spde.log 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506
  1. Sat Jun 29 14:12:57 PDT 1991
  2. REDUCE 3.4, 15-Jul-91 ...
  3. 1: 1:
  4. 2: 2:
  5. 3: 3: %Appendix (Testfile).
  6. %This appendix is a test file. The symmetry groups for various
  7. %equations or systems of equations are determined. The variable
  8. %PCLASS has the default value 0 and may be changed by the user
  9. %before running it. The output may be compared with the results
  10. %which are given in the references.
  11. %The Burgers equations
  12. deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$
  13. cresys deq 1$
  14. simpsys()$
  15. result()$
  16. The differential equation
  17. DEQ(1):=U(1,2,2) + U(1,2)*U(1) + U(1,1)
  18. The symmetry generators are
  19. GEN(1):=DX(1)
  20. GEN(2):=DX(2)
  21. GEN(3):=DX(2)*X(1) + DU(1)
  22. 2
  23. GEN(4):=DX(1)*X(1) + DX(2)*X(2)*X(1) + DU(1)*( - U(1)*X(1) + X(2))
  24. GEN(5):=2*DX(1)*X(1) + DX(2)*X(2) - DU(1)*U(1)
  25. The non-vanishing commutators of the finite subgroup
  26. COMM(1,3):= DX(2)
  27. COMM(1,4):= 2*DX(1)*X(1) + DX(2)*X(2) - DU(1)*U(1)
  28. COMM(1,5):= 2*DX(1)
  29. COMM(2,4):= DX(2)*X(1) + DU(1)
  30. COMM(2,5):= DX(2)
  31. COMM(3,5):= - DX(2)*X(1) - DU(1)
  32. 2
  33. COMM(4,5):= - 2*DX(1)*X(1)
  34. - 2*DX(2)*X(2)*X(1)
  35. + 2*DU(1)*(U(1)*X(1) - X(2))
  36. %The Kadomtsev-Petviashvili equation
  37. deq 1:=3*u(1,3,3)+u(1,2,2,2,2)+6*u(1,2,2)*u 1
  38. +6*u(1,2)**2+4*u(1,1,2)$
  39. cresys deq 1$
  40. simpsys()$
  41. result()$
  42. The differential equation
  43. DEQ(1):=3*U(1,3,3)
  44. +U(1,2,2,2,2)
  45. +6*U(1,2,2)*U(1)
  46. 2
  47. +6*U(1,2)
  48. +4*U(1,1,2)
  49. The symmetry generators are
  50. GEN(1):=3*DX(2)*C(12) + 2*DU(1)*DF(C(12),X(1))
  51. GEN(2):= 6*DX(2)*DF(C(9),X(1))*X(3)
  52. - 9*DX(3)*C(9)
  53. + 4*DU(1)*DF(C(9),X(1),2)*X(3)
  54. GEN(3):= 27*DX(1)*XI(1)
  55. 2
  56. 3*DX(2)*( - 2*DF(XI(1),X(1),2)*X(3) + 3*DF(XI(1),X(1))*X(2))
  57. + 18*DX(3)*DF(XI(1),X(1))*X(3)
  58. 2*DU(1)*(
  59. 2
  60. -2*DF(XI(1),X(1),3)*X(3)
  61. +3*DF(XI(1),X(1),2)*X(2)
  62. -9*DF(XI(1),X(1))*U(1))
  63. The remaining dependencies
  64. XI(1) depends on X(1)
  65. C(12) depends on X(1)
  66. C(9) depends on X(1)
  67. %The modified Kadomtsev-Petviashvili equation
  68. deq 1:=u(1,1,2)-u(1,2,2,2,2)-3*u(1,3,3)
  69. +6*u(1,2)**2*u(1,2,2)+6*u(1,3)*u(1,2,2)$
  70. cresys deq 1$
  71. simpsys()$
  72. result()$
  73. The differential equation
  74. DEQ(1):=
  75. -3*U(1,3,3)
  76. +6*U(1,3)*U(1,2,2)
  77. -U(1,2,2,2,2)
  78. 2
  79. +6*U(1,2,2)*U(1,2)
  80. +U(1,1,2)
  81. The symmetry generators are
  82. GEN(1):=DU(1)*C(16)
  83. GEN(2):=6*DX(2)*C(14) + DU(1)*DF(C(14),X(1))*X(3)
  84. GEN(3):= 12*DX(2)*DF(C(11),X(1))*X(3)
  85. + 72*DX(3)*C(11)
  86. 2
  87. + DU(1)*(DF(C(11),X(1),2)*X(3) + 6*DF(C(11),X(1))*X(2))
  88. GEN(4):= 324*DX(1)*XI(1)
  89. 2
  90. + 18*DX(2)*(DF(XI(1),X(1),2)*X(3) + 6*DF(XI(1),X(1))*X(2))
  91. + 216*DX(3)*DF(XI(1),X(1))*X(3)
  92. + DU(1)*X(3)
  93. 2
  94. *(DF(XI(1),X(1),3)*X(3) + 18*DF(XI(1),X(1),2)*X(2))
  95. The remaining dependencies
  96. XI(1) depends on X(1)
  97. C(16) depends on X(1)
  98. C(14) depends on X(1)
  99. C(11) depends on X(1)
  100. %The real- and the imaginary part of the nonlinear Schroedinger
  101. %equation
  102. deq 1:= u(1,1)+u(2,2,2)+2*u 1**2*u 2+2*u 2**3$
  103. deq 2:=-u(2,1)+u(1,2,2)+2*u 1*u 2**2+2*u 1**3$
  104. %Because this is not a single equation the two assignments
  105. sder 1:=u(2,2,2)$
  106. sder 2:=u(1,2,2)$
  107. %are necessary.
  108. cresys()$
  109. simpsys()$
  110. result()$
  111. The differential equations
  112. DEQ(1):=U(2,2,2)
  113. 3
  114. +2*U(2)
  115. 2
  116. +2*U(2)*U(1)
  117. +U(1,1)
  118. DEQ(2):=
  119. -U(2,1)
  120. 2
  121. +2*U(2) *U(1)
  122. +U(1,2,2)
  123. 3
  124. +2*U(1)
  125. The symmetry generators are
  126. GEN(1):=DX(1)
  127. GEN(2):=DX(2)
  128. GEN(3):=DU(1)*U(2) + DU(2)*U(1)
  129. GEN(4):=2*DX(2)*X(1) - DU(1)*U(2)*X(2) - DU(2)*U(1)*X(2)
  130. GEN(5):=2*DX(1)*X(1) + DX(2)*X(2) - DU(1)*U(1) + DU(2)*U(2)
  131. The non-vanishing commutators of the finite subgroup
  132. COMM(1,4):= 2*DX(2)
  133. COMM(1,5):= 2*DX(1)
  134. COMM(2,4):= - DU(1)*U(2) - DU(2)*U(1)
  135. COMM(2,5):= DX(2)
  136. COMM(3,5):= - 2*DU(1)*U(2) + 2*DU(2)*U(1)
  137. COMM(4,5):= - 2*DX(2)*X(1) + 3*DU(1)*U(2)*X(2) - DU(2)*U(1)*X(2)
  138. %The symmetries of the system comprising the four equations
  139. deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$
  140. deq 2:=u(2,1)+u(2,2,2)$
  141. deq 3:=u 1*u 2-2*u(2,2)$
  142. deq 4:=4*u(2,1)+u 2*(u 1**2+2*u(1,2))$
  143. sder 1:=u(1,2,2)$
  144. sder 2:=u(2,2,2)$
  145. sder 3:=u(2,2)$
  146. sder 4:=u(2,1)$
  147. %is obtained by calling
  148. cresys()$
  149. simpsys()$
  150. Determining system is not completely solved
  151. The remaining equations are
  152. GL(1):=DF(C(5),X(2),2) + DF(C(5),X(1))
  153. GL(2):=DF(C(5),X(2),X(1)) + DF(C(5),X(2),3)
  154. The remaining dependencies
  155. C(5) depends on X(1),X(2)
  156. Number of functions is 21
  157. df(c 5,x 1):=-df(c 5,x 2,2)$
  158. df(c 5,x 2,x 1):=-df(c 5,x 2,3)$
  159. simpsys()$
  160. result()$
  161. The differential equations
  162. DEQ(1):=U(1,2,2) + U(1,2)*U(1) + U(1,1)
  163. DEQ(2):=U(2,2,2) + U(2,1)
  164. DEQ(3):= - 2*U(2,2) + U(2)*U(1)
  165. 2
  166. DEQ(4):=4*U(2,1) + 2*U(2)*U(1,2) + U(2)*U(1)
  167. The symmetry generators are
  168. GEN(1):=DX(1)
  169. GEN(2):=DX(2)
  170. GEN(3):=DU(2)*U(2)
  171. GEN(4):=2*DX(2)*X(1) + 2*DU(1) + DU(2)*U(2)*X(2)
  172. 2
  173. GEN(5):= 4*DX(1)*X(1)
  174. + 4*DX(2)*X(2)*X(1)
  175. 4*DU(1)*( - U(1)*X(1) + X(2))
  176. 2
  177. + DU(2)*U(2)*(X(2) - 2*X(1))
  178. GEN(6):=4*DX(1)*X(1) + 2*DX(2)*X(2) - 2*DU(1)*U(1) - DU(2)*U(2)
  179. GEN(7):=DU(1)*(2*DF(C(5),X(2)) - C(5)*U(1)) + DU(2)*C(5)*U(2)
  180. The remaining dependencies
  181. C(5) depends on X(1),X(2)
  182. Constraints
  183. DF(C(5),X(1)):= - DF(C(5),X(2),2)
  184. DF(C(5),X(2),X(1)):= - DF(C(5),X(2),3)
  185. The non-vanishing commutators of the finite subgroup
  186. COMM(1,4):= 2*DX(2)
  187. COMM(1,5):= 8*DX(1)*X(1) + 4*DX(2)*X(2) - 4*DU(1)*U(1) - 2*DU(2)*U(2)
  188. COMM(1,6):= 4*DX(1)
  189. COMM(2,4):= DU(2)*U(2)
  190. COMM(2,5):= 4*DX(2)*X(1) + 4*DU(1) + 2*DU(2)*U(2)*X(2)
  191. COMM(2,6):= 2*DX(2)
  192. COMM(4,6):= - 4*DX(2)*X(1) - 4*DU(1) - 2*DU(2)*U(2)*X(2)
  193. 2
  194. COMM(5,6):= - 16*DX(1)*X(1)
  195. - 16*DX(2)*X(2)*X(1)
  196. + 16*DU(1)*(U(1)*X(1) - X(2))
  197. 2
  198. 4*DU(2)*U(2)*( - X(2) + 2*X(1))
  199. %The symmetries of the subsystem comprising equation 1 and 3 are
  200. %obtained by
  201. cresys(deq 1,deq 3)$
  202. simpsys()$
  203. result()$
  204. The differential equations
  205. DEQ(1):=U(1,2,2) + U(1,2)*U(1) + U(1,1)
  206. DEQ(3):= - 2*U(2,2) + U(2)*U(1)
  207. The symmetry generators are
  208. GEN(1):=DX(1)
  209. GEN(2):=DX(2)
  210. GEN(3):=DU(2)
  211. GEN(4):=2*DX(2)*X(1) + 2*DU(1) + DU(2)*X(2)
  212. GEN(5):=2*DX(1)*X(1) + DX(2)*X(2) - DU(1)*U(1)
  213. 2
  214. GEN(6):= 4*DX(1)*X(1)
  215. + 4*DX(2)*X(2)*X(1)
  216. 4*DU(1)*( - U(1)*X(1) + X(2))
  217. 2
  218. + DU(2)*X(2)
  219. GEN(7):=DU(2)*C(11)
  220. The remaining dependencies
  221. C(11) depends on X(1)
  222. The non-vanishing commutators of the finite subgroup
  223. COMM(1,4):= 2*DX(2)
  224. COMM(1,5):= 2*DX(1)
  225. COMM(1,6):= 8*DX(1)*X(1) + 4*DX(2)*X(2) - 4*DU(1)*U(1)
  226. COMM(2,4):= DU(2)
  227. COMM(2,5):= DX(2)
  228. COMM(2,6):= 4*DX(2)*X(1) + 4*DU(1) + 2*DU(2)*X(2)
  229. COMM(4,5):= - 2*DX(2)*X(1) - 2*DU(1) - DU(2)*X(2)
  230. 2
  231. COMM(5,6):= 8*DX(1)*X(1)
  232. + 8*DX(2)*X(2)*X(1)
  233. 8*DU(1)*( - U(1)*X(1) + X(2))
  234. 2
  235. + 2*DU(2)*X(2)
  236. %The result for all possible subsystems is discussed in detail in
  237. %''Symmetries and Involution Systems: Some Experiments in Computer
  238. %Algebra'', contribution to the Proceedings of the Oberwolfach
  239. %Meeting on Nonlinear Evolution Equations, Summer 1986, to appear.
  240. end;
  241. 4: 4:
  242. Quitting
  243. Sat Jun 29 14:15:09 PDT 1991