123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- showtime;
- comment some examples of the FOR statement;
- comment summing the squares of the even positive integers
- through 50;
- for i:=2 step 2 until 50 sum i**2;
- comment to set w to the factorial of 10;
- w := for i:=1:10 product i;
- comment alternatively, we could set the elements a(i) of the
- array a to the factorial of i by the statements;
- array a(10);
- a(0):=1$
- for i:=1:10 do a(i):=i*a(i-1);
- comment the above version of the FOR statement does not return
- an algebraic value, but we can now use these array
- elements as factorials in expressions, e. g.;
- 1+a(5);
- comment we could have printed the values of each a(i)
- as they were computed by writing the FOR statement as;
- for i:=1:10 do write a(i):= i*a(i-1);
- comment another way to use factorials would be to introduce an
- operator FAC by an integer procedure as follows;
- integer procedure fac (n);
- begin integer m;
- m:=1;
- l1: if n=0 then return m;
- m:=m*n;
- n:=n-1;
- go to l1
- end;
- comment we can now use fac as an operator in expressions, e. g.;
- z**2+fac(4)-2*fac 2*y;
- comment note in the above example that the parentheses around
- the arguments of FAC may be omitted since it is a unary operator;
- comment the following examples illustrate the solution of some
- complete problems;
- comment the f and g series (ref Sconzo, P., Leschack, A. R. and
- Tobey, R. G., Astronomical Journal, Vol 70 (May 1965);
- deps:= -sig*(mu+2*eps)$
- dmu:= -3*mu*sig$
- dsig:= eps-2*sig**2$
- f1:= 1$
- g1:= 0$
-
- for i:= 1:8 do
- <<f2:= -mu*g1 + deps*df(f1,eps) + dmu*df(f1,mu) + dsig*df(f1,sig);
- write "F(",i,") := ",f2;
- g2:= f1 + deps*df(g1,eps) + dmu*df(g1,mu) + dsig*df(g1,sig);
- write "G(",i,") := ",g2;
- f1:=f2;
- g1:=g2>>;
- comment a problem in Fourier analysis;
- factor cos,sin;
- on list;
- (a1*cos(wt) + a3*cos(3*wt) + b1*sin(wt) + b3*sin(3*wt))**3
- where {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
- cos(~x)*sin(~y) => (sin(x+y)-sin(x-y))/2,
- sin(~x)*sin(~y) => (cos(x-y)-cos(x+y))/2,
- cos(~x)**2 => (1+cos(2*x))/2,
- sin(~x)**2 => (1-cos(2*x))/2};
- remfac cos,sin;
- off list;
- comment end of Fourier analysis example;
- comment the following program, written in collaboration with David
- Barton and John Fitch, solves a problem in general relativity. it
- will compute the Einstein tensor from any given metric;
- on nero;
- comment here we introduce the covariant and contravariant metrics;
- operator p1,q1,x;
- array gg(3,3),h(3,3);
- gg(0,0):=e**(q1(x(1)))$
- gg(1,1):=-e**(p1(x(1)))$
- gg(2,2):=-x(1)**2$
- gg(3,3):=-x(1)**2*sin(x(2))**2$
- for i:=0:3 do h(i,i):=1/gg(i,i);
- comment generate Christoffel symbols and store in arrays cs1 and cs2;
- array cs1(3,3,3),cs2(3,3,3);
- for i:=0:3 do for j:=i:3 do
- <<for k:=0:3 do
- cs1(j,i,k) := cs1(i,j,k):=(df(gg(i,k),x(j))+df(gg(j,k),x(i))
- -df(gg(i,j),x(k)))/2;
- for k:=0:3 do cs2(j,i,k):= cs2(i,j,k) := for p := 0:3
- sum h(k,p)*cs1(i,j,p)>>;
- comment now compute the Riemann tensor and store in r(i,j,k,l);
- array r(3,3,3,3);
- for i:=0:3 do for j:=i+1:3 do for k:=i:3 do
- for l:=k+1:if k=i then j else 3 do
- <<r(j,i,l,k) := r(i,j,k,l) := for q := 0:3
- sum gg(i,q)*(df(cs2(k,j,q),x(l))-df(cs2(j,l,q),x(k))
- + for p:=0:3 sum (cs2(p,l,q)*cs2(k,j,p)
- -cs2(p,k,q)*cs2(l,j,p)));
- r(i,j,l,k) := -r(i,j,k,l);
- r(j,i,k,l) := -r(i,j,k,l);
- if i neq k or j>l
- then <<r(k,l,i,j) := r(l,k,j,i) := r(i,j,k,l);
- r(l,k,i,j) := -r(i,j,k,l);
- r(k,l,j,i) := -r(i,j,k,l)>>>>;
- comment now compute and print the Ricci tensor;
- array ricci(3,3);
- for i:=0:3 do for j:=0:3 do
- write ricci(j,i) := ricci(i,j) := for p := 0:3 sum for q := 0:3
- sum h(p,q)*r(q,i,p,j);
- comment now compute and print the Ricci scalar;
- rs := for i:= 0:3 sum for j:= 0:3 sum h(i,j)*ricci(i,j);
- comment finally compute and print the Einstein tensor;
- array einstein(3,3);
- for i:=0:3 do for j:=0:3 do
- write einstein(i,j):=ricci(i,j)-rs*gg(i,j)/2;
- comment end of Einstein tensor program;
- clear gg,h,cs1,cs2,r,ricci,einstein;
- comment an example using the matrix facility;
- matrix xx,yy,zz;
- let xx= mat((a11,a12),(a21,a22)),
- yy= mat((y1),(y2));
- 2*det xx - 3*w;
- zz:= xx**(-1)*yy;
- 1/xx**2;
- comment end of matrix examples;
- comment a physics example;
- on div; comment this gives us output in same form as Bjorken and Drell;
- mass ki= 0, kf= 0, p1= m, pf= m;
- vector ei,ef;
- mshell ki,kf,p1,pf;
- let p1.ei= 0, p1.ef= 0, p1.pf= m**2+ki.kf, p1.ki= m*k,p1.kf=
- m*kp, pf.ei= -kf.ei, pf.ef= ki.ef, pf.ki= m*kp, pf.kf=
- m*k, ki.ei= 0, ki.kf= m*(k-kp), kf.ef= 0, ei.ei= -1, ef.ef=
- -1;
- operator gp;
- for all p let gp(p)= g(l,p)+m;
- comment this is just to save us a lot of writing;
- gp(pf)*(g(l,ef,ei,ki)/(2*ki.p1) + g(l,ei,ef,kf)/(2*kf.p1))
- * gp(p1)*(g(l,ki,ei,ef)/(2*ki.p1) + g(l,kf,ef,ei)/(2*kf.p1))$
- write "The Compton cross-section is ",ws;
- comment end of first physics example;
- off div;
- comment another physics example;
- index ix,iy,iz;
- mass p1=mm,p2=mm,p3= mm,p4= mm,k1=0;
- mshell p1,p2,p3,p4,k1;
- vector qi,q2;
- factor mm,p1.p3;
- operator ga,gb;
- for all p let ga(p)=g(la,p)+mm, gb(p)= g(lb,p)+mm;
- ga(-p2)*g(la,ix)*ga(-p4)*g(la,iy)* (gb(p3)*g(lb,ix)*gb(qi)
- *g(lb,iz)*gb(p1)*g(lb,iy)*gb(q2)*g(lb,iz) + gb(p3)
- *g(lb,iz)*gb(q2)*g(lb,ix)*gb(p1)*g(lb,iz)*gb(qi)*g(lb,iy))$
- let qi=p1-k1, q2=p3+k1;
- comment it is usually faster to make such substitutions after all the
- trace algebra is done;
- write "CXN =",ws;
- comment end of second physics example;
- showtime;
- end;
|