123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- COMMENT
- test file for the PHYSOP package;
- showtime;
- linelength(72)$
- % Example 1: Quantum Mechanics of a Dirac particle in an external
- % electromagnetic field
- VECOP P,A,K;
- SCALOP M;
- NONCOM P,A;
- PHYSINDEX J,L;
- oporder M,K,A,P;
- % we have to set off allfac here since otherwise there appear
- % spurious negative powers in the printed output
- off allfac;
- FOR ALL J,L LET COMM(P(J),A(L))=K(J)*A(L);
- H:= COMMUTE(P**2/(2*M),E/(4*M**2)*(P DOT A));
- showtime;
- %assign the corresponding value to the adjoint of H
- H!+ := adj H;
- showtime;
- % note the ordering of operators in the result!
- % enhance the readability of the output
- on allfac;
- ON CONTRACT;
- H;
- showtime;
- % Example 2: Virasoro Algebra from Conformal Field Theory
- operator del; % this is just a defintion of a delta function
- for all n such that numberp n let del(n) =
- if n=0 then 1
- else 0;
- scalop l;
- noncom l,l;
- state bra,ket;
- % commutation relation of the operator l;
- for all n,m let comm(l(n),l(m)) =
- (m-n)*l(n+m)+c/12*(m**3-m)*del(n+m);
- for all n let l!+(n) = l(-n);
- % relation for the states
- for all h let bra!+(h) = ket(h);
- for all p,q let bra(q) | ket(p) = del(p-q);
- for all r,h such that r < 0 or (r <2 and h=0) let
- l(r) | ket(h) = 0;
- for all r,h such that r > 0 or (r > -2 and h = 0) let
- bra(h) | l(r) = 0;
- % define a procedure to calculate V.E.V.
- procedure Vak(X);
- bra(0) | X | ket(0);
- % and now some calculations;
- M:= adj(l(3)*l(5))*l(3)*l(5);
- showtime;
- % here is the VEV of m
- vak(M);
- showtime;
- % and now calculate another matrix element
- matel := bra(1) | m | ket(1);
- showtime;
- % this evaluation is incomplete so supply the missing relation
- for all h let l(0) | ket(h) = h*ket(h);
- % and reevaluate matel
- matel := matel;
- showtime;
- % Example 4: some manipulations with gamma matrices to demonstrate
- % the use of commutators and anticommutators
- off allfac;
- vecop gamma,q;
- tensop sigma(2);
- antisymmetric sigma;
- noncom gamma,gamma;
- noncom sigma,gamma;
- physindex mu,nu;
- operator delta;
- for all mu,nu let anticomm(gamma(mu),gamma(nu))=2*delta(mu,nu)*unit,
- comm(gamma(mu),gamma(nu))=2*I*sigma(mu,nu);
- oporder p,q,gamma,sigma;
- off allfac;
- on anticom;
- (gamma dot p)*(gamma dot q);
- showtime;
- off anticom;
- (gamma dot p)*(gamma dot q);
- showtime;
- commute((gamma dot p),(gamma dot q));
- showtime;
- anticommute((gamma dot p),(gamma dot q));
- on anticom;
- anticommute((gamma dot p),(gamma dot q));
- showtime;
- end;
|