123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- % Tests of the COMPACT package.
- % Author: Anthony C. Hearn.
- % First some simple examples.
- aa := {cos(x)^2+sin(x)^2-1};
- xx := 2*cos(x)^2+2*sin(x)^2-2;
- compact(xx,aa);
- xx := (1-cos(x)^2)^4;
- compact(xx,aa);
- % These examples are from Lars Hornfeldt.
- compact(((1-(sin x)**2)**5)*((1-(cos x)**2)**5)
- *(((sin x)**2+(cos x)**2)**5),
- {cos x^2+sin x^2=1});
- compact(s*(1-(sin x**2))+c*(1-(cos x)**2)+(sin x)**2+(cos x)**2,
- {cos x^2+sin x^2=1});
- xx := s*(1-(sin x**2))+c*(1-(cos x)**2)+(sin x)**2+(cos x)**2
- *((sin x)**2+(cos x)**2)*(sin x)**499*(cos x)**499;
- compact(xx,{cos(x)^2+sin(x)^2=1});
- compact((s*(1-(sin x**2))+c*(1-(cos x)**2)+(sin x)**2+(cos x)**2)
- *((sin x)**2+(cos x)**2)*(sin x)**499*(cos x)**499,
- {cos x^2+sin x^2=1});
- compact(df((1-(sin x)**2)**4,x),{cos x^2+sin x^2=1});
- % End of Lars Hornfeld examples.
- xx := a*(cos(x)+2*sin(x))^3-w*(cos(x)-sin(x))^2;
- compact(xx,aa);
- xx := (1-cos(x)^2)^2+(1-sin(x)^2)^2;
- compact(xx,aa);
- xx := (c^2-1)^6+7(s-1)^4+23(c+s)^5;
- compact(xx,{c+s=1});
- yy := (c+1)^6*s^6+7c^4+23;
- compact(yy,{c+s=1});
- zz := xx^3+c^6*s^6$
- compact(zz,{c+s=1});
- xx := (c+s)^5 - 55(1-s)^2 + 77(1-c)^3 + (c+2s)^8;
- % This should reduce to something like:
- yy := 1 - 55c^2 + 77s^3 + (1+s)^8;
- % The result contains the same number but different terms.
- compact(xx,{c+s=1});
- compact(yy,{c+s=1});
- % Test showing order of expressions is important.
- d2:= - 4*r3a**2 - 4*r3b**2 - 4*r3c**2 + 3*r3**2$
- d1:= 4 * r3a**2 * r3
- + 4 * r3b**2 * r3
- + 4 * r3c**2 * r3
- + 16 * r3a * r3b * r3c
- - r3**3$
- d0:= 16 * r3a**4
- + 16 * r3b**4
- + 16 * r3c**4
- + r3**4
- - 32 * r3a**2 * r3b**2
- - 32 * r3a**2 * r3c**2
- - 32 * r3b**2 * r3c**2
- - 8 * r3a**2 * r3**2
- - 8 * r3b**2 * r3**2
- - 8 * r3c**2 * r3**2
- - 64 * r3a * r3b * r3c * r3$
- alist := { c0 = d0, c1 = d1, c2 = d2}$
- blist := { c2 = d2, c1 = d1, c0 = d0}$
- d:= d2 * l*l + d1 * l + d0;
- compact(d,alist); % Works fine.
- compact(d,blist); % Only c2=d2 is applied.
- % This example illustrates why parallel application of the individual
- % side relations is necessary.
- lst:={x1=a+b+c, x2=a-b-c, x3=-a+b-c, x4=-a-b+c};
- z1:=(a+b+c)*(a-b-c)*(-a+b-c); % This is x1*x2*x3.
- z2:=(a+b+c)*(a-b-c)*(-a+b-c)*(-a-b+c); % This is x1*x2*x3*x4.
- compact(z1,lst); % Not the best solution but better than nothing.
- compact(z2,lst); % Does nothing.
- end;
|