depend y,x$
- de := {df(y,x,2)=x*df(y,x)**2-2*df(y,x)/x-y**2/x, y, x}$
- mo := {0,{},2}$
- FIRINT(de,mo)$
- nodepend y,x$
- lisp write
- "...................................................................",
- "......."$
- write "An example of the determination of a Lagrangian for an ODE "$
- depend f,x$
- depend y,x$
- de := {df(y,x,2) = 6*y**2 + x, y, x}$
- mo := {0,{}}$
- LAGRAN(de,mo)$
- nodepend f,x$
- nodepend y,x$
- lisp write
- "...................................................................",
- "......."$
- write "An example of the factorization of an ODE " $
- depend f,x$
- depend y,x$
- depend q,x$
- de := {df(y,x,2) = df(y,x)**2/y - f*df(y,x) - y*q, y, x}$
- mo := {2,{}}$
- DECOMP(de,mo)$
- nodepend f,x$
- nodepend y,x$
- nodepend q,x$
- end$
- --
|