grg32.tex 235 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016
  1. %==========================================================================%
  2. % GRG 3.2 Manual (C) 1988-97 Vadim V. Zhytnikov %
  3. %==========================================================================%
  4. % LaTeX 2e and MakeIndex are required to pront this document: %
  5. % %
  6. % latex grg32 %
  7. % latex grg32 %
  8. % latex grg32 %
  9. % makeindex grg32 %
  10. % latex grg32 %
  11. % %
  12. % If you do not have MakeIndex just omit two last steps. %
  13. % The document is intended for two-side printing. %
  14. %==========================================================================%
  15. \documentclass[twoside,openright]{report}
  16. \oddsidemargin=1.5cm
  17. \evensidemargin=1.3cm
  18. %%% This is for PS fonts and dvips driver
  19. %\usepackage{mathptm}
  20. %\usepackage{palatino}
  21. %\renewcommand{\bfdefault}{b}
  22. %\newcommand{\grgtt}{\bfseries\ttfamily}
  23. %\usepackage[dvips]{color}
  24. %\definecolor{shade}{gray}{.9}
  25. %\newcommand{\shadedbox}[1]{\fcolorbox{black}{shade}{#1}}
  26. %%% This is for CM fonts
  27. \newcommand{\grgtt}{\ttfamily}
  28. \renewcommand{\ttdefault}{cmtt}
  29. \newcommand{\shadedbox}[1]{\fbox{#1}}
  30. %%%
  31. %\usepackage{calrsfs} % rsfs for mathcal
  32. %%%
  33. \makeatletter
  34. \let\@afterindentfalse\@afterindenttrue
  35. \@afterindenttrue
  36. \makeatother
  37. %%%
  38. %%%
  39. \usepackage{makeidx}
  40. \makeindex
  41. \newcommand{\cmdind}[1]{\index{Commands!\comm{#1}}\index{#1@\comm{#1} (command)}}
  42. \newcommand{\cmdindx}[2]{\index{Commands!\comm{#1}}\index{#1@\comm{#1} (command)!\comm{#2}}}
  43. \newcommand{\swind}[1]{\index{Switches!\comm{#1}}%
  44. \index{#1@\comm{#1} (switch)}%
  45. \label{#1}}
  46. \newcommand{\swinda}[1]{\index{Switches!\comm{#1}}%
  47. \index{#1@\comm{#1} (switch)}}
  48. %%%
  49. %%%
  50. \newcommand{\rim}[1]{\stackrel{\scriptscriptstyle\{\}}{#1}\!}
  51. %%%
  52. %%%
  53. \newcommand{\object}[2]{%
  54. \begin{equation}
  55. \mbox{\comm{#1}} =\ #2
  56. \end{equation}}
  57. \newcommand{\tsst}{\longleftrightarrow}
  58. \newcommand{\vv}{\vphantom{\rule{5mm}{5mm}}}
  59. \newcommand{\RR}[1]{\stackrel{\rm #1}{R}\!{}}
  60. \newcommand{\OO}[1]{\stackrel{\rm #1}{\Omega}\!{}}
  61. %%%
  62. %%%
  63. \newcommand{\ipr}{\rule{1.8mm}{.1mm}\rule{.1mm}{2.2mm}\,} % _| int. product
  64. %%%
  65. %%%
  66. \newcommand{\spref}[1]{section \ref{#1} on page \pageref{#1}}
  67. \newcommand{\pref}[1]{page \pageref{#1}}
  68. %%%
  69. %%%
  70. \newcommand{\seethis}[1]{\marginpar{\footnotesize\it #1}}
  71. \newcommand{\rseethis}[1]{
  72. \reversemarginpar
  73. \marginpar{\footnotesize\it #1}
  74. \normalmarginpar}
  75. \newcommand{\important}[1]{\marginpar{\itshape\bfseries\fbox{\ !\ } #1}}
  76. %%%
  77. %%% Footnotes simbol ...
  78. \renewcommand{\thefootnote}{\fnsymbol{footnote}} % + ++ etc for footnotes
  79. \makeatletter
  80. \def\@fnsymbol#1{\ensuremath{\ifcase#1\or \dagger\or \ddagger\or
  81. \mathchar "278\or \mathchar "27B\or \|\or *\or **\or \dagger\dagger
  82. \or \ddagger\ddagger \else\@ctrerr\fi}}
  83. \makeatother
  84. %%%
  85. %%% Page layout ...
  86. \textheight=180mm
  87. \textwidth=120mm
  88. %\marginparsep=2mm
  89. %\marginparwidth=28mm
  90. \marginparsep=5mm
  91. \marginparwidth=25mm
  92. \parindent=6mm
  93. \parskip=1.2mm plus 1mm minus 1mm
  94. %%%
  95. \newlength{\myparindent}
  96. \myparindent=\parindent
  97. %%% My own \tt font ...
  98. \makeatletter
  99. \def\verbatim@font{\grgtt}
  100. \makeatother
  101. \renewcommand{\tt}{\grgtt}
  102. %%%
  103. %%%
  104. %%% Special symbols ...
  105. \def\^{{\tt \char'136}} %%% \^ is ^
  106. \def\_{{\tt \char'137}} %%% \_ is _
  107. \newcommand{\w}{{\tt \char'057 \char'134}} %%% \w is /\
  108. \newcommand{\bs}{{\tt \char'134}} %%% \bs is \
  109. \newcommand{\ul}{{\tt \char'137}} %%% \ul is _
  110. \newcommand{\dd}{{\tt \char'043}} %%% \dd is #
  111. \newcommand{\cc}{{\tt \char'176}} %%% \cc is ~
  112. \newcommand{\ip}{{\tt \char'137 \char'174}} %%% \ip is _|
  113. \newcommand{\ii}{{\tt \char'174}} %%% \ii is |
  114. \newcommand{\udr}{\mbox{$\Updownarrow$}}
  115. %%%
  116. %%% \grg GRG logo ...
  117. \newcommand{\grg}{{\sc GRG}}
  118. \newcommand{\reduce}{{\sc Reduce}}
  119. \newcommand{\maple}{{\sc Maple}}
  120. \newcommand{\macsyma}{{\sc Macsyma}}
  121. \newcommand{\mathematica}{{\sc Mathematica}}
  122. %%% \marg ...
  123. \newcommand{\marg}[1]{\marginpar{\tiny#1}}
  124. %%% \command{...} commands in (shaded) box
  125. \def\mynewline{\ifvmode \relax \else
  126. \unskip\nobreak\hfil\break\fi}
  127. \newcommand{\command}[1]{\vspace{1.2mm}\mynewline\hspace*{6mm}%
  128. \shadedbox{\begin{tabular}{l}\tt%
  129. #1 \end{tabular}}\vspace{1.2mm}\newline}
  130. %%% parts of the commands
  131. \newcommand{\file}[1]{{\sf#1}}
  132. \newcommand{\comm}[1]{{\upshape\tt#1}} % \comm short in-line command
  133. \newcommand{\parm}[1]{{\sf\slshape#1\/}} % \parm command parameter
  134. \newcommand{\opt}[1]{{\rm[}#1{\rm]}} % \opt optional part of command
  135. \newcommand{\user}[1]{{\bfseries\ttfamily#1}} % \user user input
  136. \newcommand{\rpt}[1]{#1{\rm[}{\tt,}#1{\rm\dots}{\rm]}} % \rpt repetition
  137. \def\closerule{\rule{.1mm}{1mm}\rule{119.8mm}{.1mm}}
  138. \def\openrule{\rule{.1mm}{1mm}\rule[1mm]{119.8mm}{.1mm}}
  139. %%% \begin{slisting} ... \end{slisting} small font listing with frame
  140. %%% \begin{listing} ... \end{listing} normal font listing without frame
  141. \newcommand{\etrivlistrule}
  142. {\vspace*{-3mm}\endtrivlist{\closerule}\newline}
  143. \makeatletter
  144. \newdimen\allttindent
  145. \allttindent=0mm
  146. \def\docspecials{\do\ \do\$\do\&%
  147. \do\#\do\^\do\^^K\do\_\do\^^A\do\%\do\~}
  148. \def\slisting{\vspace*{-2mm}%
  149. \trivlist \item[]\if@minipage\else\relax\fi
  150. \leftskip\@totalleftmargin \advance\leftskip\allttindent \rightskip\z@
  151. \parindent\z@\parfillskip\@flushglue\parskip\z@
  152. \@tempswafalse\openrule \def\par{\if@tempswa\hbox{}\fi\@tempswatrue\@@par}
  153. \obeylines \small\grgtt%
  154. \catcode``=13 \@noligs
  155. \let\do\@makeother \docspecials
  156. \frenchspacing\@vobeyspaces}
  157. \def\listing{\trivlist \item[]\if@minipage\else\relax\fi
  158. \leftskip\@totalleftmargin \advance\leftskip\allttindent \rightskip\z@
  159. \parindent\z@\parfillskip\@flushglue\parskip\z@
  160. \@tempswafalse \def\par{\if@tempswa\hbox{}\fi\@tempswatrue\@@par}
  161. \obeylines \grgtt%
  162. \catcode``=13 \@noligs
  163. \let\do\@makeother \docspecials
  164. \frenchspacing\@vobeyspaces}
  165. \let\endslisting=\etrivlistrule
  166. \let\endlisting=\endtrivlist
  167. \makeatother
  168. %%%
  169. %%% Headings style ...
  170. %\usepackage{fancyheadings}
  171. %%% We just inserat the fancyheadings.sty here literally ...
  172. \makeatletter
  173. % fancyheadings.sty version 1.7
  174. % Fancy headers and footers.
  175. % Piet van Oostrum, Dept of Computer Science, University of Utrecht
  176. % Padualaan 14, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
  177. % Telephone: +31-30-531806. piet@cs.ruu.nl (mcvax!sun4nl!ruuinf!piet)
  178. % Sep 16, 1994
  179. % version 1.4: Correction for use with \reversemargin
  180. % Sep 29, 1994:
  181. % version 1.5: Added the \iftopfloat, \ifbotfloat and \iffloatpage commands
  182. % Oct 4, 1994:
  183. % version 1.6: Reset single spacing in headers/footers for use with
  184. % setspace.sty or doublespace.sty
  185. % Oct 4, 1994:
  186. % version 1.7: changed \let\@mkboth\markboth to
  187. % \def\@mkboth{\protect\markboth} to make it more robust
  188. \def\lhead{\@ifnextchar[{\@xlhead}{\@ylhead}}
  189. \def\@xlhead[#1]#2{\gdef\@elhead{#1}\gdef\@olhead{#2}}
  190. \def\@ylhead#1{\gdef\@elhead{#1}\gdef\@olhead{#1}}
  191. \def\chead{\@ifnextchar[{\@xchead}{\@ychead}}
  192. \def\@xchead[#1]#2{\gdef\@echead{#1}\gdef\@ochead{#2}}
  193. \def\@ychead#1{\gdef\@echead{#1}\gdef\@ochead{#1}}
  194. \def\rhead{\@ifnextchar[{\@xrhead}{\@yrhead}}
  195. \def\@xrhead[#1]#2{\gdef\@erhead{#1}\gdef\@orhead{#2}}
  196. \def\@yrhead#1{\gdef\@erhead{#1}\gdef\@orhead{#1}}
  197. \def\lfoot{\@ifnextchar[{\@xlfoot}{\@ylfoot}}
  198. \def\@xlfoot[#1]#2{\gdef\@elfoot{#1}\gdef\@olfoot{#2}}
  199. \def\@ylfoot#1{\gdef\@elfoot{#1}\gdef\@olfoot{#1}}
  200. \def\cfoot{\@ifnextchar[{\@xcfoot}{\@ycfoot}}
  201. \def\@xcfoot[#1]#2{\gdef\@ecfoot{#1}\gdef\@ocfoot{#2}}
  202. \def\@ycfoot#1{\gdef\@ecfoot{#1}\gdef\@ocfoot{#1}}
  203. \def\rfoot{\@ifnextchar[{\@xrfoot}{\@yrfoot}}
  204. \def\@xrfoot[#1]#2{\gdef\@erfoot{#1}\gdef\@orfoot{#2}}
  205. \def\@yrfoot#1{\gdef\@erfoot{#1}\gdef\@orfoot{#1}}
  206. \newdimen\headrulewidth
  207. \newdimen\footrulewidth
  208. \newdimen\plainheadrulewidth
  209. \newdimen\plainfootrulewidth
  210. \newdimen\headwidth
  211. \newif\if@fancyplain \@fancyplainfalse
  212. \def\fancyplain#1#2{\if@fancyplain#1\else#2\fi}
  213. % Command to reset various things in the headers:
  214. % a.o. single spacing (taken from setspace.sty)
  215. % and the catcode of ^^M (so that epsf files in the header work if a
  216. % verbatim crosses a page boundary)
  217. \def\fancy@reset{\restorecr
  218. \def\baselinestretch{1}%
  219. \ifx\undefined\@newbaseline% NFSS not present; 2.09 or 2e
  220. \ifx\@currsize\normalsize\@normalsize\else\@currsize\fi%
  221. \else% NFSS (2.09) present
  222. \@newbaseline%
  223. \fi}
  224. % Initialization of the head and foot text.
  225. \headrulewidth 0.4pt
  226. \footrulewidth\z@
  227. \plainheadrulewidth\z@
  228. \plainfootrulewidth\z@
  229. \lhead[\fancyplain{}{\sl\rightmark}]{\fancyplain{}{\sl\leftmark}}
  230. % i.e. empty on ``plain'' pages \rightmark on even, \leftmark on odd pages
  231. \chead{}
  232. \rhead[\fancyplain{}{\sl\leftmark}]{\fancyplain{}{\sl\rightmark}}
  233. % i.e. empty on ``plain'' pages \leftmark on even, \rightmark on odd pages
  234. \lfoot{}
  235. \cfoot{\rm\thepage} % page number
  236. \rfoot{}
  237. % Put together a header or footer given the left, center and
  238. % right text, fillers at left and right and a rule.
  239. % The \lap commands put the text into an hbox of zero size,
  240. % so overlapping text does not generate an errormessage.
  241. \def\@fancyhead#1#2#3#4#5{#1\hbox to\headwidth{\fancy@reset\vbox{\hbox
  242. {\rlap{\parbox[b]{\headwidth}{\raggedright#2\strut}}\hfill
  243. \parbox[b]{\headwidth}{\centering#3\strut}\hfill
  244. \llap{\parbox[b]{\headwidth}{\raggedleft#4\strut}}}\headrule}}#5}
  245. \def\@fancyfoot#1#2#3#4#5{#1\hbox to\headwidth{\fancy@reset\vbox{\footrule
  246. \hbox{\rlap{\parbox[t]{\headwidth}{\raggedright#2\strut}}\hfill
  247. \parbox[t]{\headwidth}{\centering#3\strut}\hfill
  248. \llap{\parbox[t]{\headwidth}{\raggedleft#4\strut}}}}}#5}
  249. \def\headrule{{\if@fancyplain\headrulewidth\plainheadrulewidth\fi
  250. \hrule\@height\headrulewidth\@width\headwidth \vskip-\headrulewidth}}
  251. \def\footrule{{\if@fancyplain\footrulewidth\plainfootrulewidth\fi
  252. \vskip-0.3\normalbaselineskip\vskip-\footrulewidth
  253. \hrule\@width\headwidth\@height\footrulewidth\vskip0.3\normalbaselineskip}}
  254. \def\ps@fancy{
  255. \def\@mkboth{\protect\markboth}
  256. \@ifundefined{chapter}{\def\sectionmark##1{\markboth
  257. {\uppercase{\ifnum \c@secnumdepth>\z@
  258. \thesection\hskip 1em\relax \fi ##1}}{}}
  259. \def\subsectionmark##1{\markright {\ifnum \c@secnumdepth >\@ne
  260. \thesubsection\hskip 1em\relax \fi ##1}}}
  261. {\def\chaptermark##1{\markboth {\uppercase{\ifnum \c@secnumdepth>\m@ne
  262. \@chapapp\ \thechapter. \ \fi ##1}}{}}
  263. \def\sectionmark##1{\markright{\uppercase{\ifnum \c@secnumdepth >\z@
  264. \thesection. \ \fi ##1}}}}
  265. \ps@@fancy
  266. \global\let\ps@fancy\ps@@fancy
  267. \headwidth\textwidth}
  268. \def\ps@fancyplain{\ps@fancy \let\ps@plain\ps@plain@fancy}
  269. \def\ps@plain@fancy{\@fancyplaintrue\ps@@fancy}
  270. \def\ps@@fancy{
  271. \def\@oddhead{\@fancyhead\@lodd\@olhead\@ochead\@orhead\@rodd}
  272. \def\@oddfoot{\@fancyfoot\@lodd\@olfoot\@ocfoot\@orfoot\@rodd}
  273. \def\@evenhead{\@fancyhead\@rodd\@elhead\@echead\@erhead\@lodd}
  274. \def\@evenfoot{\@fancyfoot\@rodd\@elfoot\@ecfoot\@erfoot\@lodd}
  275. }
  276. \def\@lodd{\if@reversemargin\hss\else\relax\fi}
  277. \def\@rodd{\if@reversemargin\relax\else\hss\fi}
  278. \let\latex@makecol\@makecol
  279. \def\@makecol{\let\topfloat\@toplist\let\botfloat\@botlist\latex@makecol}
  280. \def\iftopfloat#1#2{\ifx\topfloat\empty #2\else #1\fi}
  281. \def\ifbotfloat#1#2{\ifx\botfloat\empty #2\else #1\fi}
  282. \def\iffloatpage#1#2{\if@fcolmade #1\else #2\fi}
  283. \makeatother
  284. %%%
  285. \pagestyle{fancy}
  286. \addtolength{\headwidth}{\marginparsep}
  287. \addtolength{\headwidth}{\marginparwidth}
  288. \lhead[\bfseries\thepage]{\bfseries\slshape\rightmark}
  289. \chead{}
  290. \rhead[\bfseries\slshape\leftmark]{\bfseries\thepage}
  291. \lfoot{}
  292. \cfoot{}
  293. \rfoot{}
  294. \renewcommand{\uppercase}[1]{#1}
  295. %%%
  296. %%% Chapter style ...
  297. \makeatletter
  298. \def\@makechapterhead#1{%
  299. \noindent\grgrule\break%
  300. { \hsize=150mm
  301. \parindent \z@ \raggedleft \reset@font
  302. \ifnum \c@secnumdepth >\m@ne
  303. \Large\slshape \@chapapp{} \Huge\bfseries \thechapter
  304. \par
  305. \vskip 20\p@
  306. \fi
  307. \Huge \bfseries\upshape #1\par
  308. \nobreak
  309. \vskip 40\p@
  310. }}
  311. \def\@makeschapterhead#1{%
  312. \noindent\grgrule\break%
  313. { \hsize=150mm
  314. \parindent \z@ \raggedleft
  315. \reset@font
  316. \Large\slshape #1\par
  317. \nobreak
  318. \vskip 20\p@
  319. }}
  320. \renewcommand\chapter{\if@openright\cleardoublepage\else\clearpage\fi
  321. \thispagestyle{empty}%
  322. \global\@topnum\z@
  323. %\@afterindentfalse
  324. \secdef\@chapter\@schapter}
  325. \makeatother
  326. \renewcommand{\chaptername}{CHAPTER}
  327. \renewcommand{\contentsname}{CONTENTS}
  328. \renewcommand{\appendixname}{APPENDIX}
  329. \newcommand{\grgrule}{\rule{150mm}{.3mm}\relax}
  330. %%%
  331. %%% Sections ...
  332. %\renewcommand{\thesection}{}
  333. %\renewcommand{\thesubsection}{}
  334. %\renewcommand{\thesubsubsection}{}
  335. \makeatletter
  336. %\renewcommand\section{\@startsection {section}{1}{\z@}%
  337. % {-3.5ex \@plus -1ex \@minus -.2ex}%
  338. % {2.3ex \@plus.2ex}%
  339. % {\normalfont\Large\bfseries}}
  340. \renewcommand\subsection{\@startsection{subsection}{2}{\z@}%
  341. {-3.25ex\@plus -1ex \@minus -.2ex}%
  342. {1.5ex \@plus .2ex}%
  343. {\normalfont\large\slshape\bfseries}}
  344. %\renewcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}%
  345. % {-3.25ex\@plus -1ex \@minus -.2ex}%
  346. % {1.5ex \@plus .2ex}%
  347. % {\normalfont\normalsize\bfseries}}
  348. \makeatother
  349. %%%
  350. \begin{document}
  351. \begin{titlepage}
  352. \hsize=150mm
  353. \hrulefill
  354. \vspace*{20mm}
  355. \begin{center}
  356. \Huge\bf GRG\\[1mm]
  357. \normalsize Version 3.2
  358. \end{center}
  359. \begin{center}
  360. \Large Computer Algebra System for\\
  361. Differential Geometry,\\
  362. Gravitation and \\
  363. Field Theory
  364. \vspace*{25mm}\\
  365. {\Large\itshape\bfseries Vadim V. Zhytnikov}\\
  366. \vfill
  367. {\normalsize Moscow, 1992--1997 $\bullet$ Chung-Li, 1994}
  368. \end{center}
  369. \hrulefill
  370. \end{titlepage}
  371. \setcounter{page}{0}\thispagestyle{empty}
  372. \tableofcontents\thispagestyle{empty}
  373. \chapter{Introduction}
  374. Calculation of various geometrical and physical quantities and
  375. equations is the usual technical problem which permanently arises
  376. in geometry, field and gravity theory. Numerous indices,
  377. contractions and components make these calculations very tedious
  378. and error-prone. Since this calculus obeys the well defined rules the idea
  379. to automate this kind of problems using computer is quite
  380. natural. Now there are several computer algebra systems such as
  381. \maple, \reduce, \mathematica\ or \macsyma\ which in principle
  382. allow one to do this and it is not so hard
  383. to write a program to calculate, for example, the
  384. curvature tensor or connection. But suppose that we want to
  385. make a non-trivial coordinate transformation or tetrad rotation,
  386. calculate covariant or Lie derivative, compute a complicated
  387. expression with numerous contraction or raise or lower some indices.
  388. All these operations are typical in differential geometry
  389. and field theory but their realization with the help of general
  390. purpose computer algebra systems requires hard programming since
  391. all these systems really know nothing about \emph{covariant properties}
  392. of geometrical quantities.
  393. The computer algebra system \grg\ is designed in such a way
  394. to make calculation in differential geometry and field theory
  395. as simple and natural as possible. \grg\ is based on the
  396. computer algebra system \reduce\ but \grg\ has its own simple
  397. input language whose commands resembles English phrases.
  398. Working with \grg\ no any knowledge of programming is required.
  399. \grg\ understands tensors, spinors, vectors, differential forms
  400. and knows all standard operations with these quantities.
  401. Input form for mathematical expressions is very close
  402. to traditional mathematical notation including Einstein summation
  403. rule. \grg\ knows the covariant properties of
  404. these objects, you can easily raise and lower indices,
  405. compute covariant and Lie derivatives, perform
  406. coordinate and frame transformations.
  407. \grg\ works in any dimension and allows one to represent tensor
  408. quantities with respect to holonomic, orthogonal and even
  409. any other arbitrary frame.
  410. One of the useful features of \grg\ is that it has a large
  411. number of built-in standard field-theory
  412. and geometrical quantities and formulas for their computation.
  413. Thus \grg\ provides ready solutions to many standard problems.
  414. Another unique feature of \grg\ is that it can export
  415. results of calculations into other computer algebra system.
  416. You can save your data in to the file in the format of
  417. \maple, \mathematica, \macsyma\ or \reduce\ in order to use
  418. this system to proceed analysis of the data.
  419. The \LaTeX\ output format is supported as well.
  420. In addition \grg\ is compatible with \reduce\ graphics
  421. shells providing niece book-quality output with Greek letters,
  422. integral signs etc.
  423. The main built-in \grg\ capabilities are:
  424. \begin{list}{$\bullet$}{\labelwidth=8mm\leftmargin=10mm}
  425. \item Connection, torsion and nonmetricity.
  426. \item Curvature.
  427. \item Spinorial formalism.
  428. \item Irreducible decomposition of the curvature, torsion, and
  429. nonmetricity in any dimension.
  430. \item Einstein equations.
  431. \item Scalar field with minimal and non-minimal interaction.
  432. \item Electromagnetic field.
  433. \item Yang-Mills field.
  434. \item Dirac spinor field.
  435. \item Geodesic equation.
  436. \item Null congruences and optical scalars.
  437. \item Kinematics for time-like congruences.
  438. \item Ideal and spin fluid.
  439. \item Newman-Penrose formalism.
  440. \item Gravitational equations for the theory with arbitrary
  441. gravitational Lagrangian in Riemann and Riemann-Cartan
  442. spaces.
  443. \end{list}
  444. I would like to stress that current \grg\ version is
  445. intended for calculations in a concrete coordinate map only.
  446. It cannot operate with tensors as with objects having
  447. abstract symbolic indices.
  448. This book consist of two main parts. First part
  449. contains detailed description of \grg\ as a programming
  450. system. Second part describes all built-in objects
  451. and formulas for their computation.
  452. \chapter{Programming in \grg}
  453. Throughout the chapter \comm{commands} are printed in
  454. typewriter font. The slanted serif-less font is
  455. used for command \parm{parameters}.
  456. The optional parts of the commands are enclosed in
  457. squared brackets \opt{option} and \rpt{\parm{id}}
  458. stands for one or several repetitions of \parm{id}:
  459. \parm{id} or \comm{\parm{id},\parm{id}} etc.
  460. Examples are separated form the text by horizontal lines
  461. $\stackrel{\rule{0.1mm}{1mm}\rule[1mm]{3mm}{0.1mm}}
  462. {\rule{0.1mm}{1mm}\rule{3mm}{0.1mm}}$ and the user input
  463. can be easily distinguished from the \grg\ output by the prompt
  464. \comm{<-} which precedes every input line.
  465. \section{Session, Tasks and Commands}
  466. To start \grg\ it is necessary to start \reduce\ and
  467. \seethis{
  468. On some systems you have
  469. to use {\tt\upshape load!\_package grg;}\newline since
  470. {\tt\upshape load} is not defined.\newline
  471. \newline
  472. Sometimes it\newline is better to use two commands\newline
  473. {\tt\upshape load grg32; grg;}\newline
  474. or\newline
  475. {\tt\upshape load grg; grg;}\newline
  476. (See section \ref{configsect} for details.)}
  477. enter the command {\tt load grg;}
  478. \begin{slisting}
  479. REDUCE 3.5, 15 Oct 93, patched to 15 Jun 95 ...
  480. 1: load grg;
  481. This is GRG 3.2 release 2 (Feb 9, 1997) ...
  482. System directory: c:{\bs}reduce{\bs}grg32{\bs}
  483. System variables are upper-cased: E I PI SIN ...
  484. Dimension is 4 with Signature (-,+,+,+)
  485. <-
  486. \end{slisting}
  487. Symbol \comm{<-} is the \grg\ prompt which shows that
  488. now \grg\ waits for your input. The \grg\ \emph{task} (we prefer
  489. this term instead of usual \emph{program}) consist of the
  490. sequence of commands terminated by semicolon \comm{;}.
  491. Reading the input \grg\ splits it on \emph{atoms}.
  492. There are several types of atoms:\index{Atoms}
  493. \begin{list}{$\bullet$}{\labelwidth=4mm\leftmargin=\parindent}
  494. \item The identifier or symbol is a sequence of letters and digits
  495. starting with a letter:
  496. \begin{verbatim}
  497. i I alpha1 beta ABC123D Find
  498. \end{verbatim}
  499. The identifiers in \grg\ may have trailing tilde character \cc.
  500. Any other character may be incorporated in the identifier if
  501. preceded by the exclamation sign:\index{Identifiers}
  502. \begin{verbatim}
  503. beta~ LIMIT!+
  504. \end{verbatim}
  505. The identifiers in \grg\ play the role of the variables and
  506. functions in mathematical expressions and words in commands.
  507. \item Integer numbers\index{Numbers}
  508. \begin{verbatim}
  509. 0 123 104341
  510. \end{verbatim}
  511. \item String is a sequence of characters enclosed in double quotes\index{Strings}
  512. \begin{verbatim}
  513. "file.txt" "This is a string" "dir *.doc"
  514. \end{verbatim}
  515. The strings in \grg\ are used for file names and operating system
  516. commands.
  517. \item Nine special two-character atoms
  518. \begin{verbatim}
  519. ** _| /\ |= ~~ .. <= >= ->
  520. \end{verbatim}
  521. \item Any other characters are considered as single-character atoms.
  522. \end{list}
  523. The format of \grg\ commands is free. They can span one or several lines
  524. and any number of spaces and tabulations can be inserted between two
  525. neighbor atoms.
  526. \enlargethispage{3mm}
  527. The \grg\ session may consist of several independent tasks.
  528. The command\index{Tasks}\cmdind{Quit}
  529. \command{Quit;}
  530. terminates both \grg\ and \reduce\ session and returns the control
  531. to the operating system level. The command\cmdind{Stop}
  532. \command{Stop;}
  533. terminates current \grg\ task and brings
  534. the session control menu:\index{Session control menu}
  535. \begin{slisting}
  536. <- Stop;
  537. Quit GRG - 0
  538. Start Task - 1
  539. Exit to REDUCE - 2
  540. Type 0, 1 or 2:
  541. \end{slisting}
  542. \newpage
  543. \noindent
  544. The option \comm{0} terminates \reduce\ session similarly to the
  545. command \comm{Quit;}.
  546. The choice \comm{1} starts new task by bringing
  547. \grg\ to its initial state: all variables, declarations, substitutions
  548. and results of calculations are cleared and all switches
  549. resume their initial positions.\footnote{Usually
  550. \grg\ does good job by resuming initial state and new task
  551. turns out to be independent of previous ones. But on some
  552. rare occasions the initial state cannot be completely recovered
  553. and it is better to restart \reduce\ and \grg\ completely.}
  554. Finally the option \comm{2} terminates \grg\ task and returns
  555. control to the \reduce\ command level. In this case \grg\ can be
  556. restarted later by the command \comm{grg;}.
  557. The commands in \grg\ are case insensitive, i.e. command
  558. \comm{Quit;} is equivalent to \comm{quit;} and \comm{QUIT;} etc.
  559. But notice that unlike \reduce\ variables and functions in
  560. mathematical expressions in \grg\ \emph{are case sensitive}.
  561. \subsection{Switches}
  562. \index{Switches}
  563. Switches in \grg\ and \reduce\ are used to control various
  564. system modes of operation. They are denoted by identifiers and
  565. the commands\cmdind{On}\cmdind{Off}
  566. \command{On \rpt{\parm{switch}};\\\tt
  567. Off \rpt{\parm{switch}};}
  568. turns the \parm{switch} on and off respectively.
  569. Any switch defined by \reduce\ is available in \grg\ as well.
  570. In addition \grg\ defines a couple of its own switches.
  571. The full list of \grg\ switches is presented in appendix A.
  572. The command\cmdind{Show Switch}\cmdind{Switch}
  573. \command{\opt{Show} Switch \parm{switch};}
  574. or equivalently
  575. \command{Show \parm{switch};\\\tt
  576. ?~\parm{switch};}
  577. prints current \parm{switch} position
  578. \begin{slisting}
  579. <- Show Switch TORSION;
  580. TORSION is Off.
  581. <- On torsion,gcd;
  582. <- switch torsion;
  583. TORSION is On.
  584. <- switch exp;
  585. GCD is On
  586. \end{slisting}
  587. Switches in \grg\ are case insensitive.
  588. \subsection{Batch File Execution}
  589. Usually \grg\ works in the interactive mode which
  590. is not always convenient. The command\cmdind{Input}\index{Batch file execution}
  591. \command{\opt{Input} "\parm{file}";}
  592. reads the \parm{file} and executes commands stored in it.
  593. The file names in \grg\ are always denoted by strings and exact
  594. specification of \parm{file} is operating system dependent.
  595. The word \comm{Input} is optional, thus in order to run batch
  596. file it suffices to enter its name \comm{"\parm{file}";}.
  597. The execution of batch file commands can be suspended by the
  598. command\cmdind{Pause}
  599. \command{Pause;}
  600. After this command \grg\ enters the interactive mode.
  601. One can enter one or several commands interactively and then
  602. resume batch file execution by the command\cmdind{Next}
  603. \command{Next;}
  604. In general no any special end-of-file symbol or command
  605. is required in the \grg\ batch \parm{file} but is necessary
  606. the symbol\index{end-of-file symbol \comm{\$}}
  607. \comm{\$} is recognized by \grg\ as the end-of-file mark.
  608. If during the batch file execution an error occurs
  609. \grg\ enter interactive mode and ask user
  610. to input the command which is supposed to replace the
  611. erroneous one. After the receiving of \emph{one} command
  612. \grg\ automatically resumes the batch file execution.
  613. The command \comm{Pause;} can be used if it is necessary
  614. to execute \emph{several} commands instead of one.
  615. The command\cmdind{Output}
  616. \command{Output "\parm{outfile}";}
  617. redirects all \grg\ output into the \parm{outfile}.
  618. The \parm{outfile} can be closed by the equivalent commands
  619. \cmdind{EndO}\cmdind{End of Output}
  620. \command{EndO;\\\tt
  621. End of Output;}
  622. It is convenient to run long-time \grg\ tasks in background.
  623. The way of doing this depend on the operating system.
  624. For example to execute \grg\ task in background in UNIX it is
  625. necessary to use the following command
  626. \begin{listing}
  627. reduce < task.grg > grg.out &
  628. \end{listing}
  629. Here we assume that the \reduce\ invoking command is \comm{reduce}
  630. and the file \comm{task.grg} contains the \grg\ task commands:
  631. \begin{listing}
  632. load grg;
  633. \parm{grg command};
  634. \parm{grg command};
  635. ...
  636. \parm{grg command};
  637. quit;
  638. \end{listing}
  639. The output of the session will be written into the file \file{grg.out}.
  640. Since no proper reaction on errors is possible during the
  641. background execution it is good idea to turn the switch
  642. \comm{BATCH} on.\swind{BATCH} This makes \grg\ to terminate
  643. the session immediately in the case of any error.
  644. \subsection{Operating System Commands}
  645. The command\cmdind{System}
  646. \command{System "\parm{command}";}
  647. executes the operating system \parm{command}.
  648. The same command without parameters
  649. \command{System;}
  650. temporary suspends \grg\ session and passes the control to the
  651. operating system command level. The details may depend
  652. on the concrete operating system. In particular in UNIX
  653. the command \comm{system;} may fail but UNIX has some
  654. general mechanism for suspending running programs:
  655. you can press \comm{\^Z} to suspend any program and \comm{\%+}
  656. to resume its execution.
  657. \subsection{Comments}
  658. %\reversemarginpar
  659. The comment commands\cmdind{Comment}
  660. \command{Comment \parm{any text};\\\tt
  661. \% \parm{any text};}
  662. are used to supply additional information to \grg\ tasks
  663. \seethis{See page \pageref{Unload} about the \comm{Unload} command.}
  664. and data saved by the \comm{Unload} command.
  665. The comment can be also attached to the end of any \grg\ command
  666. \command{\parm{grg command} \% \parm{any text};}
  667. %\normalmarginpar
  668. \subsection{Timing}
  669. The command \cmdind{Time}\cmdind{Show Time}
  670. \command{\opt{Show} Time;}
  671. prints time elapsed since the beginning of current \grg\ task
  672. including the percentage of so called garbage collections.
  673. The garbage collection time can be also printed by the
  674. command \cmdind{GC Time}\cmdind{Show GC Time}
  675. \command{\opt{Show} GC Time;}
  676. If percentage of garbage collections grows and
  677. exceeds say 30\% then memory of your system
  678. is running short and you probably need more RAM.
  679. \section{Declarations}
  680. Any object, variable or function in \grg\ must be declared.
  681. This allows to locate misprints and makes the system more
  682. reliable. Since \grg\ always work in some concrete
  683. coordinate system (map) the coordinate declaration is the
  684. most important one and must be present in every \grg\ task.
  685. \subsection{Dimension and Signature}
  686. During installation \grg\ always defines default value of
  687. the dimension and signature.\index{Dimension!default}\index{Signature!default}
  688. \seethis{See \pref{tuning}
  689. to find out how to change the default dimension and signature.}
  690. The information about this default value is printed\index{Dimension}\index{Signature}
  691. upon \grg\ start in the form of the following (or similar) message line:
  692. \begin{slisting}
  693. Dimension is 4 with Signature (-,+,+,+)
  694. \end{slisting}
  695. The following command overrides the default dimension and signature\cmdind{Dimension}
  696. \command{Dimension \parm{dim} with \opt{Signature} (\rpt{\parm{pm}});}
  697. where \parm{dim} is the number \comm{2} or greater and \parm{pm}
  698. is \comm{+} or \comm{-}. The \parm{pm} can be preceded or succeeded by
  699. a number which denotes several repetitions of this \parm{pm}.
  700. For example the declarations
  701. \begin{listing}
  702. Dimension 5 with Signature (+,+,-,-,-);
  703. Dimension 5 with (2+,-3);
  704. \end{listing}
  705. are equivalent and defines 5-dimensional space with the
  706. signature ${\rm diag}{\scriptstyle(+1,+1,-1,}$ ${\scriptstyle-1,-1)}$.
  707. The important point is that the dimension declaration must
  708. be \emph{very first in the task} and goes before any other command.
  709. Current dimension and signature can be printed by the command
  710. \cmdind{Status}\cmdind{Show Status}
  711. \command{\opt{Show} Status;}
  712. \subsection{Coordinates}
  713. The coordinate declaration command must be present in every
  714. \grg\ task\cmdind{Coordinates}
  715. \command{Coordinates \rpt{\parm{id}};}
  716. Only few commands such as informational commands, other declarations,
  717. switch changing commands may precede the coordinate declaration.
  718. The only way to have a tusk without the coordinate declaration is
  719. to load the file where coordinates where saved by the
  720. \comm{Unload} command.\seethis{See \pref{UnloadLoad}
  721. to find out how to save data and declarations into a file.}
  722. but no any computation can be done before coordinates are
  723. declared. Current coordinate list can be printed by the command\cmdindx{Write}{Coordinates}
  724. \command{Write Coordinates;}
  725. \begin{table}
  726. \begin{center}\index{Constants!predefined}
  727. \begin{tabular}{|l|l|}
  728. \hline
  729. \tt E I PI INFINITY & Mathematical constants $e,i,\pi$,$\infty$ \\
  730. \hline
  731. \tt FAILED & \\
  732. \hline
  733. \tt ECONST & Charge of the electron \\
  734. \tt DMASS & Dirac field mass \\
  735. \tt SMASS & Scalar field mass \\
  736. \hline
  737. \tt GCONST & Gravitational constant \\
  738. \tt CCONST & Cosmological constants \\
  739. \hline
  740. \tt LC0 LC1 LC2 LC3 & Parameters of the quadratic \\
  741. \tt LC4 LC5 LC6 & gravitational Lagrangian \\
  742. \tt MC1 MC2 MC3 & \\
  743. \hline
  744. \tt AC0 & Nonminimal interaction constant \\
  745. \hline
  746. \end{tabular}
  747. \caption{Predefined constants}\label{predefconstants}
  748. \end{center}
  749. \end{table}
  750. \subsection{Constants}
  751. \index{Constants}
  752. Any constant must be declared by the command\cmdind{Constants}
  753. \command{Constants \rpt{\parm{id}};}
  754. The list of currently declared constants can be printed
  755. by the command\cmdindx{Write}{Constants}
  756. \command{Write Constants;}
  757. There are also a number of built-in constants
  758. which are listed in table \ref{predefconstants}.
  759. \subsection{Functions}
  760. Functions in \grg\ are the analogues of the \reduce\ \emph{operators}
  761. but we prefer to use this traditional mathematical term.
  762. The function must be declared by the command\cmdind{Functions}
  763. \command{Functions \rpt{\parm{f}\opt{(\rpt{\parm{x}})}};}
  764. Here \parm{f} is the function identifier. The optional list
  765. of parameters \parm{x} defines function with \emph{implicit}
  766. dependence. The \parm{x} must be either coordinate or constant.
  767. The construction \comm{\parm{f}(*)} is a shortcut which
  768. declares the function \parm{f} depending on \emph{all coordinates}.
  769. The following example declares three functions
  770. \comm{fun1}, \comm{fun2} and \comm{fun3}.
  771. The function \comm{fun1}, which was declared without implicit
  772. coordinate list, must be always used in mathematical expressions
  773. together with the explicit arguments like \comm{fun1(x+y)} etc.
  774. The functions \comm{fun2} and \comm{fun3} can appear
  775. in expressions in similar fashion but also as a single symbol
  776. \comm{fun2} or \comm{fun3}
  777. \begin{slisting}
  778. <- Coordinates t, x, y, z;
  779. <- Constant a;
  780. <- Functions fun1, fun2(x,y), fun3(*);
  781. <- Write functions;
  782. Functions:
  783. fun1 fun2(x,y) fun3(t,x,y,z)
  784. <- d fun1(x+a);
  785. DF(fun1(a + x),x) d x
  786. <- d fun2;
  787. DF(fun2,x) d x + DF(fun2,y) d y
  788. <- d fun3;
  789. DF(fun3,t) d t + DF(fun3,x) d x + DF(fun3,y) d y + DF(fun3,z) d z
  790. \end{slisting}
  791. The functions may have particular properties with respect
  792. to their arguments permutation and sign. The corresponding
  793. declarations are\cmdind{Symmetric}\cmdind{Antisymmetric}\cmdind{Odd}\cmdind{Even}
  794. \command{Symmetric \rpt{\parm{f}};\\\tt
  795. Antisymmetric \rpt{\parm{f}};\\\tt
  796. Odd \rpt{\parm{f}};\\\tt
  797. Even \rpt{\parm{f}};}
  798. Notice that these commands are valid only after function \parm{f}
  799. was declared by the command \comm{Function}.
  800. In addition to user-defined there is also large number of
  801. functions predefined in \reduce. All these functions can be
  802. used in \grg\ without declaration. The complete list of these
  803. functions depends on \reduce\ versions.
  804. Any function defined in the \reduce\ package (module)
  805. is available too if the package is loaded before \grg\ was
  806. started or during \grg\ session.\seethis{See \pref{packages}
  807. to find out how to load the \reduce\ packages.}
  808. For example the package \file{specfn} contains definitions
  809. for various special functions.
  810. Finally there is also special declaration \cmdind{Generic Functions}
  811. \command{Generic Functions \rpt{\parm{f}(\rpt{\parm{a}})};}
  812. This command is valid iff the package \file{dfpart.red} is
  813. installed on your \reduce\ system. Here unlike the usual
  814. function declaration the list of parameters must be always
  815. present and \parm{a} can be any identifier preferably
  816. distinct from any other variable.
  817. \seethis{See \pref{genfun} to find out about the generic functions.}
  818. The role of \parm{a} is also completely different and is explained later.
  819. The list of declared functions can be printed by the command
  820. \cmdindx{Write}{Functions}
  821. \command{Write Functions;}
  822. Generic functions in this output are marked by the label \comm{*}.
  823. \subsection{Affine Parameter}
  824. The variable which plays the role of affine parameter
  825. in the geodesic equation must be declared by the command \label{affpar}
  826. \command{Affine Parameter \parm{s};}
  827. and can be printed by the command\cmdindx{Write}{Affine Parameter}
  828. \command{Write Affine Parameter;}
  829. \vfill
  830. \newpage
  831. \subsection{Case Sensitivity}
  832. \label{case}
  833. Usually \reduce\ is case insensitive which means for example
  834. that expression \comm{x-X} will be evaluated by \reduce\ as zero.
  835. On the contrary all coordinates, constants and functions in \grg\ are
  836. case sensitive, e.g. \comm{alpha}, \comm{Alpha} and \comm{ALPHA}
  837. are all different. Notice that commands and switches in \grg\
  838. 3.2 remain case insensitive.
  839. \index{Internal \reduce\ case}
  840. Therefore all predefined by \grg\ constants and
  841. all built-in objects must be used exactly as they
  842. presented in this manual \comm{GCONST}, \comm{SMASS} etc.
  843. The situation with the constants and functions which predefined
  844. by \reduce\ is different. The point is that in spite of its default
  845. case insensitivity internally \reduce\ converts everything
  846. into some default case which may be upper or lower.
  847. Therefore depending on the particular \reduce\ system they
  848. must be typed either as
  849. \begin{listing}
  850. E I PI INFINITY SIN COS ATAN
  851. \end{listing}
  852. or in lower case
  853. \begin{listing}
  854. e i pi infinity sin cos atan
  855. \end{listing}
  856. For the sake of definiteness throughout this book we chose
  857. the first upper case convention.
  858. When \grg\ starts it informs you about internal case of
  859. your particular \reduce\ system by printing the message
  860. \begin{slisting}
  861. System variables are upper-cased: E I PI SIN ...
  862. \end{slisting}
  863. or
  864. \begin{slisting}
  865. System variables are lower-cased: e i pi sin ...
  866. \end{slisting}
  867. You can find out about the internal case
  868. using the command\cmdind{Status}\cmdind{Show Status}
  869. \command{\opt{Show} Status;}
  870. \vfill
  871. \newpage
  872. \subsection{Complex Conjugation}
  873. By default all variables and functions in \grg\ are considered to be
  874. real excluding the imaginary unit constant \comm{I} (or \comm{i} as
  875. explained above). But if two identifiers differ only by the trailing
  876. character \comm{\cc} they are considered as a pair of
  877. complex variables which are conjugated to each other.
  878. In the following example coordinates
  879. \comm{z} and \comm{z\cc} comprise such a pair:
  880. \begin{slisting}
  881. <- Coordinates u, v, z, z~;
  882. z & z~ - conjugated pair.
  883. <- Re(z);
  884. z + z~
  885. --------
  886. 2
  887. <- Im(z~);
  888. I*(z - z~)
  889. ------------
  890. 2
  891. \end{slisting}
  892. \section{Objects}
  893. Objects play a fundamental role in \grg. They represent
  894. mathematical quantities such as metric, connection, curvature
  895. and any other spinor or tensor geometrical and physical fields
  896. and equations. \grg\ has quite large number of built-in
  897. objects and knows many formulas for their calculation.
  898. But you are not obliged to use the built-in quantities
  899. and can declare your own. The purpose of the declaration is
  900. to tell \grg\ basic properties of a new quantity.
  901. \subsection{Built-in Objects}
  902. \noindent
  903. An object is characterized by the following properties and attributes:
  904. \index{Built-in objects}
  905. \begin{list}{$\bullet$}{\labelwidth=4mm\leftmargin=\parindent\parsep=0mm}
  906. \item Name
  907. \item Identifier or symbol
  908. \item Type of the component
  909. \item List of indices
  910. \item Symmetries with respect to index permutation
  911. \item Density and pseudo-tensor property
  912. \item Built-in ways of calculation
  913. \item Value
  914. \end{list}
  915. The object \emph{name} is a sequence of words which are
  916. usually the common English name of corresponding quantity.
  917. The name is case insensitive and is used to denote
  918. a particular object in commands.
  919. So called \emph{group names}\index{Group names}
  920. refer to a collection of closely related objects. In particular
  921. the name {\tt Curvature Spinors} (see page \pageref{curspincoll})
  922. refers to the irreducible components of the curvature tensor in
  923. spinorial representation.
  924. Actual content of the group may depend on the environment.
  925. In particular the group {\tt Curvature Spinors} includes
  926. three objects in the Riemann space (Weyl spinor, traceless
  927. Ricci spinor and scalar curvature) while in the space with
  928. torsion we have six irreducible curvature spinors.
  929. The object \emph{identifier} or \emph{symbol} is an identifier
  930. which denotes the object in mathematical expressions. Object
  931. symbols are case sensitive.
  932. The object \emph{type} is the type of its component: objects can be
  933. scalar, vector or $p$-form valued. The \emph{density} and
  934. \emph{pseudo-tensor} properties of the object characterizes its
  935. behaviour under coordinate and frame transformations.
  936. Objects can have the following types of indices:
  937. \begin{list}{$\bullet$}{\labelwidth=4mm\leftmargin=\parindent}
  938. \item Upper and lower holonomic coordinate indices.
  939. \item Upper and lower frame indices.
  940. \item Upper and lower spinorial indices.
  941. \item Upper and lower conjugated spinorial indices.
  942. \item Enumerating indices.
  943. \end{list}
  944. The major part of \grg\ built-in objects has frame indices.
  945. \seethis{See page \pageref{metric} about the frame in \grg.}
  946. The frame in \grg\ can be arbitrary but you can easily specify
  947. the frame to be holonomic or say orthogonal. Then built-in
  948. object indices become holonomic or orthogonal respectively.
  949. \grg\ deals only with the SL(2,C) spinors which are restricted
  950. to the 4-dimensional spaces of Lorentzian signature.
  951. \seethis{See \pref{spinors} about the spinorial formalism in \grg.}
  952. The corresponding SL(2,C) indices take values 0 and 1.
  953. The conjugated indices are transformed with the help
  954. of the complex conjugated SL(2,C) matrix.
  955. If some spinor is totally symmetric in the group of $n$ spinorial
  956. indices (irreducible spinor) then these indices can be
  957. replaced by a single so called \emph{summed spinorial index}
  958. of rank $n$ which take values from 0 to $n$.
  959. The summed spinorial indices provide the most economic
  960. way to store the irreducible spinor components.
  961. Enumerating indices just label a collection of
  962. values and have no any covariant meaning. Accordingly there is
  963. no difference between upper and lower enumerating indices.
  964. Notice that an index of any type in \grg\ always runs from
  965. 0 up to some maximal value which depend on the index type
  966. and dimensionality: $d-1$ for frame and coordinate indices,\index{Dimension}
  967. and $n$ the spinor indices of the rank $n$.
  968. \grg\ understands various types of index symmetries:
  969. symmetry, antisymmetry, cyclic symmetry and Hermitian
  970. symmetry. These symmetries can apply not only to single
  971. indices but to any group of indices as well.
  972. \index{Index symmetries}\index{Canonical order of indices}
  973. \grg\ uses object symmetries to decrease the amount of memory
  974. required to store the object components. It stores only components
  975. with the indices in certain \emph{canonical} order
  976. and any other component are automatically
  977. restored if necessary by appropriate index permutation.
  978. The canonical order of indices is defined as follows:
  979. for symmetry, antisymmetry or Hermitian symmetry indices
  980. are sorted in such a way that index values grows from
  981. left to the right. For cyclic symmetry indices are shifted to
  982. minimize the numerical value of the whole list of indices.
  983. Finally there are two special types of objects: equations
  984. and connection 1-forms.
  985. \index{Equations}
  986. Equations have all the same properties as any
  987. other object but in addition they have left and right hand side
  988. and are printed in the form of equalities.
  989. The connections are used by \grg\ to construct covariant derivatives.
  990. \index{Connections}\seethis{See \pref{conn2} about the connections.}
  991. There are only four types of connections: holonomic
  992. connection 1-form, frame connection 1-form, spinor connection
  993. 1-form and conjugated spinor connection 1-form.
  994. Almost all built-in objects have associated built-in \emph{ways of
  995. calculation} (one or several).
  996. \index{Ways of calculation}
  997. Each way is nothing but a formula which can be used
  998. to obtain the object value.
  999. Every object can be in two states. Initially when \grg\ starts
  1000. all objects are in \emph{indefinite} state, i.e. nothing is known
  1001. about their value. \index{Object value}
  1002. Since \grg\ always works in some concrete frame and coordinate
  1003. system the object value is a table of the components.
  1004. As soon as the value of certain object
  1005. is obtained either by direct assignment or using some built-in
  1006. formula (way of calculation) \grg\ remember this value
  1007. and store it in some internal table. Later this value
  1008. can be printed, re-evaluated used in expression etc.
  1009. The object can be returned to its initial indefinite state
  1010. using the command \comm{Erase}.\cmdind{Erase}
  1011. \grg\ uses object symmetries to reduce total number of
  1012. components to store.
  1013. The complete list of built-in \grg\ objects is given in
  1014. appendix C. The chapter 3 also describes built-in objects
  1015. but in the usual mathematical style. The equivalent commands
  1016. \cmdind{Show \parm{object}}
  1017. \command{Show \parm{object};\\\tt%
  1018. ?~\parm{object};}
  1019. prints detailed information about the object \parm{object}
  1020. including object name, identifier, list of indices,
  1021. type of the component, current state (is the value of an
  1022. object known or not), symmetries and ways of calculation.
  1023. Here \parm{object} is either object name or its identifier.
  1024. The command\cmdind{Show *}
  1025. \command{Show *;}
  1026. prints complete list of built-in object names. This list
  1027. is quite long and the command
  1028. \command{Show \parm{c}*;}
  1029. gives list of objects whose names begin with the character
  1030. \parm{c} (\comm{a}--\comm{z}).
  1031. Finally the command \cmdind{Show All}
  1032. \command{Show All;}
  1033. prints list of objects whose values are currently known.
  1034. Notice that some built-in objects has limited scope.
  1035. In particular some objects exists only in certain dimensionality,
  1036. the quantities which are specific to spaces with torsion
  1037. are defined iff switch \comm{TORSION} is turned on etc.
  1038. Let us consider some examples. We begin with the
  1039. curvature tensor $R^a{}_{bcd}$
  1040. \begin{slisting}
  1041. <- Show Riemann Tensor;
  1042. Riemann tensor RIM'a.b.c.d is Scalar
  1043. Value: unknown
  1044. Symmetries: a(3,4)
  1045. Ways of calculation:
  1046. Standard way (D,OMEGA)
  1047. \end{slisting}
  1048. This object has name {\tt Riemann Tensor} and identifier
  1049. {\tt RIM}. The object is {\tt Scalar} (0-form) valued and
  1050. has four frame indices. Frame indices are denoted by the
  1051. lower-case characters and their upper or lower position
  1052. are denoted by \comm{'} or \comm{.} respectively.
  1053. The Riemann tensor is antisymmetric in two last indices
  1054. which is denoted by \comm{a(3,4)}.
  1055. The curvature 2-form $\Omega^a{}_b$
  1056. \begin{slisting}
  1057. <- ? OMEGA;
  1058. Curvature OMEGA'e.f is 2-form
  1059. Value: unknown
  1060. Ways of calculation:
  1061. Standard way (omega)
  1062. From spinorial curvature (OMEGAU*,OMEGAD)
  1063. \end{slisting}
  1064. has name {\tt Curvature} and the identifier {\tt OMEGA}
  1065. and is 2-form valued.
  1066. The traceless Ricci spinor (the quantity which is usually
  1067. denoted in the Newman-Penrose formalism as $\Phi_{AB\dot{C}\dot{D}}$)
  1068. \begin{slisting}
  1069. <- ? Traceless Ricci Spinor;
  1070. Traceless ricci spinor RC.AB.CD~ is Scalar
  1071. Value: unknown
  1072. Symmetries: h(1,2)
  1073. Ways of calculation:
  1074. From spinor curvature (OMEGAU,SD,VOL)
  1075. \end{slisting}
  1076. Spinorial indices
  1077. are denoted by upper case characters with the trailing \comm{\cc}
  1078. for conjugated indices. Usual spinorial indices are denoted
  1079. by a \emph{single} upper case letter while summed indices
  1080. are denoted by several characters. Thus, the traceless Ricci
  1081. spinor has two summed spinorial indices
  1082. of rank 2 each taking the values from 0 to 2. The spinor
  1083. is hermitian \comm{h(1,2)}.
  1084. The Einstein equation is an example of equation
  1085. \begin{slisting}
  1086. <- ? Einstein Equation;
  1087. Einstein equation EEq.g.h is Scalar Equation
  1088. Value: unknown
  1089. Symmetries: s(1,2)
  1090. Ways of calculation:
  1091. Standard way (G,RIC,RR,TENMOM)
  1092. \end{slisting}
  1093. and 1-form $\Gamma^\alpha{}_\beta$ is an example of the connection \enlargethispage{2mm}
  1094. \begin{slisting}
  1095. <- Show Holonomic Connection;
  1096. \reversemarginpar
  1097. Holonomic connection GAMMA^x_y is 1-form Holonomic Connection
  1098. Value: unknown
  1099. Ways of calculation:
  1100. From frame connection (T,D,omega)
  1101. \end{slisting}
  1102. The coordinate indices are denoted by the lower-case
  1103. letters with labels \comm{\^} and \comm{\_} denoting
  1104. upper and lower index position respectively.
  1105. Notice that above the first ``{\tt Holonomic connection}'' is the
  1106. name of the object while second ``{\tt Holonomic Connection}''
  1107. means that \grg\ recognizes it as the connection and will
  1108. use \comm{GAMMA} to construct covariant derivatives for quantities
  1109. having the coordinate indices. \seethis{See \pref{cder} about the covariant derivatives.}
  1110. You can define any number of other holonomic
  1111. connections and use them in the covariant derivatives
  1112. on the equal footing with the built-in object \comm{GAMMA}.
  1113. \normalmarginpar
  1114. The notation in which command \comm{Show} prints
  1115. information about a particular object is the same as in the
  1116. new object declaration and is explained in details below.
  1117. \subsection{Macro Objects}
  1118. \index{Macro Objects}\label{macro}
  1119. There is also another class of built-in objects which are
  1120. called \emph{macro objects}. The main difference between the
  1121. usual and macro objects is that macro quantities has no
  1122. permanent storage to their components instead they are calculated
  1123. dynamically only when its component is required in some expression.
  1124. In addition
  1125. they do not have names and are denoted only by the identifier only.
  1126. Usually macro objects play auxiliary role. The complete
  1127. list of macro objects can be found in appendix B.
  1128. The example of macro objects are the Christoffel symbols
  1129. of second and first kind $\{{}^\alpha_{\beta\gamma}\}$
  1130. and $[{}_{\alpha,\beta\gamma}]$ having identifiers
  1131. \comm{CHR} and \comm{CHRF} respectively
  1132. \begin{slisting}
  1133. <- Show CHR;
  1134. CHR^x_y_z is Scalar Macro Object
  1135. Symmetries: s(2,3)
  1136. <- ? CHRF;
  1137. CHRF_u_v_w is Scalar Macro Object
  1138. Symmetries: s(2,3)
  1139. \end{slisting}
  1140. \subsection{New Object Declaration}
  1141. \grg\ has very large number of built-in quantities
  1142. but you are not obliged to use them in your calculations
  1143. instead you can define new quantities. The command\cmdind{New Object}
  1144. \command{New Object \parm{ID}\,\opt{\parm{ilst}}\,\opt{is \parm{ctype}}\,\opt{with \opt{Symmetries}\,\parm{slst}};}
  1145. declares a new object. The words \comm{New} or \comm{Object} are
  1146. optional (but not both) so the above command are equivalent to
  1147. \command{Object \parm{ID}\,\opt{\parm{ilst}}\,\opt{is \parm{ctype}}\,\opt{with \opt{Symmetries}\,\parm{slst}};\\\tt
  1148. New \parm{ID}\,\opt{\parm{ilst}}\,\opt{is \parm{ctype}}\,\opt{with \opt{Symmetries}\,\parm{slst}}; }
  1149. Here \parm{ID} is an identifier of a new object. The identifier can
  1150. contain letters \comm{a}--\comm{z}, \comm{A}--\comm{Z} but neither
  1151. digits nor any other symbols. The identifier must be unique and cannot
  1152. coincide with the identifier of any other built-in or user-defined object.
  1153. The \parm{ilist} is the list of indices having the form \label{indices}
  1154. \command{\rpt{\parm{ipos}\ \parm{itype}}}
  1155. where \parm{ipos} defines the index position and \parm{itype}
  1156. specifies its type. The coordinate holonomic and frame indices
  1157. are denoted by single lower-case letters with \parm{ipos}
  1158. \command{{\tt '}\rm\ \ upper frame index
  1159. \\{\tt .}\rm\ \ lower frame index
  1160. \\{\tt \^}\rm\ \ upper holonomic index
  1161. \\{\tt \_}\rm\ \ lower holonomic index}
  1162. The frame and holonomic indices in \grg\ take values from 0 to
  1163. $d-1$ where $d$ is the current space dimensionality.\index{Dimension}
  1164. Spinorial indices are denoted by upper case letters
  1165. with trailing \comm{\cc} for conjugated spinorial indices:
  1166. \comm{A}, \comm{B\cc} etc. Summed spinorial index of rank $n$ is
  1167. denoted by $n$ upper-case letters. For example \comm{ABC} denotes
  1168. summed spinorial index of the rank 3 (runs from 0 to 3)
  1169. and \comm{AB\cc} denotes conjugated summed index of the rank 2
  1170. (values 0, 1, 2). The upper position for spinorial indices
  1171. are denoted either by \comm{'} or \comm{\^} and lower one by
  1172. \comm{.} or \comm{\_}.
  1173. Finally the enumerating indices are denoted by a single
  1174. lower-case letter followed either by digits or by \comm{dim}.
  1175. For example the index declared as \comm{i2} runs from 0
  1176. to 2 while specification \comm{a13} denotes index whose
  1177. values runs from 0 to 13.
  1178. The specification \comm{idim} denotes enumerating index
  1179. which takes the values from 0 to $d-1$.
  1180. Upper of lower position for enumerating indices are identical,
  1181. thus in this case symbols \comm{' . \^ \_} are equivalent.
  1182. The \parm{ctype} defines the type of new object component:
  1183. \command{Scalar \opt{Density \parm{dens}}\\\tt
  1184. \parm{p}-form \opt{Density \parm{dens}}\\\tt
  1185. Vector \opt{Density \parm{dens}}}
  1186. This part of the declaration can be omitted and then the object
  1187. is assumed to be scalar-valued. The \parm{dens} defines pseudo-scalar
  1188. and density properties of the object with respect to
  1189. coordinate and frame transformations:
  1190. \command{\opt{sgnL}\opt{*sgnD}\opt{*L\^\parm{n}}\opt{*D\^\parm{m}}}
  1191. where \comm{D} and \comm{L} is the coordinate transformation
  1192. determinant ${\rm det}(\partial x^{\alpha'}/\partial x^\beta)$ and
  1193. frame transformation determinant ${\rm det}(L^a{}_b)$ respectively.
  1194. If \comm{sgnL} or \comm{sgnD} is specified then under appropriate
  1195. transformation the object must be multiplied on the
  1196. sign of the corresponding determinant (pseudo tensor).
  1197. The specification \comm{L\^\parm{n}} or \comm{D\^\parm{m}} means
  1198. that the quantity must be multiplied on the appropriate
  1199. degree of the corresponding determinant (tensor density).
  1200. The parameters \parm{p}, \parm{n} and \parm{m} may be given
  1201. by expressions (must be enclosed in brackets) but value
  1202. of these expressions must be always integer and positive
  1203. in the case of \parm{p}.
  1204. The symmetry specification \parm{slst} is a list
  1205. \command{\rpt{\parm{slst1}}}
  1206. where each element \parm{slst1} describes symmetries
  1207. for one group of indices and has the form
  1208. \command{\parm{sym}(\rpt{\parm{slst2}})}
  1209. The \parm{sym} determines type of the symmetry
  1210. \command{%
  1211. \tt s \ \rm symmetry \\
  1212. \tt a \ \rm antisymmetry \\
  1213. \tt c \ \rm cyclic symmetry \\
  1214. \tt h \ \rm Hermitian symmetry}
  1215. and \parm{slst2} is either index number \parm{i} or list of
  1216. index numbers \comm{(\rpt{\parm{i}})} or another symmetry
  1217. specification of the form \parm{slst1}. Notice that $n$th
  1218. object index can be present only in one of the \parm{slst1}.
  1219. Let us consider an object having four indices.
  1220. Then the following symmetry specifications are possible
  1221. \begin{tabular}{ll}
  1222. \comm{s(1,2,3,4)} & total symmetry \\[1mm]
  1223. \comm{a(1,2),s(3,4)} & antisymmetry in first pair of indices and \\
  1224. & symmetry in second pair \\[1mm]
  1225. \comm{s((1,2),(3,4))} & symmetry in pair permutation \\[1mm]
  1226. \comm{s(a(1,2),a(3,4))} & antisymmetry in first and second pair of indices \\
  1227. & and symmetry in pair permutation
  1228. \end{tabular}\newline
  1229. The last example is the well known symmetry of Riemann curvature tensor.
  1230. The specification \comm{a(1,2),s(2,3)} is erroneous since
  1231. second index present in both parts of the specification
  1232. which is not allowed.
  1233. Declaration for new equations is completely similar\cmdind{New Equation}
  1234. \command{\opt{New} Equation \parm{ID}\,\opt{\parm{ilst}}\,\opt{is \parm{ctype}}\,\opt{with \opt{Symmetries}\,\parm{slst}};}
  1235. \grg\ knows four types of connections:\cmdind{New Connection} \label{conn2}
  1236. \begin{list}{$\bullet$}{\labelwidth=4mm\leftmargin=\parindent}
  1237. \item Frame Connection 1-form $\omega^a{}_b$ having first upper and second lower frame indices
  1238. \item Holonomic Connection 1-form $\Gamma^\alpha{}_\beta$ having first upper and second lower coordinate indices
  1239. \item Spinor Connection 1-form $\omega_{AB}$ with lower spinor index of rank 2
  1240. \item Conjugated Spinor Connection $\omega_{\dot{A}\dot{B}}$ 1-form with lower conjugated spinor index of rank 2
  1241. \end{list}
  1242. Each of these connections are used to construct covariant derivatives
  1243. with respect to corresponding indices. In addition they are properly
  1244. transformed under the coordinate change and frame rotation.
  1245. There are complete set of built-in connections but you can declare
  1246. a new one by the command
  1247. \command{%
  1248. \opt{New} Connection \parm{ID}'a.b \opt{is 1-form};\\\tt
  1249. \opt{New} Connection \parm{ID}\^m\_n \opt{is 1-form};\\\tt
  1250. \opt{New} Connection \parm{ID}.AB\ \opt{is 1-form};\\\tt
  1251. \opt{New} Connection \parm{ID}.AB\cc\ \opt{is 1-form};}
  1252. Notice that any new connection must belong to one of the listed
  1253. above types and have indicated type and position of indices. This
  1254. representation of connection is chosen in \grg\ for the sake of
  1255. definiteness.
  1256. There is one special case when new object can be declared
  1257. without explicit \comm{New Object} declaration. Let us
  1258. consider the following example:
  1259. \begin{slisting}
  1260. <- Coordinates t, x, y, z;
  1261. <- www=d x;
  1262. <- Show www;
  1263. www is 1-form
  1264. Value: known
  1265. \end{slisting}
  1266. If we assign the value to some identifier \parm{id}
  1267. (\comm{www} in our example)
  1268. \seethis{See page \pageref{assig} about assignment command.}
  1269. and this identifier is not reserved yet by any other object then
  1270. \grg\ automatically declares a new object without indices
  1271. labeled by the identifier \parm{id} and having the type
  1272. of the expression in the right-hand side of the assignment
  1273. (1-form in our example). Notice that the \parm{id} must not include
  1274. digits since digits represent indices and any new object
  1275. with indices must be declared explicitly.
  1276. The command
  1277. \command{Forget \parm{ID};}
  1278. completely removes the user-defined object with the
  1279. identifier \parm{ID}.
  1280. Finally let us consider some examples:
  1281. \begin{slisting}
  1282. <- Coordinates t, x, y, z;
  1283. <- New RNEW'a.b_c_d is scalar density sgnD with a(3,4);
  1284. <- Show RNEW;
  1285. RNEW'a.b_x_y is Scalar Density sgnD
  1286. Value: unknown
  1287. Symmetries: a(3,4)
  1288. <- Null Metric;
  1289. <- Connection omnew.AA;
  1290. <- Show omnew;
  1291. omnew.AB is 1-form Spinor Connection
  1292. Value: unknown
  1293. \end{slisting}
  1294. Here the first declaration defines a new scalar valued pseudo tensor
  1295. $\mbox{\comm{RNEW}}^a{}_{b\gamma\delta}$ which is antisymmetric
  1296. in the last pair of indices. Second declaration introduce new spinor
  1297. connection \comm{omnew}. Notice that new connection is automatically
  1298. declared 1-form and the type of connection is derived by the
  1299. type of new object indices (lower spinorial index of rank 2 in our
  1300. example).
  1301. \section{Assignment Command}
  1302. \index{Assignment (command)}\label{assig}
  1303. The assignment command sets the value to the particular
  1304. components of the object. In general it has the form
  1305. \command{\opt{\parm{Name}} \rpt{\parm{comp} = \parm{expr}};}
  1306. or for equations
  1307. \command{\opt{\parm{Name}} \rpt{\parm{comp} = \parm{lhs}=\parm{rhs}};}
  1308. Here \parm{Name} is the optional object name. If the object
  1309. has no indices then \parm{comp} is the object identifier.
  1310. If the object has indices then \parm{comm} consist of identifier
  1311. with additional digits denoting indices.
  1312. For example the following command assigns standard spherical flat
  1313. value to the frame $\theta^a$
  1314. \begin{listing}
  1315. Frame
  1316. T0 = d t,
  1317. T1 = d r,
  1318. T2 = r*d theta,
  1319. T3 = r*SIN(theta)*d phi;
  1320. \end{listing}
  1321. and the command
  1322. \begin{listing}
  1323. RIM0123 = 100;
  1324. \end{listing}
  1325. assigns the value to the $R^0{}_{123}$ component of the Riemann tensor.
  1326. Notice that in this notation each digit is considered as one index,
  1327. thus it does not work if the value of some index is greater than 9
  1328. (e.g. if dimensionality is 10 or greater). In this case another
  1329. notation can be used in which indices are added to the object
  1330. identifier as a list of digits enclosed in brackets
  1331. \command{\opt{\parm{Name}} \parm{ID}(\rpt{\parm{n}})~= \parm{expr};}
  1332. In particular the command
  1333. \begin{listing}
  1334. RIM(0,1,2,3) = 100;
  1335. \end{listing}
  1336. is equivalent to the example above.
  1337. The assignment set value only to the certain components of an object
  1338. leaving other components unchanged. But if before assignment
  1339. the object was in indefinite state (no value is known) then assignment
  1340. turns it to the definite state and all other components of the object
  1341. are assumed to be zero.
  1342. The digits standing for object indices in the left-hand side
  1343. of an assignment can be replaced by identifiers
  1344. \index{Assignment (command)!tensorial}
  1345. \command{\opt{\parm{Name}} \parm{ID}(\rpt{\parm{id}})~= \parm{expr};}
  1346. Such assignment is called \emph{tensorial} one.
  1347. For example the following tensorial assignment set the value to the
  1348. curvature 2-form $\Omega^a{}_b$
  1349. \begin{listing}
  1350. OMEGA(a,b) = d omega(a,b) + omega(a,m){\w}omega(m,b);
  1351. \end{listing}
  1352. This command is equivalent to $d\times d$ of assignments where \comm{a}
  1353. and \comm{b} take values from 0 to $d-1$ ($d$ is the space dimensionality).\index{Dimension}
  1354. Notice that identifiers in the left-hand side of tensorial assignment
  1355. must not coincide with any predefined or declared by the user
  1356. constant or coordinate. It is possible to mix digits and identifiers:
  1357. \begin{listing}
  1358. FT(0,a) = 0;
  1359. \end{listing}
  1360. Here \comm{FT} is identifier of the built-in object
  1361. {\tt EM Tensor} which is the electromagnetic strength tensor $F_{ab}$
  1362. and this command sets the electric part of the tensor to zero.
  1363. The assignment command takes into account symmetries of the
  1364. objects. For example {\tt EM Tensor} is antisymmetric
  1365. and in order to assign value say to the components $F_{01}=-F_{10}$
  1366. it suffices to do this just for one of them
  1367. \begin{slisting}
  1368. <- Coordinates t, x, y, z;
  1369. <- EM Tensor FT01=111, FT(3,2)=222;
  1370. <- Write FT;
  1371. EM tensor:
  1372. FT = 111
  1373. t x
  1374. FT = -222
  1375. y z
  1376. \end{slisting}
  1377. We can see that \grg\ automatically transforms indices to the
  1378. \emph{canonical} order. This rule works in the case or
  1379. tensorial assignment as well
  1380. \begin{slisting}
  1381. <- Coordinates t, x, y, z;
  1382. <- Function ff;
  1383. <- EM Tensor FT(a,b)=ff(a,b);
  1384. <- Write FT;
  1385. EM tensor:
  1386. FT = ff(0,1)
  1387. t x
  1388. FT = ff(0,2)
  1389. t y
  1390. FT = ff(0,3)
  1391. t z
  1392. FT = ff(1,2)
  1393. x y
  1394. FT = ff(1,3)
  1395. x z
  1396. FT = ff(2,3)
  1397. y z
  1398. <- FT(2,1);
  1399. - ff(1,2)
  1400. \end{slisting}
  1401. In this case both parameters \comm{a} and \comm{b} runs from 0 to 3
  1402. but \grg\ assigns the value only to the components
  1403. having indices in the canonical order \comm{a}$<$\comm{b}.
  1404. \grg\ follows this rule also if in the left-hand
  1405. side of tensorial assignment digits are mixed with
  1406. parameters which may sometimes produce unexpected result:
  1407. \begin{slisting}
  1408. <- Coordinates t, x, y, z;
  1409. <- Function ee;
  1410. <- FT(0,a)=ee(a);
  1411. <- Write FT;
  1412. EM tensor:
  1413. FT = ee(1)
  1414. t x
  1415. FT = ee(2)
  1416. t y
  1417. FT = ee(3)
  1418. t z
  1419. <- Erase FT;
  1420. <- FT(3,a)=ee(a);
  1421. <- Write FT;
  1422. EM tensor:
  1423. 0
  1424. \end{slisting}
  1425. Observe the difference between these two assignments (the command
  1426. \comm{Erase FT;} destroys the previously assigned value).
  1427. In fact second assignment assigns no values since
  1428. \comm{3} and \comm{a} are not in the canonical order
  1429. \comm{3}$\geq$\comm{a} for \comm{a} running from 0 to 3.
  1430. Notice the difference from the case when all indices in
  1431. the left-hand side are given by the explicit numerical values.
  1432. In this case \grg\ automatically transforms the indices to their
  1433. canonical order and \comm{FT(3,2)=222;} is equivalent
  1434. to \comm{FT(2,3)=-222;}.
  1435. Finally there is one more form of the tensorial assignment
  1436. which can be applied to the summed spinorial indices.
  1437. \index{Assignment (command)!summed spinor indices}
  1438. Let us consider the spinorial analogue of electromagnetic strength
  1439. tensor $\Phi_{AB}$. This spinor is irreducible (i.e. symmetric in $\scriptstyle AB$).
  1440. The corresponding \grg\ built-in object {\tt Undotted EM Spinor}
  1441. (identifier \comm{FIU}) has one summed spinorial index of rank 2.
  1442. Let us consider two different assignment commands
  1443. \begin{slisting}
  1444. <- Coordinates u, v, z, z~;
  1445. z & z~ - conjugated pair.
  1446. <- Null Metric;
  1447. <- Function ee;
  1448. <- FIU(a)=ee(a);
  1449. <- Write FIU;
  1450. Undotted EM spinor:
  1451. FIU = ee(0)
  1452. 0
  1453. FIU = ee(1)
  1454. 1
  1455. FIU = ee(2)
  1456. 2
  1457. <- Erase FIU;
  1458. <- FIU(a+b)=ee(a,b);
  1459. <- Write FIU;
  1460. Undotted EM spinor:
  1461. FIU = ee(0,0)
  1462. 0
  1463. FIU = ee(0,1)
  1464. 1
  1465. FIU = ee(1,1)
  1466. 2
  1467. \end{slisting}
  1468. In the first case \comm{a} is treated as a summed index
  1469. and runs from 0 to 2 but in the second case \comm{a} and \comm{b}
  1470. are considered as usual single SL(2,C) spinorial indices
  1471. each having values 0 and 1.
  1472. The notation for the object components in the left-hand
  1473. side of assignment do not distinguishes upper and lower
  1474. indices. Actually the indices are always assumed to be in
  1475. the default position.
  1476. You can always check the default index types and positions
  1477. using the command \comm{Show \parm{object};}.\cmdind{Show \parm{object}}
  1478. For example the {\tt Riemann Tensor} has first upper and
  1479. three lower frame indices and the command \comm{RIM0123=100;}
  1480. and \comm{RIM(0,1,2,3)=100;} both assign value to the
  1481. $R^0{}_{123}$ component of the tensor where indices are
  1482. represented with respect to the current frame.
  1483. \section{Geometry}
  1484. The number of built-in objects in \grg\ is rather large.
  1485. They all described in chapter 3 and appendices B and C.
  1486. In this section we consider only the most important ones.
  1487. \subsection{Metric, Frame and Line-Element}
  1488. \index{Metric}\index{Frame}
  1489. \label{metric}
  1490. The line-element in \grg\ is defined by the
  1491. following equation
  1492. \begin{equation}
  1493. ds^2 = g_{ab}\,\theta^a\!\otimes\theta^b
  1494. \end{equation}
  1495. where $\theta^a=h^a_\mu dx^\mu$ is the frame 1-form and $g_{ab}$ is the
  1496. frame metric. The corresponding built-in objects are
  1497. \comm{Frame} (identifier \comm{T}) and \comm{Metric}
  1498. (identifier \comm{G}). There are also the ``inverse''
  1499. counterparts $\partial_a=h_a^\mu\partial_\mu$ ({\tt Vector Frame},
  1500. identifier \comm{D}) and $g^{ab}$ ({\tt Inverse Metric}, identifier
  1501. \comm{GI}). To determine the metric properties of the space
  1502. you can assign some values to both the metric and the frame.
  1503. There are two well known special cases. First is the usual
  1504. coordinate formalism in which frame is holonomic $\theta^a=dx^\alpha$.
  1505. In this case there is no difference between frame and coordinate
  1506. indices. Another representation is known as the tetrad (in dimension 4)
  1507. formalism. In this case frame metric equals to some constant
  1508. matrix $g_{ab}=\eta_{ab}$ and significant information about
  1509. line-element ``is encoded'' in the frame.
  1510. In general both metric and frame can be nontrivial but not
  1511. necessarily. If no any value is given by user to the frame
  1512. when \grg\ automatically assumes that frame is \emph{holonomic}
  1513. \index{Frame!default value}
  1514. \begin{equation}
  1515. \theta^a=dx^\alpha
  1516. \end{equation}
  1517. Thus if we assign the value to metric only we automatically
  1518. get standard coordinate formalism. On the contrary if
  1519. no value is assigned to the metric then \grg\ automatically
  1520. assumes\index{Signature} \label{defaultmetric}
  1521. \index{Metric!default value}
  1522. \begin{equation}
  1523. g_{ab} = {\rm diag}(+1,-1,\dots)
  1524. \end{equation}
  1525. where $+1$ and $-1$ on the diagonal of the matrix
  1526. correspond to the current signature specification.
  1527. Notice that current signature is printed among other
  1528. information by the command\cmdind{Show Status}\cmdind{Status}
  1529. \command{\opt{Show} Status;}
  1530. and current line-element is printed by the command
  1531. \cmdind{ds2}
  1532. \command{ds2;}
  1533. or equivalently\cmdind{Line-Element}
  1534. \command{Line-Element;}
  1535. Finally if neither frame nor metric are specified by user
  1536. then both these quantities acquire default value and we
  1537. automatically obtain flat space of the default signature:
  1538. \begin{slisting}
  1539. <- Dimension 4 with Signature(-,+,+,+);
  1540. <- Coordinates t, x, y, z;
  1541. <- ds2;
  1542. Assuming Default Metric.
  1543. Metric calculated By default. 0.05 sec
  1544. Assuming Default Holonomic Frame.
  1545. Frame calculated By default. 0.05 sec
  1546. 2 2 2 2 2
  1547. ds = - d t + d x + d y + d z
  1548. \end{slisting}
  1549. \subsection{Spinors}
  1550. \label{spinors}
  1551. Spinorial representations exist in spaces of various dimensions
  1552. and signatures but in \grg\ spinors are restricted
  1553. to the 4-dimensional spaces of Lorentzian signature ${\scriptstyle(-,+,+,+)}$
  1554. or ${\scriptstyle(+,-,-,-)}$ only. Another restriction is that in the
  1555. spinorial formalism the metric must be the \index{Metric!Standard Null}
  1556. \emph{standard null metric}:
  1557. \index{Standard null metric}\index{Spinors}\index{Spinors!Standard null metric}
  1558. \begin{equation}
  1559. g_{ab}=g^{ab}=\pm\left(\begin{array}{rrrr}
  1560. 0 & -1 & 0 & 0 \\
  1561. -1 & 0 & 0 & 0 \\
  1562. 0 & 0 & 0 & 1 \\
  1563. 0 & 0 & 1 & 0
  1564. \end{array}\right)
  1565. \end{equation}
  1566. where upper sign correspond to the signature ${\scriptstyle(-,+,+,+)}$ and
  1567. lower sign to the signature ${\scriptstyle(+,-,-,-)}$.
  1568. There is special command\cmdind{Null Metric}
  1569. \command{Null Metric;}
  1570. which assigns this standard value to the metric.
  1571. Thus spinorial frame (tetrad) in \grg\ must be null
  1572. \begin{equation}
  1573. ds^2 = \pm(-\theta^0\!\otimes\theta^1
  1574. -\theta^1\!\otimes\theta^0
  1575. +\theta^2\!\otimes\theta^3
  1576. +\theta^3\!\otimes\theta^2)
  1577. \end{equation}
  1578. and conjugation rules for this tetrad must be
  1579. \begin{equation}
  1580. \overline{\theta^0}=\theta^0,\quad
  1581. \overline{\theta^1}=\theta^1,\quad
  1582. \overline{\theta^2}=\theta^3,\quad
  1583. \overline{\theta^3}=\theta^2
  1584. \end{equation}
  1585. For the sake of efficiency the sigma-matrices $\sigma^a\!{}_{A\dot{B}}$
  1586. for such a tetrad are chosen in the simplest form. The only
  1587. nonzero components of the matrices are\index{Sigma matrices}
  1588. \begin{eqnarray}
  1589. &&\sigma_0{}^{1\dot{1}}=
  1590. \sigma_1{}^{0\dot{0}}=
  1591. \sigma_2{}^{1\dot{0}}=
  1592. \sigma_3{}^{0\dot{1}}=1 \\[1mm] &&
  1593. \sigma^0{}_{1\dot{1}}=
  1594. \sigma^1{}_{0\dot{0}}=
  1595. \sigma^2{}_{1\dot{0}}=
  1596. \sigma^3{}_{0\dot{1}}=\mp1
  1597. \end{eqnarray}
  1598. \subsection{Connection, Torsion and Nonmetricity}
  1599. \label{conn}
  1600. As was explained above \grg\ recognizes four types of connections:
  1601. holonomic $\Gamma^\alpha{}_\beta$, frame $\omega^a{}_b$,
  1602. spinorial $\omega_{AB}$ and conjugated spinorial
  1603. $\omega_{\dot{A}\dot{B}}$. Accordingly there are four
  1604. built-in objects: {\tt Holonomic Connection} (id. \comm{GAMMA}),
  1605. {\tt Frame Connection} (id. \comm{omega}), {\tt Undotted Connection}
  1606. (id. \comm{omegau}), {\tt Dotted Connection} (id. \comm{omegad}).
  1607. Connections are used in \grg\ in covariant derivatives. In addition
  1608. they are properly transformed under frame and coordinate
  1609. transformations.
  1610. By default the connection in \grg\ are assumed to be Riemannian.
  1611. In particular in this case holonomic connection is nothing but
  1612. Christoffel symbols $\Gamma^\alpha{}_\beta=
  1613. \{{}^\alpha_{\beta\pi}\}dx^\pi$.
  1614. If it is necessary to work with torsion and/or nonmetricity
  1615. \swind{TORSION}\swind{NONMETR}
  1616. then the switches \comm{TORSION} and/or \comm{NONMETR}
  1617. must be turned on. \seethis{See \pref{conn2} about the built-in connections.}
  1618. In this case the Riemannian analogues
  1619. or the aforementioned four connections are available as well.
  1620. \section{Expressions}
  1621. Expressions in \grg\ can be algebraic (scalar), vector or
  1622. p-form valued. \grg\ knows all the usual mathematical operations
  1623. on algebraic expressions, exterior forms and vectors.
  1624. \subsection{Operations and Operators}
  1625. The operations known to \grg\ are presented in the form of the table.
  1626. Operations are subdivided into six groups separated by horizontal
  1627. lines. Operations in each group have equal level of precedence and
  1628. the precedence level decreases from the top to the bottom of the table.
  1629. As in usual mathematical notation we can use brackets \verb"( )"
  1630. to change operation precedence.
  1631. Other constructions which can be used in expression are
  1632. described below.
  1633. \begin{table}
  1634. \begin{center}
  1635. \begin{tabular}{|c|c|c|}
  1636. \hline
  1637. {\bf Operation} & {\bf Description} & {\bf Grouping} \\
  1638. \hline
  1639. {\tt [$v_1$,$v_2$]} & Vector bracket & \\
  1640. \hline
  1641. {\tt @} $x$ & Holonomic vector $\partial_x$ & \\
  1642. \cline{1-2}
  1643. {\tt d} $a$ & Exterior differential & \\
  1644. {\tt d} $\omega$ & &
  1645. {\tt d} \cc$a$ $\Leftrightarrow$ {\tt (d(}\cc$a${\tt))} \\
  1646. \cline{1-2}
  1647. {\tt \dd} $a$ & Dualization & \\
  1648. {\tt \dd} $\omega$ & & \\
  1649. \cline{1-2}
  1650. {\tt \cc} $e$ & Complex conjugation & \\
  1651. \hline
  1652. $a_1${\tt **}$a_2$ & Exponention & \\
  1653. $a_1${\tt\^} $a_2$ & & \\
  1654. \hline
  1655. $e$\ {\tt /}\ $a$ & Division &
  1656. $e${\tt /}$a_1${\tt /}$a_2$ $\Leftrightarrow$
  1657. {\tt (}$e${\tt /}$a_1${\tt )/}$a_2$ \\
  1658. \hline
  1659. $a$\ {\tt *}\ $e$ & Multiplication & \\
  1660. \cline{1-2}
  1661. $v$\ {\tt |}\ $a$ & Vector acting on scalar &
  1662. $v$\ii$\omega_1$\w$\omega_2${\tt *}$a$ \\
  1663. \cline{1-2}
  1664. $v$\ \ip\ $\omega$ & Interior product & $\Updownarrow$ \\
  1665. \cline{1-2}
  1666. $v_1$\ {\tt.}\ $v_2$& Scalar product &
  1667. $v$\ii{\tt (}$\omega_1$\w{\tt(}$\omega_2${\tt *}$a${\tt ))} \\
  1668. $v$\ {\tt.}\ $o$ & & \\
  1669. $o_1$\ {\tt.}\ $o_2$& & \\
  1670. \cline{1-2}
  1671. $\omega_1$\ \w\ $\omega_2$ & Exterior product & \\
  1672. \hline
  1673. {\tt +}\ $e$ & Prefix plus & \\
  1674. \cline{1-2}
  1675. {\tt -}\ $e$ & Prefix minus & \\
  1676. \cline{1-2}
  1677. $e_1$\ {\tt +}\ $e_2$ & Addition & \\
  1678. \cline{1-2}
  1679. $e_1$\ {\tt -}\ $e_2$ & Subtraction & \\
  1680. \hline
  1681. \end{tabular}
  1682. \end{center}
  1683. \label{operators}
  1684. \caption{Operation and operators. Here:
  1685. $e$ is any expression,
  1686. $a$ is any scalar valued (algebraic) expressions,
  1687. $v$ is any vector valued expression,
  1688. $x$ is a coordinate,
  1689. $o$ is any 1-form valued expression,
  1690. $\omega$ is any form valued expression.}
  1691. \end{table}
  1692. \subsection{Variables and Functions}
  1693. Operator listed in the table 2.2 act on
  1694. the following types of the operands:
  1695. \begin{itemize}
  1696. \item[(i)] integer numbers (e.g. {\tt 0}, {\tt 123}),
  1697. \item[(ii)] symbols or identifiers (e.g. {\tt I}, {\tt phi}, {\tt RIM0103}),
  1698. \item[(iii)] functional expressions (e.g. {\tt SIN(x)}, {\tt G(0,1)} etc).
  1699. \end{itemize}
  1700. Valid identifier must belong to one of the following types:
  1701. \begin{itemize}
  1702. \item Coordinate.
  1703. \item User-defined or built-in constant.
  1704. \item Function declared with the implicit dependence list.
  1705. \item Component of an object.
  1706. \end{itemize}
  1707. Any valid functional expression must belong to one of the following types:
  1708. \itemsep=0.5mm
  1709. \begin{itemize}
  1710. \item User-defined function.
  1711. \item Function defined in \reduce\ (operator).
  1712. \item Component of built-in or user-defined object in functional notation.
  1713. \item Some special functional expressions listed below.
  1714. \end{itemize}
  1715. \subsection{Derivatives}
  1716. The derivatives in \grg\ and \reduce\ are written as
  1717. \command{DF(\parm{a},\rpt{\parm{x}\opt{,\parm{n}}})}
  1718. where \parm{a} is the differentiated expression, \parm{x} is
  1719. the differentiation variable and integer number \parm{n} is
  1720. the repetition of the differentiation. For example
  1721. \[
  1722. \mbox{\tt DF(f(x,y),x,2,y)}=\frac{\partial^3f(x,y)}{\partial^2x\partial y}
  1723. \]
  1724. There are also another type of derivatives
  1725. \command{DFP(\parm{a},\rpt{\parm{x}\opt{,\parm{n}}})}
  1726. \seethis{See section \ref{genfun} about the generic functions.}
  1727. They are valid only after {\tt Generic Function}
  1728. declaration if the package \file{dfpart}
  1729. is installed on your system.
  1730. \subsection{Complex Conjugation}
  1731. Symbol \comm{\cc\cc} in the sum of terms is an abbreviation:
  1732. \command{%
  1733. \tt $e$ + \cc\cc\ $=$\ $e$ + \cc$e$ \\
  1734. \tt $e$ - \cc\cc\ $=$\ $e$ - \cc$e$ }
  1735. Functions \comm{Re} and \comm{Im} gives real and imaginary
  1736. parts of an expression:
  1737. \command{%
  1738. \tt Re($e$)\ $=$\ ($e$+\cc$e$)/2 \\
  1739. \tt Im($e$)\ $=$\ I*(-$e$+\cc$e$)/2}
  1740. \subsection{Sums and Products}
  1741. The following expressions represent sum and product
  1742. \command{Sum(\rpt{\parm{iter}},\parm{e})\\\tt
  1743. Prod(\rpt{\parm{iter}},\parm{e})}
  1744. where \parm{e} is the summed expression and \parm{iter}
  1745. defines summation variables.
  1746. The range of summation can be \label{iter}
  1747. specified by two methods. First ``long'' notation is
  1748. \command{\parm{id} = \parm{low}..\parm{up}}
  1749. and the identifier \parm{id} runs from \parm{low} up to
  1750. \parm{up}. Both \parm{low} and \parm{up} can be given
  1751. by arbitrary expressions but value of these expressions
  1752. must be integer. The \parm{low} can be omitted
  1753. \command{\parm{id} = \parm{up}}
  1754. and in this case \parm{id} runs from 0 to \parm{up}.
  1755. The identifier \parm{id} should not coincide with any
  1756. built-in or user-defined variable.
  1757. In ``short'' notation \parm{iter} is just identifier \label{siter}
  1758. \parm{id} and its range is determined using
  1759. the following rules
  1760. \begin{list}{$\bullet$}{\labelwidth=4mm\leftmargin=\parindent}
  1761. \item Mixed letter-digit \parm{id} runs from 0 to $d-1$
  1762. where $d$ is the space dimensionality.
  1763. \begin{verbatim}
  1764. Aid j2s
  1765. \end{verbatim}
  1766. \item The \parm{id} consisting of lower-case letters runs from
  1767. $0$ to $d-1$
  1768. \begin{verbatim}
  1769. j a abc kkk
  1770. \end{verbatim}
  1771. \item The \parm{id} consisting of upper-case letters runs from
  1772. $0$ to the number of letters in \parm{id}, e.g. the following
  1773. identifiers run from 0 to 1 and from 0 to 3 respectively
  1774. \begin{verbatim}
  1775. B ABC
  1776. \end{verbatim}
  1777. \item Letters with one trailing digit run from 0 to the value
  1778. of this digit. Both \parm{id} below runs from 0 to 3:
  1779. \begin{verbatim}
  1780. j3 A3
  1781. \end{verbatim}
  1782. \item Letters with two digits run from the value of the
  1783. first digit to the value of the second digit. The \parm{id} below
  1784. run from 2 to 3:
  1785. \begin{verbatim}
  1786. j23 A23
  1787. \end{verbatim}
  1788. \item Letters with 3 or more digits are incorrect
  1789. \begin{verbatim}
  1790. j123
  1791. \end{verbatim}
  1792. \end{list}
  1793. Two or more summation parameters are separated either
  1794. by commas or by one of the relational operators
  1795. \begin{listing}
  1796. < > <= =>
  1797. \end{listing}
  1798. This means that only the terms satisfying these relations
  1799. will be included in the sum. For example
  1800. \[
  1801. \mbox{\tt Sum(i24<=ABC,k=1..d-1,f(i24,ABC,k))} =
  1802. \sum_{i=2}^{4} \sum_{\scriptstyle a=0\atop\scriptstyle i\leq a}^{3} \sum^{d-1}_{k=1} f(i,a,k)
  1803. \]
  1804. \enlargethispage{5mm}
  1805. \grg's \comm{Sum} and \comm{Prod}
  1806. \seethis{Use \comm{SUM}, \comm{PROD} or \comm{sum}, \comm{prod}
  1807. depending on \reduce\ internal case as explained on page
  1808. \pageref{case}.}
  1809. should not be confused with \reduce's \comm{SUM} and \comm{PROD}
  1810. which are also available in \grg. \grg's \comm{Sum} apply
  1811. to any scalar, vector or form-valued expressions and always
  1812. expanded by \grg\ into the appropriate explicit sum of terms. On the
  1813. contrary \comm{SUM} defined in \reduce\ can be applied to the
  1814. algebraic expressions only. \grg\ leaves such expression unchanged
  1815. and passes
  1816. it to the \reduce\ algebraic evaluator. Unlike \comm{Sum} the
  1817. summation limits in \comm{SUM} can be given by algebraic
  1818. expressions. If value of these expressions is integer then
  1819. result of the \comm{SUM} will be the same as for \comm{Sum}
  1820. but if summation limits are symbolic sometimes \reduce\ is capable
  1821. to find a closed expression for such a sum but not always.
  1822. See the following example
  1823. \begin{slisting}
  1824. <- Coordinates t, x, y, z;
  1825. <- Function f;
  1826. <- Constants n, m;
  1827. <- Sum(k=1..3,f(k));
  1828. f(3) + f(2) + f(1)
  1829. <- SUM(f(n),n,1,3);
  1830. f(3) + f(2) + f(1)
  1831. <- SUM(n,n,1,m);
  1832. m*(m + 1)
  1833. -----------
  1834. 2
  1835. <- SUM(f(n),n,1,m);
  1836. SUM(f(n),n,1,m)
  1837. \end{slisting}
  1838. \newpage
  1839. \subsection{Einstein Summation Rule}
  1840. According to the Einstein summation rule if \grg\ encounters
  1841. some unknown repeated identifier \parm{id} then summation over this
  1842. \parm{id} is performed. The range of the summation variable
  1843. is determined according to the ``short'' notation explained in
  1844. the previous section.
  1845. \subsection{Object Components and Index Manipulation}
  1846. The components of built-in or user-defined object can be
  1847. denoted in expressions by two methods which are
  1848. similar to the notation used in the left-hand side of the
  1849. assignment command. The first method uses the object identifier
  1850. with additional digits denoting the indices {\tt T0}, {\tt RIM0213}.
  1851. The second method uses the functional
  1852. notation {\tt T(0)}, {\tt RIM(0,2,1,3)}, {\tt OMEGA(j,k)}.
  1853. In functional notation the default index type and position
  1854. \index{Index manipulations}
  1855. can be changed using the markers: {\tt '} upper frame,
  1856. {\tt .} lower frame, {\tt \^} upper holonomic, {\tt \_} lower
  1857. holonomic. For example expression {\tt RIM(a,b,m,n)}
  1858. gives components of Riemann tensor with the default indices
  1859. $R^a{}_{bmn}$ (first upper frame and three lower frame indices)
  1860. while expression {\tt RIM('a,'b,\_m,\_n)} gives
  1861. $R^{ab}{}_{\mu\nu}$ with two upper frame and two lower coordinate
  1862. indices. For enumerating indices position markers are ignored
  1863. and only {\tt '} and {\tt .} works for spinorial indices.
  1864. In the spinorial formalism
  1865. \seethis{See \pref{spinors} about spinorial formalism.}
  1866. each frame index can be replaced by a pair if spinorial indices
  1867. according to the formulas:
  1868. \[
  1869. A^a\sigma_a{}^{B\dot{D}}=A^{B\dot{D}},\qquad
  1870. B_a\sigma^a\!{}_{B\dot{D}}=B_{B\dot{D}}
  1871. \]
  1872. Accordingly any frame index can be replaced by a pair of
  1873. spinorial indices.
  1874. \label{sumspin}
  1875. Similarly one summed spinorial index or rank $n$ can be
  1876. replaced by $n$ single spinor indices.
  1877. There is only one restriction. If an object has several
  1878. frame and/or summed spinorial indices then \emph{all}
  1879. must be represented in such expanded form.
  1880. In the following example the null frame $\theta^a$
  1881. is printed in the usual and spinorial $\theta^{B\dot C}$
  1882. representations. The relationship
  1883. $\theta^a\sigma_a{}^{B\dot C}-\theta^{B\dot C}=0$ is
  1884. verifies as well
  1885. \begin{slisting}
  1886. <- Coordinates u, v, z, z~;
  1887. z & z~ - conjugated pair.
  1888. <- Null Metric;
  1889. <- Frame T(a)=d x(a);
  1890. <- ds2;
  1891. \newpage
  1892. 2
  1893. ds = (-2) d u d v + 2 d z d z~
  1894. <- T(a);
  1895. a=0 : d u
  1896. a=1 : d v
  1897. a=2 : d z
  1898. a=3 : d z~
  1899. <- T(B,C);
  1900. B=0 C=0 : d v
  1901. B=0 C=1 : d z~
  1902. B=1 C=0 : d z
  1903. B=1 C=1 : d u
  1904. <- T(a)*sigmai(a,B,C)-T(B,C);
  1905. 0
  1906. \end{slisting}
  1907. \subsection{Parts of Equations and Solutions}
  1908. \index{Equations!in expressions}
  1909. The functional expressions
  1910. \command{LHS(\parm{eqcomp})\\\tt
  1911. RHS(\parm{eqcomp})}
  1912. give access to the left-hand and right-hand side of an
  1913. equation respectively. Here \parm{eqcomp} is the
  1914. component of the equation as explained in the
  1915. previous section.
  1916. The \comm{LHS}, \comm{RHS} also provide access to the \parm{n}'th
  1917. \seethis{See page \pageref{solutions} about solutions.}
  1918. solution if \parm{eqcomp} is \comm{Sol(\parm{n})}.
  1919. \subsection{Lie Derivatives}
  1920. \index{Lie derivatives}
  1921. The Lie derivative is given by the expression
  1922. \command{Lie(\parm{v},\parm{objcomp})}
  1923. where \parm{objcomp} is the component of an object in
  1924. functional notation. For example the following
  1925. expression is the Lie derivative of the metric $\pounds_vg_{ab}$
  1926. \begin{listing}
  1927. Lie(vec,G(a,b));
  1928. \end{listing}
  1929. The index manipulations in the Lie derivatives are permitted.
  1930. In particular the expression
  1931. \begin{listing}
  1932. Lie(vec,G(^m,b));
  1933. \end{listing}
  1934. is the Lie derivative of the frame $\pounds_vg^\mu{}_{b}
  1935. \equiv \pounds_vh^\mu_a$
  1936. and must vanish.
  1937. \subsection{Covariant Derivatives and Differentials}
  1938. \index{Covariant derivatives}\index{Covariant differentials}
  1939. \label{cder}
  1940. The covariant differential
  1941. \command{Dc(\parm{objcomp}\opt{{\upshape\tt ,}\rpt{\parm{conn}}})}
  1942. and covariant derivative
  1943. \command{Dfc(\parm{v},\parm{objcomp}\opt{{\upshape\tt ,}\rpt{\parm{conn}}})}
  1944. Here \parm{objcomp} is an object component in functional notation
  1945. and \parm{v} is a vector-valued expression.
  1946. The optional parameters \parm{conn} are the identifiers of
  1947. connections.
  1948. \seethis{See page \pageref{conn} about the built-in connections.}
  1949. If \parm{conn} is omitted then \grg\ uses default
  1950. connection for each type of indices: frame, coordinate,
  1951. spinor and conjugated spinor. If \parm{conn} is indicated
  1952. then \grg\ uses this connection instead of default one
  1953. for appropriate type of indices. For example expression
  1954. \begin{listing}
  1955. Dc(OMEGA(a,b))
  1956. \end{listing}
  1957. is the covariant differential of the curvature 2-form $D\Omega^a{}_b$.
  1958. This expression should vanish in Riemann space and should be
  1959. proportional to the torsion in Riemann-Cartan space.
  1960. Here \grg\ will use default object {\tt Frame connection}
  1961. (id. \comm{omega}). The expression
  1962. \begin{listing}
  1963. Dc(OMEGA(a,b),romega)
  1964. \end{listing}
  1965. is similar but it uses another built-in connection
  1966. {\tt Riemann frame connection } (id. \comm{romega}) which
  1967. are different if torsion or nonmetricity are nonzero.
  1968. The index manipulations are allowed in the covariant derivatives.
  1969. For example the expression
  1970. \begin{listing}
  1971. Dfc(v,RIC(\^m,\_n))
  1972. \end{listing}
  1973. gives the covariant derivative of the curvature of the
  1974. Ricci tensor with first coordinate upper and second coordinate lower
  1975. indices $\nabla_vR^\mu{}_\nu$.
  1976. \subsection{Symmetrization}
  1977. The functional expressions works iff the switch \swind{EXPANDSYM}
  1978. \comm{EXPANDSYM} is on
  1979. \command{%
  1980. Asy(\rpt{\parm{i}},\parm{e})\\\tt
  1981. Sy(\rpt{\parm{i}},\parm{e})\\\tt
  1982. Cy(\rpt{\parm{i}},\parm{e})}
  1983. They produce antisymmetrization, symmetrization and cyclic symmetrization
  1984. of the expression \parm{e} with respect to \parm{i} without
  1985. corresponding $1/n$ or $1/n!$.
  1986. \subsection{Substitutions}
  1987. \index{Substitutions}\label{subs}
  1988. The expression
  1989. \command{SUB(\rpt{\parm{sub}},\parm{e})}
  1990. is similar to the analogous expression in \reduce\ with two
  1991. generalizations: (i) it applies not only to algebraic
  1992. but to form and vector valued expression \parm{e} as well,
  1993. \seethis{See page \pageref{solutions} about solutions.}
  1994. (ii) as in {\tt Let} command \parm{sub} can be either
  1995. the relation {\tt \parm{l}\,=\,\parm{r}} or solution
  1996. {\tt Sub(\parm{n})}.
  1997. \subsection{Conditional Expressions}
  1998. \index{Conditional expressions}\index{Boolean expressions}
  1999. The conditional expression
  2000. \command{If(\parm{cond},\parm{e1},\parm{e2})}
  2001. chooses \parm{e1} or \parm{e2} depending on the value of the
  2002. boolean expression \parm{cond}.
  2003. Boolean expression appears in (i) the conditional expression
  2004. \label{bool}
  2005. {\tt If}, (ii) in {\tt For all Such That} substitutions.
  2006. Any nonzero expression is considered as {\bf true} and
  2007. vanishing expression as {\bf false}. Boolean expressions
  2008. may contain the following usual relations and logical
  2009. operations: {\tt < > <= >= = |= not and or}. They also may
  2010. contain the following predicates \vspace*{2mm}
  2011. \begin{tabular}{|l|l|}
  2012. \hline
  2013. \tt OBJECT(\parm{obj}) & Is \parm{obj} an object identifier or not \\
  2014. \hline
  2015. \tt ON(\parm{switch}) & Test position of the \parm{switch} \\
  2016. \tt OFF(\parm{switch}) & \\
  2017. \hline
  2018. \tt ZERO(\parm{object}) & Is the value of the \parm{object} zero or not \\
  2019. \hline
  2020. \tt HASVALUE(\parm{object}) & Whether the \parm{object} has any value or not \\
  2021. \hline
  2022. \tt NULLM(\parm{object}) & Is the \parm{object} the standard null metric \\
  2023. \hline
  2024. \end{tabular} \vspace*{2mm} \newline
  2025. Here \parm{object} is an object identifier.
  2026. The expression \comm{ERROR("\parm{message}")} causes an error
  2027. with the \comm{"\parm{message}"}. It can be used
  2028. to test any required conditions during the batch file execution.
  2029. \subsection{Functions in Expressions}
  2030. Any function which appear in expression must be
  2031. either declared by the \comm{Function} declaration or
  2032. be defined in \reduce\ (in \reduce\ functions are called
  2033. operators). In general arguments of functions in \grg\ must be
  2034. algebraic expression with one exception. If one (and only one)
  2035. argument of some function $f$ is form-valued $\omega=a d x + b d y$ then
  2036. \grg\ applies $f$ to the algebraic
  2037. multipliers of the form $f(\omega) = f(a) d x+ f(b) d y$.
  2038. The same rule works for vector-valued arguments.
  2039. Let us consider the example in the \reduce\
  2040. operator \comm{LIMIT} is applied to the
  2041. form-valued expression
  2042. \begin{slisting}
  2043. <- Coordinates t, x, y, z;
  2044. <- www=(x+y)\^2/(x\^2-1)*d x+(x+y)/(x-z)*d y;
  2045. <- www;
  2046. 2 2
  2047. x + 2*x*y + y x + y
  2048. (-----------------) d x + (-------) d y
  2049. 2 x - z
  2050. x - 1
  2051. <- LIMIT(www,x,INFINITY);
  2052. d x + d y
  2053. \end{slisting}
  2054. I would like to remind also that depending on the
  2055. particular \reduce\ system \reduce\ operators must be
  2056. used in \grg\ in upper \comm{LIMIT} or lower case \comm{limit}.
  2057. See page \pageref{case} for more details.
  2058. Any function or operator defined in the \reduce\ package
  2059. can be used in \grg\ as well. Some examples are
  2060. considered in section \ref{packages}.
  2061. \subsection{Expression Evaluation}
  2062. \index{Expression evaluation}
  2063. \grg\ evaluates expressions in several steps:
  2064. (1) All \grg-specific constructions such as
  2065. \comm{Sum}, \comm{Prod}, \comm{Re}, \comm{Im} etc are
  2066. explicitly expanded.
  2067. (2) If expression contains components of some built-in
  2068. or user defined object they are replaced by the appropriate value.
  2069. If the object is in indefinite state
  2070. \seethis{See page \pageref{find} about the \comm{Find} command.}
  2071. (no value of the object is known) then \grg\ tries to
  2072. calculate its value by the method used by the \comm{Find} command.
  2073. The automatic object calculation can be prevented by
  2074. \swind{AUTO}
  2075. turning the switch \comm{AUTO} off.
  2076. If due to some reason the object cannot be calculated then
  2077. expression evaluation is terminated with the error message.
  2078. (3) After all object components are replaced by their
  2079. values \grg\ performs all ``geometrical'' operations: exterior
  2080. and interior products, scalar products etc. If expression is
  2081. form-valued when it is reduced to the form
  2082. $a\,dx^0\wedge dx^1\dots+b\,d x^1\wedge+\dots$ where $a$ and $b$
  2083. are algebraic expressions (similarly for the vector-valued expressions).
  2084. (4) The \reduce\ algebraic simplification routine
  2085. is applied to the algebraic expressions $a$, $b$.
  2086. \seethis{In the anholonomic mode the basis $b^i\wedge b^j\dots$
  2087. is used instead. See section \ref{amode}.}
  2088. Final expression consist of exterior products of basis
  2089. coordinate differentials $dx^i\wedge dx^j\dots$ (or basis
  2090. vectors $\partial_{x^i}$) multiplied by the algebraic expressions.
  2091. The algebraic expressions contain only the coordinates,
  2092. constants and functions.
  2093. \subsection{Controlling Expression Evaluation}
  2094. There are many \reduce\ switches which control
  2095. algebraic expression evaluation. The number of these switches
  2096. and details of their work depend on the \reduce\ version.
  2097. Here we consider some of these switches. All examples below
  2098. are made with the \reduce\ 3.5. On other \reduce\ versions
  2099. result may be a bit different.
  2100. Switches {\tt EXP} and {\tt MCD} control expansion and
  2101. reduction of rational expressions to a common denominator
  2102. respectively.
  2103. \begin{slisting}
  2104. <- (x+y)\^2;
  2105. 2 2
  2106. x + 2*x*y + y
  2107. <- Off EXP;
  2108. <- (x+y)\^2;
  2109. 2
  2110. (x + y)
  2111. <- On EXP;
  2112. <- 1/x+1/y;
  2113. x + y
  2114. -------
  2115. x*y
  2116. <- Off MCD;
  2117. <- 1/x+1/y;
  2118. -1 -1
  2119. x + y
  2120. \end{slisting}
  2121. These switches are normally on.
  2122. Switches {\tt PRECISE} and {\tt REDUCED} control evaluation of
  2123. square roots:\label{PRECISE}\label{REDUCED}
  2124. \begin{slisting}
  2125. <- SQRT(-8*x\^2*y);
  2126. 2*SQRT( - 2*y)*x
  2127. <- On REDUCED;
  2128. <- SQRT(-8*x\^2*y);
  2129. 2*SQRT(y)*SQRT(2)*I*x
  2130. <- Off REDUCED;
  2131. <- On PRECISE;
  2132. <- SQRT(-8*x\^2*y);
  2133. 2*SQRT(y)*SQRT(2)*I*x
  2134. <- On REDUCED, PRECISE;
  2135. <- SQRT(-8*x\^2*y);
  2136. 2*SQRT(y)*SQRT(2)*ABS(x)
  2137. \end{slisting}
  2138. Combining rational expressions the system by default
  2139. calculates the least common multiple of denominators but
  2140. turning the switch {\tt LCM} off prevents this calculation.
  2141. Switch {\tt GCD} (normally off) makes the system
  2142. search and cancel the greatest common divisor of the
  2143. numerator and denominator of rational expressions.
  2144. Turning {\tt GCD} on may significantly slow down the
  2145. calculations. There is also another switch {\tt EZGCD}
  2146. which uses other algorithm for g.c.d. calculation.
  2147. Switches {\tt COMBINELOGS} and {\tt EXPANDLOGS} control
  2148. the evaluation of logarithms
  2149. \begin{slisting}
  2150. <- On EXPANDLOGS;
  2151. <- LOG(x*y);
  2152. LOG(x) + LOG(y)
  2153. <- LOG(x/y);
  2154. LOG(x) - LOG(y)
  2155. <- Off EXPANDLOGS;
  2156. <- On COMBINELOGS;
  2157. <- LOG(x)+LOG(y);
  2158. LOG(x*y)
  2159. \end{slisting}
  2160. By default all polynomials are considered by \reduce\ as
  2161. the polynomials with integer coefficients. The switches
  2162. {\tt RATIONAL} and {\tt COMPLEX} allow rational and
  2163. complex coefficients in polynomials respectively:
  2164. \begin{slisting}
  2165. <- (x\^2+y\^2+x*y/3)/(x-1/2);
  2166. 2 2
  2167. 2*(3*x + x*y + 3*y )
  2168. -----------------------
  2169. 3*(2*x - 1)
  2170. <- On RATIONAL;
  2171. <- (x\^2+y\^2+x*y/3)/(x-1/2);
  2172. 2 1 2
  2173. x + ---*x*y + y
  2174. 3
  2175. -------------------
  2176. 1
  2177. x - ---
  2178. 2
  2179. <- Off RATIONAL;
  2180. <- 1/I;
  2181. 1
  2182. ---
  2183. I
  2184. <- (x\^2+y\^2)/(x+I*y);
  2185. 2 2
  2186. x + y
  2187. ---------
  2188. I*y + x
  2189. <- On COMPLEX;
  2190. <- 1/I;
  2191. - I
  2192. <- (x\^2+y\^2)/(x+I*y);
  2193. x - I*y
  2194. \end{slisting}
  2195. Switch {\tt RATIONALIZE} removes complex numbers from the
  2196. denominators of the expressions but it works even if
  2197. {\tt COMPLEX} is off.
  2198. Turning off switch {\tt EXP} and on {\tt GCD} one can
  2199. make the system to factor expressions
  2200. \begin{slisting}
  2201. <- Off EXP;
  2202. <- On GCD;
  2203. <- x\^2+y\^2+2*x*y;
  2204. 2
  2205. (x + y)
  2206. \end{slisting}
  2207. Similar effect can be achieved by turning on switch {\tt FACTOR}.
  2208. Unfortunately this works only when \grg\ prints expressions and
  2209. internally expressions remain in the expanded form.
  2210. To make \grg\ to work with factored expressions internally one
  2211. must turn on {\tt FACTOR} and {\tt AEVAL}.
  2212. \swind{AEVAL}
  2213. The \grg\ switch {\tt AEVAL} make \grg\ to use an alternative
  2214. \reduce\ routine for algebraic expression evaluation and simplification.
  2215. This routine works well with {\tt FACTOR} on.
  2216. \seethis{See section \ref{tuning} about configuration files.}
  2217. Possibly it
  2218. is good idea to turn switch {\tt AEVAL} on by default.
  2219. This can be done using \grg\ configuration files.
  2220. \subsection{Substitutions}
  2221. \index{Substitutions}
  2222. The substitution commands in \grg\ are the same as the
  2223. corresponding \reduce\ instructions
  2224. \cmdind{Let}\cmdind{Match}\cmdind{For All Let}
  2225. \command{\opt{For All \rpt{\parm{x}}\,\opt{Such That \parm{cond}}} Let \rpt{\parm{sub}};\\\tt
  2226. \opt{For All \rpt{\parm{x}}\,\opt{Such That \parm{cond}}} Match \rpt{\parm{sub}};}
  2227. \seethis{See page \pageref{solutions} about solutions.}
  2228. where \parm{sub} is either relation {\tt \parm{l}\,=\,\parm{r}}
  2229. or the solution in the form \comm{Sol(\parm{n})}.
  2230. After the substitution is activated every appearance of \parm{l} will be
  2231. replaced by \parm{r}. The {\tt For All} substitutions have additional list
  2232. of parameters \parm{x} and will work for any value
  2233. of \parm{x}. The optional condition \parm{cond} imposes restrictions
  2234. on the value of the parameters \parm{x}. The \parm{cond} is
  2235. the boolean expression (see page \pageref{bool}).
  2236. The substitution can be deactivated by the command
  2237. \cmdind{Clear}
  2238. \command{\opt{For All \rpt{\parm{x}}\,\opt{Such That \parm{cond}}} Clear \rpt{\parm{sub}};}
  2239. Notice that the variables \parm{x} must be exactly the same
  2240. as in the corresponding {\tt For All Let} command.
  2241. The difference between \comm{Match} and \comm{Let}
  2242. is that the former matches the degrees of the
  2243. expressions exactly while \comm{Let} matches all powers which
  2244. are greater than one indicated in the substitution:
  2245. \begin{slisting}
  2246. <- Const a;
  2247. <- (a+1)\^8;
  2248. 8 7 6 5 4 3 2
  2249. a + 8*a + 28*a + 56*a + 70*a + 56*a + 28*a + 8*a + 1
  2250. <- Let a\^3=1;
  2251. <- (a+1)\^8;
  2252. 2
  2253. 85*a + 86*a + 85
  2254. <- Clear a\^3;
  2255. <- Match a\^3=1;
  2256. <- (a+1)\^8;
  2257. 8 7 6 5 4 2
  2258. a + 8*a + 28*a + 56*a + 70*a + 28*a + 8*a + 57
  2259. \end{slisting}
  2260. Substitutions can be used for various purposes, for example:
  2261. (i) to define additional mathematical relations such as
  2262. trigonometric ones;
  2263. (ii) to ``assign'' value to the user-defined and built-in constants;
  2264. (iii) to define differentiation rules for functions.
  2265. After some substitution is activated it applies to every
  2266. evaluated expression but value of the objects calculated
  2267. \emph{before} remain unchanged.
  2268. The command \comm{Evaluate} re-simplifies the value of the object
  2269. \cmdind{Evaluate}
  2270. \command{Evaluate \parm{object};}
  2271. here \parm{object} is the object name, or identifier, or the
  2272. group object name.
  2273. Let us consider a simple \grg\ task which
  2274. calculates the volume 4-form of some metric
  2275. \begin{slisting}
  2276. <- Coordinates t, x, y, z;
  2277. <- Constant a;
  2278. <- Tetrad T0=d t, T1=d x, T2=SIN(a)*d y+COS(a)*d z,
  2279. T3=-COS(a)*d y+SIN(a)* d z;
  2280. <- Find and Write Volume;
  2281. Volume :
  2282. 2 2
  2283. VOL = (SIN(a) + COS(a) ) d t \w\ d x \w\ d y \w\ d z
  2284. \end{slisting}
  2285. We see that \reduce\ do not know the
  2286. appropriate trigonometric rule.
  2287. Thus we are going to apply substitution
  2288. \begin{slisting}
  2289. <- For all x let SIN(x)\^2 = 1-COS(x)\^2;
  2290. <- Write Volume;
  2291. Volume :
  2292. VOL = d t \w\ d x \w\ d y \w\ d z
  2293. \end{slisting}
  2294. The situation has been improved.
  2295. But actually, the \emph{internal} representation
  2296. of {\tt VOL} remains unchanged. {\tt Write} by default
  2297. re-simplifies expressions before printing.
  2298. \swinda{WRS}
  2299. By turning switch {\tt WRS} off we can prevent this
  2300. re-simplification:
  2301. \begin{slisting}
  2302. <- Off WRS;
  2303. <- Write Volume;
  2304. Volume :
  2305. 2 2
  2306. VOL = (SIN(a) + COS(a) ) d t \w\ d x \w\ d y \w\ d z
  2307. \end{slisting}
  2308. Now we can apply \comm{Evaluate}:
  2309. \begin{slisting}
  2310. <- Evaluate Volume;
  2311. <- Write Volume;
  2312. Volume :
  2313. VOL = d t \w\ d x \w\ d y \w\ d z
  2314. \end{slisting}
  2315. We see that the internal value of {\tt VOL} now has been
  2316. replaced by re-simplified expression.
  2317. Notice that the command
  2318. \command{Evaluate All;}
  2319. applies \comm{Evaluate} to all objects whose value is
  2320. currently known.
  2321. \subsection{Generic Functions}
  2322. \index{Generic Functions}\label{genfun}
  2323. Unfortunately \reduce\ lacks the notion of partial derivative of a function.
  2324. The expression \comm{DF(f(x,y),x)} is treated by \reduce\ as the
  2325. ``derivative of the expression \comm{f(x,y)} with respect to
  2326. the variable \comm{x}'' rather than the ``derivative of the function
  2327. \comm{f} with respect to its first argument''.
  2328. Due to this \reduce\ cannot handle
  2329. chain differentiation rule etc. This problem is fixed by the
  2330. package \file{dfpart} written by H.~Melenk.
  2331. This package introduces notion of generic function and
  2332. partial derivative \comm{DFP}. If \file{dfpart} is installed
  2333. on your \reduce\ system \grg\ provides the interface
  2334. to these facilities.
  2335. Let us consider an example. First we declare
  2336. one usual and two generic functions
  2337. \begin{slisting}
  2338. <- Coordinates t, x, y, z;
  2339. <- Function f;
  2340. <- Generic Function g(a,b), h(b);
  2341. <- Write Functions;
  2342. Functions:
  2343. g*(a,b) h*(b) f
  2344. \end{slisting}
  2345. Generic functions must be always declared with
  2346. the list of parameters (\comm{a} and \comm{b} in our example).
  2347. These parameters play the role of labels which denotes
  2348. arguments of the generic function and the partial
  2349. derivatives with respect to these arguments
  2350. are defined. Due to this generic functions allow the
  2351. chain differentiation rule
  2352. \begin{slisting}
  2353. <- DF(f(SIN(x),y),x);
  2354. DF(f(SIN(x),y),x)
  2355. <- DF(g(SIN(x),y),x);
  2356. COS(x)*g (SIN(x),y)
  2357. a
  2358. \end{slisting}
  2359. Here subscript \comm{a} denotes
  2360. the derivative of the function \comm{g} with respect to the
  2361. first argument. \enlargethispage{5mm}
  2362. The operator \comm{DFP} is introduced to denotes such
  2363. derivatives in expressions:
  2364. \begin{slisting}
  2365. <- DF(g(x,y)*h(y),b);
  2366. 0
  2367. <- DFP(g(x,y)*h(y),b);
  2368. g (x,y)*h(y) + h (y)*g(x,y)
  2369. b b
  2370. \end{slisting}
  2371. \newpage
  2372. If switch \swind{DFPCOMMUTE}
  2373. \comm{DFPCOMMUTE} is turned on then \comm{DFP}
  2374. derivatives commute.
  2375. \section{Using Built-in Formulas In Calculations}
  2376. \grg\ has large number of built-in objects and almost
  2377. each object has built-in formulas or so called
  2378. \emph{ways of calculation} which can be used to find
  2379. the value of the object. This section explains how
  2380. these formulas (ways) can be used.
  2381. \subsection{\comm{Find} Command}
  2382. \index{Ways of calculation}\cmdind{Find}\label{find}
  2383. Almost each \grg\ built-in object has associated
  2384. \emph{ways of calculation}. Each way is nothing but
  2385. a formula or equation which allows to compute
  2386. the value of the object. All these formulas
  2387. are described in the usual mathematical style in
  2388. chapter 3.
  2389. The command\cmdind{Show \parm{object}}
  2390. \command{Show \parm{object};}
  2391. or equivalently
  2392. \command{?~\parm{object};}
  2393. prints information about object's ways of calculation.
  2394. The command \comm{Find} applies built-in formulas to
  2395. calculate the object value
  2396. \command{Find \parm{object} \opt{\parm{way}};}
  2397. where \parm{object} is the object name, or identifier, or
  2398. group object name.
  2399. The optional specification \parm{way} indicates the
  2400. particular way if the \parm{object} has several built-in ways
  2401. of calculation.
  2402. \enlargethispage{3mm}
  2403. Consider the curvature 2-form $\Omega^a{}_b$
  2404. (object \comm{Curvature}, id. \comm{OMEGA}):
  2405. \begin{slisting}
  2406. <- Show Curvature;
  2407. Curvature OMEGA'a.b is 2-form
  2408. Value: unknown
  2409. Ways of calculation:
  2410. Standard way (omega)
  2411. From spinorial curvature (OMEGAU*,OMEGAD)
  2412. \end{slisting}
  2413. \noindent
  2414. We can see that this object has two built in ways of
  2415. calculation. First way named {\tt Standard way} is the
  2416. usual equation
  2417. $\Omega^a{}_b=d\omega^a{}_b+\omega^a{}_m\wedge\omega^m{}_b$.
  2418. Second way under the name {\tt From spinorial curvature}
  2419. uses spinor $\tsst$ tensor relationship to compute the curvature 2-form
  2420. using its spinor analogues $\Omega_{AB}$ and
  2421. $\Omega_{\dot{A}\dot{B}}$ as the source data.
  2422. The ways of calculation are printed by the command {\tt Show}
  2423. in the form
  2424. \command{\parm{wayname} (\rpt{\parm{SI}})}
  2425. where \parm{wayname} is the way name and \seethis{See Eq. (\ref{omes}) on \pref{omes}.}
  2426. the \parm{SI} are the identifiers of the \emph{source} objects which are
  2427. present in the right-hand side of the equation. The value of
  2428. these objects must be known before the formula can be applied.
  2429. %\enlargethispage{5mm}
  2430. The \parm{way} in the \comm{Find} command allows one to
  2431. choose the particular way which can be done by two methods.
  2432. In the first form \parm{way} is just the name exactly as
  2433. it printed by the \comm{Show} command
  2434. \command{wayname}
  2435. or {\tt Using standard way} or {\tt By standard way} if the way
  2436. name is {\tt Standard way}. Another method to specify
  2437. the way is to indicate the appropriate source object
  2438. \command{From \parm{object}\\\tt%
  2439. Using \parm{object}}
  2440. where \parm{object} is the name or the identifier of the source object.
  2441. For example second (spinorial) way of calculation for the curvature
  2442. 2-form can be chosen by the following equivalent commands \vspace{-1mm}
  2443. \begin{listing}
  2444. Find curvature from spinorial curvature;
  2445. Find curvature using OMEGAU;
  2446. \end{listing}
  2447. while first way is activated by the commands \vspace*{-1mm}
  2448. \begin{listing}
  2449. Find curvature by standard way;
  2450. Find curvature using omega;
  2451. \end{listing}
  2452. Recall that object identifiers are case sensitive
  2453. and \comm{omega} is the identifier
  2454. of the frame connection 1-form $\omega^a{}_b$ and should not be
  2455. confused with \comm{OMEGA}.
  2456. The \parm{way} specification in the \comm{Find}
  2457. can be omitted and in this case
  2458. \grg\ uses the following algorithm to choose
  2459. a particular way of calculation. Observe that the identifier
  2460. of the undotted curvature 2-form $\Omega_{AB}$ is marked
  2461. by the symbol $*$. This label marks so called \emph{main}
  2462. objects. If no way of calculation is specified when
  2463. \grg\ tries to choose the way, browsing the way list
  2464. form top to the bottom, for which the value of the \emph{main}
  2465. object is already known. If no switch way exists then
  2466. \grg\ just picks up the first way in the list.
  2467. Therefore in our example the command
  2468. \begin{listing}
  2469. Find curvature;
  2470. \end{listing}
  2471. will use the second way if the value of the object $\Omega_{AB}$
  2472. (id. \comm{OMEGAU}) is known and second way otherwise.
  2473. As soon as some way of calculation is chosen \grg\ tries to
  2474. calculate the values of the source objects which are present
  2475. in the right-hand side of corresponding equations.
  2476. \grg\ tries to do this by applying the \comm{Find} command without way
  2477. specification to these objects. Thus a single \comm{Find}
  2478. can cause quite long chain of calculations.
  2479. This recursive work is reflected by the appropriate
  2480. tracing messages. The tracing can be eliminated by turning off
  2481. switch \comm{TRACE}.\swind{TRACE}
  2482. Here we present the sample \grg\ session which computes
  2483. curvature 2-form for the flat gravitational waves
  2484. \begin{slisting}
  2485. <- Cord u, v, z, z~;
  2486. z & z~ - conjugated pair.
  2487. <- Null Metric;
  2488. <- Function H(u,z,z~);
  2489. <- Frame T0=d u, T1=d v+H*d u, T2=d z, T3=d z~;
  2490. <- ds2;
  2491. 2 2
  2492. ds = ( - 2*H) d u + (-2) d u d v + 2 d z d z~
  2493. <- Find Curvature;
  2494. Sqrt det of metric calculated. 0.16 sec
  2495. Volume calculated. 0.16 sec
  2496. Vector frame calculated From frame. 0.16 sec
  2497. Inverse metric calculated From metric. 0.16 sec
  2498. Frame connection calculated. 0.22 sec
  2499. Curvature calculated. 0.22 sec
  2500. <- Write Curvature;
  2501. Curvature:
  2502. 1
  2503. OMEGA = ( - DF(H,z,2)) d u \w d z + ( - DF(H,z,z~)) d u \w d z~
  2504. 2
  2505. 1
  2506. OMEGA = ( - DF(H,z,z~)) d u \w d z + ( - DF(H,z~,2)) d u \w d z~
  2507. 3
  2508. 2
  2509. OMEGA = ( - DF(H,z,z~)) d u \w d z + ( - DF(H,z~,2)) d u \w d z~
  2510. 0
  2511. \newpage
  2512. 3
  2513. OMEGA = ( - DF(H,z,2)) d u \w d z + ( - DF(H,z,z~)) d u \w d z~
  2514. 0
  2515. \end{slisting}
  2516. Finally we want to emphasize that ways associated
  2517. with some object may depend on the concrete environment.
  2518. In particular the {\tt Standard way} for
  2519. the curvature 2-form is always available but second
  2520. way which is essentially related to spinors works
  2521. \seethis{See \pref{spinors} about the spinorial formalism.}
  2522. only in the 4-dimensional spaces of Lorentzian signature
  2523. and iff the metric is null.
  2524. If some way is not valid in the current environment
  2525. it simply disappears from the way list printed by the \comm{Show}.
  2526. It should be noted also that the \comm{Find \parm{object};}
  2527. command works only if the \parm{object} is in the indefinite state
  2528. and is rejected if the value of the \parm{object} is already known.
  2529. If you want to re-calculate the object then previous value must be
  2530. cleared by the \comm{Erase} command.
  2531. \subsection{\comm{Erase} command}
  2532. \cmdind{Erase}
  2533. The command
  2534. \command{Erase \parm{object};}
  2535. destroys the \parm{object} value and returns it to initial
  2536. indefinite state. It can be used also to free the
  2537. memory.
  2538. \subsection{\comm{Zero} command}
  2539. \cmdind{Zero}
  2540. Command
  2541. \command{Zero \parm{object};}
  2542. assigns zero values to all \parm{object} components.
  2543. \subsection{\comm{Normalize} command}
  2544. \cmdind{Normalize}
  2545. Command
  2546. \command{Normalize \parm{object};}
  2547. applies to equations. It replaces equalities
  2548. of the form $l=r$ by the equalities $l-r=0$
  2549. and re-simplifies the result.
  2550. \subsection{\comm{Evaluate} command}
  2551. \cmdind{Evaluate}
  2552. The command
  2553. \command{Evaluate \parm{object};}
  2554. re-simplifies existing value of the \parm{object}.
  2555. This command is useful if we want to apply new substitutions
  2556. \seethis{See page \pageref{subs} about substitutions.}
  2557. to the object whose value is already known.
  2558. The command
  2559. \command{Evaluate All;}
  2560. re-simplifies all objects whose value is currently known.
  2561. \section{Printing Result of Calculations}
  2562. \subsection{\comm{Write} Command}
  2563. \cmdind{Write}
  2564. The command
  2565. \command{Write \parm{object};}
  2566. prints value of the \parm{object}. Here \parm{object}
  2567. id the object name or identifier.\index{Group name}
  2568. Group names denoting a collection of several objects
  2569. \seethis{See page \pageref{macro} about macro objects.}
  2570. and macro object identifiers can be used in the \comm{Write}
  2571. command as well. In addition word \comm{All}
  2572. can be used to print all currently known objects.
  2573. The command \comm{Write} can print declarations as well if
  2574. \parm{object} is {\tt functions}, {\tt constants}, or
  2575. {\tt affine parameter}.
  2576. The command
  2577. \command{Write \rpt{\parm{object}}~to~"\parm{file}";}
  2578. or equivalently
  2579. \command{Write \rpt{\parm{object}}~>~"\parm{file}";}
  2580. writes result into the \comm{"\parm{file}"}. Notice
  2581. that \comm{Write} always destroys previous contents of the
  2582. file. Therefore we have another command
  2583. \command{Write to "\parm{file}";\\\tt%
  2584. Write > "\parm{file}";}
  2585. which redirects all output into the file. The standard output
  2586. can be restored by the commands\cmdind{End of Write}\cmdind{EndW}
  2587. \command{EndW;\\\tt%
  2588. End of Write;}
  2589. \enlargethispage{3mm}
  2590. By default \comm{Write} re-simplifies the expressions
  2591. before printing them. \swind{WRS}
  2592. \seethis{See page \pageref{subs} about substitutions.}
  2593. This is convenient when substitutions are activated
  2594. but slows down the printing especially for very large
  2595. expressions. The re-simplification can be abolished
  2596. by turning off switch \comm{WRS}.
  2597. If switch \comm{WMATR} is turned on then
  2598. \swind{WMATR}
  2599. \grg\ prints all 2-index scalar-valued objects in
  2600. the matrix form
  2601. \begin{slisting}
  2602. <- Coordinates t, x, y, z;
  2603. <- On wmatr;
  2604. <- Find and Write metric;
  2605. Assuming Default Metric.
  2606. Metric calculated By default. 0.06 sec
  2607. Metric:
  2608. [-1 0 0 0]
  2609. [ ]
  2610. [0 1 0 0]
  2611. [ ]
  2612. [0 0 1 0]
  2613. [ ]
  2614. [0 0 0 1]
  2615. \end{slisting}
  2616. \comm{Write} prints frame, spinor and enumerating indices as
  2617. numerical subscripts while holonomic indices are printed as
  2618. the coordinate identifiers. If frame is holonomic
  2619. and there is no difference between frame and coordinate indices then
  2620. by default all frame indices are also labelled by the
  2621. appropriate identifiers. But is switch \comm{HOLONOMIC} \swinda{HOLONOMIC}
  2622. is turned off they are still printed as numbers.
  2623. \subsection{\comm{Print} Command}
  2624. \cmdind{Print}
  2625. The \comm{Write} command described in the previous section
  2626. prints value of an object. This value must be
  2627. calculated beforehand by the \comm{Find} command
  2628. or established by the assignment.
  2629. The command \comm{Print} evaluates expression and
  2630. immediately prints its value. It has several forms
  2631. \command{%
  2632. \opt{Print} \parm{expr} \opt{For \parm{iter}};\\\tt
  2633. For \parm{iter} Print \parm{expr};}
  2634. Here \parm{expr} is expression to be evaluated and
  2635. \parm{iter} indicates that expression must be
  2636. evaluated for several value of some variable.
  2637. The specification \parm{iter} is completely the same as
  2638. is the \comm{Sum} expression and is described in details
  2639. in section \ref{iter} on page \pageref{iter}.
  2640. It consists of the list of parameters
  2641. separated by commas \comm{,} or relational operators
  2642. {\tt < > => =<}. For example the command
  2643. \begin{listing}
  2644. G(a,b) for a<b;
  2645. \end{listing}
  2646. prints off-diagonal components of the metric.
  2647. Both word \comm{Print} and \comm{For} parts
  2648. of the command can be omitted and it is possible just to
  2649. enter an expression
  2650. \command{\parm{expr};}
  2651. and it will be evaluated and printed.
  2652. The expression can contain indefinite identifiers
  2653. and by default \grg\ treats them similarly
  2654. to the variables in the \comm{For} part of the \comm{Print}
  2655. command. The range of such parameters are determined
  2656. by the short summation variable specification as explained
  2657. on page \pageref{siter}.
  2658. For example the following four commands are equivalent.
  2659. they all print the components of the holonomic metric $g_{\alpha\beta}$
  2660. \begin{listing}
  2661. Print g(a,b) for a,b;
  2662. For a,b Print g(a,b);
  2663. g(a,b) for a,b;
  2664. g(a,b);
  2665. \end{listing}
  2666. Here the parameters \comm{a}, \comm{b} run from 0 to $d-1$.
  2667. Unfortunately such treatment of unknown variables
  2668. may create some confusion since occasionally
  2669. misprinted identifier may be recognizes by \grg\ as an
  2670. iteration variable. If switch\swind{NOFREEVARS}
  2671. \comm{NOFREEVARS} is turned on then \grg\
  2672. becomes more scrupulous and any unknown variable
  2673. will cause the error.
  2674. \subsection{Controlling the Output}
  2675. There are several switches and commands which allow one to
  2676. change output form of expressions. One needs to
  2677. stress that all these facilities have no influence on the
  2678. \emph{internal form} of expressions, they alter the \emph{printout
  2679. only}.
  2680. \enlargethispage{2mm}
  2681. Switches {\tt ALLFAC} and command {\tt Factor}
  2682. control factoring of subexpressions. In the on default position
  2683. {\tt ALLFAC} makes the system search for a common factor
  2684. and print it outside the expression. The command\cmdind{Factor}
  2685. \command{Factor \rpt{\parm{expr}};}
  2686. makes the system collect together terms with
  2687. different powers of subexpressions \parm{expr}.
  2688. Command\cmdind{RemFac}
  2689. \command{RemFac \rpt{\parm{expr}};}
  2690. removes the action of the previous {\tt Factor} command.
  2691. \begin{slisting}
  2692. <- Constants a,b,c;
  2693. <- a*(a+b+1)\^2;
  2694. \newpage
  2695. 2 2
  2696. a*(a + 2*a*b + 2*a + b + 2*b + 1)
  2697. <- Off ALLFAC;
  2698. <- a*(a+b+1)\^2;
  2699. 3 2 2 2
  2700. a + 2*a *b + 2*a + a*b + 2*a*b + a
  2701. <- Factor b;
  2702. <- a*(a+b+1)\^2;
  2703. 2 2 3 2
  2704. b *a + b*(2*a + 2*a) + a + 2*a + a
  2705. <- On ALLFAC;
  2706. <- a*(a+b+1)\^2;
  2707. 2 2
  2708. b *a + 2*b*a*(a + 1) + a*(a + 2*a + 1)
  2709. \end{slisting}
  2710. Normally \reduce\ prints terms in some canonical order.
  2711. The switch {\tt REVPRI} prints terms in reverse order and
  2712. command\cmdind{Order}
  2713. \command{Order \rpt{\parm{expr}};}
  2714. specifies the required order of subexpressions explicitly.
  2715. \begin{slisting}
  2716. <- Constants a,b,c;
  2717. <- (a+b*c)\^3;
  2718. 3 2 2 2 3 3
  2719. a + 3*a *b*c + 3*a*b *c + b *c
  2720. <- On REVPRI;
  2721. <- (a+b*c)\^3;
  2722. 3 3 2 2 2 3
  2723. b *c + 3*a*b *c + 3*a *b*c + a
  2724. <- Order c,a,b;
  2725. <- (a+b*c)\^3;
  2726. 3 2 2 2 3 3
  2727. a + 3*c*a *b + 3*c *a*b + c *b
  2728. <- Off REVPRI;
  2729. <- (a+b*c)\^3;
  2730. 3 3 2 2 2 3
  2731. c *b + 3*c *a*b + 3*c*a *b + a
  2732. \end{slisting}
  2733. By default \reduce\ prints fractions in two-dimensional format
  2734. but turning off switch {\tt RATPRI} prevents this facility.
  2735. Switch {\tt DIV} in the on position makes the system divide
  2736. each term of the numerator by the denominator and to print
  2737. the denominator in the form of negative powers. Switch {\tt RAT}
  2738. works in combination with the {\tt Factor} command. In the
  2739. on position it makes the system divide each term collected by the
  2740. {\tt Factor} in the numerator by the denominator.
  2741. \begin{slisting}
  2742. <- Const a,b,c;
  2743. <- (a+b+1)\^2/a;
  2744. 2 2
  2745. a + 2*a*b + 2*a + b + 2*b + 1
  2746. ---------------------------------
  2747. a
  2748. <- Off RATPRI;
  2749. <- (a+b+1)\^2/a;
  2750. 2 2
  2751. (a + 2*a*b + 2*a + b + 2*b + 1)/a
  2752. <- On DIV;
  2753. <- (a+b+1)\^2/a;
  2754. -1 2 -1 -1
  2755. a + a *b + 2*a *b + a + 2*b + 2
  2756. <- Factor b;
  2757. <- (a+b+1)\^2/a;
  2758. 2 -1 -1 -1
  2759. b *a + 2*b*(a + 1) + a + a + 2
  2760. <- Off DIV;
  2761. <- (a+b+1)\^2/a;
  2762. 2 2
  2763. (b + 2*b*(a + 1) + a + 2*a + 1)/a
  2764. <- On RAT;
  2765. <- (a+b+1)\^2/a;
  2766. 2 2
  2767. b /a + 2*b*(a + 1)/a + (a + 2*a + 1)/a
  2768. <- On RATPRI;
  2769. <- (a+b+1)\^2/a;
  2770. 2 2
  2771. b a + 1 a + 2*a + 1
  2772. ---- + 2*b*------- + --------------
  2773. a a a
  2774. \end{slisting}
  2775. One needs to realize that output form transformations
  2776. may require a long time and memory expense. There is a
  2777. special switch {\tt PRI} which allows one to minimize this
  2778. expense. If {\tt PRI} is turned off then
  2779. the system will print all expressions exactly in their
  2780. internal form and output control does not work.
  2781. This is the fastest way to print result of calculations.
  2782. The command\cmdind{Line Length} \comm{Line Length \parm{n};}
  2783. sets the output line length to \parm{n}.
  2784. \subsection{\LaTeX\ and Graphics Output}
  2785. \index{LaTeX@\LaTeX\ output mode}\index{Graphics output mode}
  2786. Some versions of \reduce\ running under Windows,
  2787. OS/2 or X-windows are equipped with the graphic shells
  2788. which provide book-style output with Greek characters,
  2789. integral signs etc. \grg\ is compatible
  2790. with these systems.\swind{FANCY}
  2791. This graphic regime is activated by switch \comm{FANCY}.
  2792. Graphic output mode internally uses some subset
  2793. of the \LaTeX\ language.\swind{LATEX}
  2794. Switch \comm{LATEX} makes \grg\ to print the output in the
  2795. \LaTeX\ format. This output can be written into a file and
  2796. later directly inserted in a document.
  2797. Notice that turning off switch \comm{LATEX} returns
  2798. graphic output mode with switch \comm{FANCY} on while
  2799. turning off \comm{FANCY} automatically turns off
  2800. \comm{LATEX} as well and returns usual character output mode.
  2801. In graphic regime the derivatives are printed in
  2802. $\partial f/\partial x$ notation. \swind{DFINDEXED}
  2803. Switch \comm{DFINDEXED} makes the system to print
  2804. derivatives in the indexed notation $f_x$.
  2805. The following expressions is the scalar curvature of the
  2806. Bondi metric obtained by \grg\ and directly inserted in
  2807. this manual
  2808. \begin{eqnarray*}
  2809. R &= &
  2810. \bigl(4\,e^{2\,\beta\,+\,2\,\gamma}\,\cos(\theta)\,\frac{\partial\,U}{\partial\,r}\,r^2\,-\,8\,e^{4\,\beta}\,\cos(\theta)\,\frac{\partial\,\beta}{\partial\,\theta}\,-\,\\
  2811. &&4\,e^{2\,\beta\,+\,2\,\gamma}\,\cos(\theta)\,\frac{\partial\,\gamma}{\partial\,r}\,U\,r^2\,+\,12\,e^{4\,\beta}\,\cos(\theta)\,\frac{\partial\,\gamma}{\partial\,\theta}\,+\,\\
  2812. &&12\,e^{2\,\beta\,+\,2\,\gamma}\,\cos(\theta)\,U\,r\,+\,4\,e^{2\,\beta\,+\,2\,\gamma}\,\frac{\partial^2\,U}{\partial\,r\,\partial\,\theta}\,\sin(\theta)\,r^2\,+\,\\
  2813. &&e^{4\,\gamma}\,(\frac{\partial\,U}{\partial\,r})^2\,\sin(\theta)\,r^4\,+\,4\,e^{2\,\beta\,+\,2\,\gamma}\,\frac{\partial\,U}{\partial\,r}\,\frac{\partial\,\beta}{\partial\,\theta}\,\sin(\theta)\,r^2\,+\,\\
  2814. &&4\,e^{2\,\beta\,+\,2\,\gamma}\,\frac{\partial\,U}{\partial\,\theta}\,\frac{\partial\,\gamma}{\partial\,r}\,\sin(\theta)\,r^2\,+\,12\,e^{2\,\beta\,+\,2\,\gamma}\,\frac{\partial\,U}{\partial\,\theta}\,\sin(\theta)\,r\,-\,\\
  2815. &&4\,e^{2\,\beta\,+\,2\,\gamma}\,\frac{\partial^2\,V}{\partial\,r^2}\,\sin(\theta)\,r\,-\,8\,e^{2\,\beta\,+\,2\,\gamma}\,\frac{\partial\,V}{\partial\,r}\,\frac{\partial\,\beta}{\partial\,r}\,\sin(\theta)\,r\,-\,\\
  2816. &&8\,e^{2\,\beta\,+\,2\,\gamma}\,\frac{\partial\,V}{\partial\,r}\,\sin(\theta)\,+\,8\,e^{2\,\beta\,+\,2\,\gamma}\,\frac{\partial^2\,\beta}{\partial\,r\,\partial\,\theta}\,\sin(\theta)\,U\,r^2\,-\,\\
  2817. &&8\,e^{2\,\beta\,+\,2\,\gamma}\,\frac{\partial^2\,\beta}{\partial\,r^2}\,\sin(\theta)\,V\,r\,+\,8\,e^{2\,\beta\,+\,2\,\gamma}\,\frac{\partial\,\beta}{\partial\,r}\,\sin(\theta)\,V\,-\,\\
  2818. &&8\,e^{4\,\beta}\,\frac{\partial^2\,\beta}{\partial\,\theta^2}\,\sin(\theta)\,-\,12\,e^{4\,\beta}\,(\frac{\partial\,\beta}{\partial\,\theta})^2\,\sin(\theta)\,+\,16\,e^{4\,\beta}\,\frac{\partial\,\beta}{\partial\,\theta}\,\frac{\partial\,\gamma}{\partial\,\theta}\,\sin(\theta)\,-\,\\
  2819. &&8\,e^{2\,\beta\,+\,2\,\gamma}\,(\frac{\partial\,\gamma}{\partial\,r})^2\,\sin(\theta)\,V\,r\,+\,8\,e^{2\,\beta\,+\,2\,\gamma}\,\frac{\partial\,\gamma}{\partial\,r}\,\frac{\partial\,\gamma}{\partial\,\theta}\,\sin(\theta)\,U\,r^2\,+\,\\
  2820. &&4\,e^{4\,\beta}\,\frac{\partial^2\,\gamma}{\partial\,\theta^2}\,\sin(\theta)\,-\,8\,e^{4\,\beta}\,(\frac{\partial\,\gamma}{\partial\,\theta})^2\,\sin(\theta)\,+\,4\,e^{4\,\beta}\,\sin(\theta)\bigr)/\\
  2821. &&\bigl(2\,e^{4\,\beta\,+\,2\,\gamma}\,\sin(\theta)\,r^2\bigr)
  2822. \end{eqnarray*}
  2823. \subsection{Exporting Data Into Other Systems}
  2824. \index{Output modes}
  2825. Capabilities of major modern computer algebra systems are
  2826. approximately equivalent but not quite. One system is better
  2827. in doing one things and other is better for other
  2828. purposes. It may happen that tools which you need
  2829. are available only in one particular systems.
  2830. \grg\ provides quite unique facility to export the
  2831. data into other computer algebra systems.
  2832. Turning on one of the following switches
  2833. establishes the \emph{output mode} in which all expressions
  2834. are printed in the \emph{input} language of other CAS.
  2835. This output can be saved into a file
  2836. and later you can use this CAS to proceed you analysis
  2837. of the data. At present \grg\ supports five
  2838. output modes which are controlled by the switches
  2839. \swind{MACSYMA}\swind{MAPLE}\swind{MATH}\swind{REDUCE}\swind{GRG}
  2840. \begin{tabular}{ll}
  2841. \comm{MACSYMA} & for \macsyma \\
  2842. \comm{MAPLE} & for \maple \\
  2843. \comm{MATH} & for \mathematica \\
  2844. \comm{REDUCE} & for \reduce \\
  2845. \comm{GRG} & for \grg \\
  2846. \end{tabular}\newline
  2847. Notice the last switch allows one to print the data
  2848. in the form which can be later inserted into \grg\ task.
  2849. \section{Advanced Facilities}
  2850. \subsection{Solving Equations}
  2851. \cmdind{Solve}\label{solutions}
  2852. \grg\ provides simple interface to the \reduce\ algebraic
  2853. equation solver. The command
  2854. \command{Solve \rpt{\parm{l}=\parm{r}}~for~\rpt{\parm{expr}};}
  2855. resolves equations \comm{\parm{l}=\parm{r}} with respect
  2856. to expressions \parm{expr}. This command has also
  2857. other form
  2858. \command{Solve \parm{equation} for \rpt{\parm{expr}};}
  2859. where \parm{equation} is the name or identifier of
  2860. some built-in or user-defined equation.
  2861. Both form of the \comm{Solve} command works with
  2862. form and scalar valued equations as well but \parm{expr}
  2863. must be algebraic. The resulting solutions
  2864. are stored in the special object \comm{Solutions}
  2865. (identifier \comm{Sol}).
  2866. They can be printed by the command\cmdind{Write}\cmdindx{Write}{Solutions}
  2867. \command{Write Solutions;}
  2868. Left and right hand sides of \parm{n}'th solution can be used
  2869. in expression as \comm{LHS(Sol(\parm{n}))}
  2870. or \comm{RHS(Sol(\parm{n}))}. The expression \comm{Sol(\parm{n})}
  2871. referring to the \parm{n}'th solution can be used in the
  2872. \comm{SUB} and \comm{Let} substitutions as well:
  2873. \begin{slisting}
  2874. <- Coordinates t, x, y, z;
  2875. <- Solve x^2-2*x=5, y=9 for x, y;
  2876. <- Write Solutions;
  2877. Solutions:
  2878. Sol(0) : y = 9
  2879. Sol(1) : x = - SQRT(6) + 1
  2880. Sol(2) : y = 9
  2881. Sol(3) : x = SQRT(6) + 1
  2882. <- SUB(Sol(1),(x-1)^2);
  2883. 6
  2884. <- Let Sol(3);
  2885. <- (x-1)^2;
  2886. 6
  2887. \end{slisting}
  2888. Solutions can be cleared by the command
  2889. \cmdind{Erase}\cmdindx{Erase}{Solutions}
  2890. \command{Erase Solutions;}
  2891. One need to stress that \comm{Solve} is capable to solve algebraic
  2892. relations only.
  2893. Solving algebraic relations \reduce\ knows already that
  2894. the function \comm{ASIN} is inverse to \comm{SIN}.
  2895. The command\cmdind{Inverse}
  2896. \command{Inverse \parm{f1},\parm{f2};}
  2897. tells the system that functions \parm{f1} and \parm{f2}
  2898. are inverse to each other.
  2899. \subsection{Saving Data for Later Use}
  2900. \label{UnloadLoad}
  2901. It is very convenient to have facilities to save results of
  2902. calculations in a form fitted for restoring and further
  2903. manipulation. For this purpose \grg\ has two special commands:
  2904. {\tt Unload} and {\tt Load}.
  2905. The command\cmdind{Unload}\label{Unload}
  2906. \command{Unload \parm{object} > "\parm{file}";\\\tt
  2907. Unload \parm{object} To "\parm{file}";}
  2908. writes \parm{object} value into \comm{"\parm{file}"} in some
  2909. special format.
  2910. Here \parm{object} is name or identifier of an object.
  2911. The data can be later restored with help of the command\cmdind{Load}
  2912. \command{Load "\parm{file}";}
  2913. The command {\tt Unload} always overwrites previous \comm{"\parm{file}"}
  2914. contents. To save several objects in one file one must use
  2915. the following sequence of commands\cmdind{EndU}\cmdind{End of Unload}
  2916. \begin{listing}
  2917. Unload > "\parm{file}";
  2918. Unload \parm{object};
  2919. Unload \parm{object};
  2920. ...
  2921. Unload \parm{object};
  2922. End Of Unload;
  2923. \end{listing}
  2924. Here command \comm{Unload > "\parm{file}";} opens
  2925. \comm{"\parm{file}"} and {\tt End Of Unload;} closes it.
  2926. The last command has the short form
  2927. \command{EndU;}
  2928. In fact presented above sequence of commands can be
  2929. abbreviated as
  2930. \command{Unload \rpt{\parm{object}}~>~"\parm{file}";}
  2931. One needs to stress that only the commands {\tt Unload \dots;}
  2932. can be used between {\tt Unload > \dots} and
  2933. {\tt End Of Unload;}. If this rule does not hold then {\tt Load}
  2934. may fail to restore the file.
  2935. The only additional command which can be used among these
  2936. {\tt Unload \parm{object};} commands is the comment
  2937. {\tt \% \parm{text};}. This command insertes
  2938. the comment \parm{text} into the \comm{"\parm{file}"}.
  2939. Later when \comm{"\parm{file}"} will be restored by the
  2940. {\tt Load} the \parm{text} message will be printed.
  2941. This allows one to attach comments to unreadable files
  2942. produced by {\tt Unload} command.
  2943. As in other commands \parm{object} in \comm{Unload} command
  2944. is either the name or identifier of an object. Names {\tt Coordinates},
  2945. {\tt Constants} and {\tt Functions} can also be used to
  2946. save declarations. And finally, the command
  2947. \command{Unload All > "\parm{file}";}
  2948. saves all objects whose value is currently known
  2949. \seethis{See section \ref{amode} about anholonomic basis.}
  2950. and all declarations. Moreover, in the anholonomic basis mode this
  2951. command saves full information about an anholonomic basis.
  2952. When data or coordinates declarations are restored from a file
  2953. they replace current values. Function and constant declarations
  2954. are added to current declarations.
  2955. One should realize that serious troubles may appear when different
  2956. coordinates are used in the current session and in the restored file.
  2957. Even the order of coordinates is extremely important.
  2958. We strongly recommend saving all declarations (especially coordinates)
  2959. in addition to other objects. It ensures at least that will \grg\ print a
  2960. warning message if some contradictions are detected between
  2961. current declarations and declarations stored into a file.
  2962. The best way to avoid these troubles is to use the command
  2963. \command{Unload All > "\parm{file}";}
  2964. Loading the file saved by this command at the very beginning of
  2965. a new \grg\ task completely restores the previous \grg\ state
  2966. with all data and declarations.
  2967. Sometimes one needs to prevent the {\tt Load}/{\tt Unload} operations
  2968. with coordinates.\swind{UNLCORD}
  2969. If switch {\tt UNLCORD} is turned off (normally on)
  2970. then all {\tt Load} and {\tt Unload} operations
  2971. with coordinates are blocked.
  2972. Since {\tt Unload} writes data in human-unreadable form there
  2973. is the command\cmdind{Show File}\cmdind{File}\cmdind{Show {"\parm{file}"}}
  2974. \command{Show \opt{File} "\parm{file}";}
  2975. or equivalently
  2976. \command{?~\opt{File}~"\parm{file}";\\\tt
  2977. File "\parm{file}";}
  2978. which prints short information about objects and declarations
  2979. contained in the \comm{"\parm{file}"}.
  2980. It also prints comments contained in the file.
  2981. \subsection{Coordinate Transformations}
  2982. \index{Coordinate transformations}
  2983. Command\cmdind{New Coordinates}
  2984. \command{New Coordinates \rpt{\parm{new}} with \rpt{\parm{old}=\parm{expr}};}
  2985. introduces new coordinates \parm{new} and
  2986. defines how old coordinates \parm{old} are expressed in terms
  2987. of new ones. If the specified transformation is nonsingular
  2988. \grg\ converts all existing objects to the new coordinate system.
  2989. The {\tt New Coordinates} command properly transforms all
  2990. objects having coordinate indices. The transformation
  2991. of frame indices depend on the switch \comm{HOLONOMIC}. \swind{HOLONOMIC}
  2992. In general case when frame is not holonomic then objects
  2993. having frame indices remain unchanged and only their components
  2994. are transformed into the new coordinate system. But if frame
  2995. is holonomic then by default all frame indices are transformed
  2996. similarly to the coordinate ones. Notice that in such situation
  2997. the frame after transformation once again will be holonomic
  2998. in the new coordinate system.
  2999. But if switch \comm{HOLONOMIC} is turned off the system
  3000. distinguishes frame and coordinate indices in spite of the current
  3001. frame type. In such situation the holonomic frame
  3002. ceases to be holonomic after coordinate transformation.
  3003. \subsection{Frame Transformations}
  3004. \index{Frame transformations}
  3005. Spinorial rotations are performed by
  3006. the command\cmdind{Make Spinorial Rotation}\cmdind{Spinorial Rotation}
  3007. \command{\opt{Make} Spinorial Rotation \opt{
  3008. ((\parm{expr}${}_{00}$,\parm{expr}${}_{01}$),
  3009. (\parm{expr}${}_{10}$,\parm{expr}${}_{11}$))};}
  3010. where expressions $\mbox{\parm{expr}}_{AB}$ comprise the SL(2,C)
  3011. transformation matrix
  3012. \[
  3013. \phi'_A=L_A{}^B\phi_B,\ \
  3014. \mbox{\parm{expr}}_{AB}=L_A{}^B
  3015. \]
  3016. If the specified matrix is really a SL(2,C) one then \grg\
  3017. performs appropriate transformation on all objects whose
  3018. value is currently known.
  3019. Matrix specification in the command can be omitted
  3020. \command{\opt{Make} Spinorial Rotation;}
  3021. In this case the SL(2,C) matrix $L_A{}^B$ must be specified as
  3022. the value of a special object {\tt Spinorial Transformation LS.A'B}
  3023. (identifier {\tt LS}).
  3024. Command for frame rotation is analogously\cmdind{Make Rotation}\cmdind{Rotation}
  3025. \command{\opt{Make} Rotation \opt{
  3026. ((\parm{expr}${}_{00}$,\parm{expr}${}_{01}$,...),
  3027. (\parm{expr}${}_{10}$,\parm{expr}${}_{11}$,...),...)};}
  3028. with the nonsingular $d\times d$ rotation matrix
  3029. \[
  3030. A'^a=L^a{}_bA^b,\ \ \mbox{\parm{expr}}_{ab}=L^a{}_b
  3031. \]
  3032. \grg\ verifies that this matrix is a valid \emph{rotation}
  3033. by checking that frame metric $g_{ab}$ \emph{remains unchanged}
  3034. under this transformation
  3035. \[
  3036. g'_{ab} = L^m{}_a L^n{}_b g_{mn} = g_{ab}
  3037. \]
  3038. Once again the matrix specification
  3039. can be omitted and transformation $L^a{}_b$ can be specified as the value
  3040. of the object {\tt Frame Transformation L'a.b} (identifier {\tt L})
  3041. \command{\opt{Make} Rotation;}
  3042. Frame rotation commands correctly transform frame and
  3043. spinor connection 1-forms.
  3044. Finally, there is a special form of the frame
  3045. transformation command\cmdind{Change Metric}
  3046. \command{Change Metric \opt{
  3047. ((\parm{expr}${}_{00}$,\parm{expr}${}_{01}$,...),
  3048. (\parm{expr}${}_{10}$,\parm{expr}${}_{11}$,...),...)};}
  3049. The only difference between this command and {\tt Make Rotation}
  3050. is that {\tt Change Metric} does not impose
  3051. any restriction on the transformation matrix and
  3052. transformed metric does not necessary coincides
  3053. with the original one.
  3054. Sometimes it is convenient to keep some object unchanged
  3055. under the frame transformation. The command\cmdind{Hold}
  3056. \command{Hold \parm{object};}
  3057. makes the system to keep the \parm{object} unchanged
  3058. during frame and spinor transformations. The command\cmdind{Release}
  3059. \command{Release \parm{object};}
  3060. discards the action of the \comm{Hold} command.
  3061. \subsection{Algebraic Classification}
  3062. \index{Algebraic classification}
  3063. The command\cmdind{Classify}
  3064. \command{Classify \parm{object};}
  3065. performs algebraic classification of the \parm{object}
  3066. specified by its name or identifier.
  3067. Currently \grg\ knows algorithms for classifying
  3068. the following irreducible spinors
  3069. \begin{tabular}{ll}
  3070. $X_{ABCD}$ & Weyl spinor type \\
  3071. $X_{AB\dot{C}\dot{D}}$ & Traceless Ricci spinor type \\
  3072. $X_{AB}$ & Electromagnetic stress spinor type \\
  3073. $X_{A\dot{B}}$ & Vector in the spinorial representation
  3074. \end{tabular} \newline
  3075. \reversemarginpar
  3076. The {\tt Classify} command can be applied to any built-in or
  3077. user-defined object having one of the listed above
  3078. \seethis{See page \pageref{sumspin} about summed spinor indices.}
  3079. types of indices. Notice that all spinors must be irreducible
  3080. (totally symmetric in dotted and undotted indices)
  3081. and $X_{AB\dot{C}\dot{D}}$, $X_{A\dot{B}}$ must be Hermitian.
  3082. Groups of the irreducible indices must be represented
  3083. as a single summed index.
  3084. \normalmarginpar
  3085. \grg\ uses the algorithm by F.~W.~Letniowski and R.~G.~McLenaghan
  3086. [Gen. Rel. Grav. 20 (1988) 463-483] for Petrov-Penrose
  3087. classification of Weyl spinor $X_{ABCD}$. The obvious
  3088. simplification of this algorithm is applied to
  3089. the spinor analog of electromagnetic strength tensor $X_{AB}$.
  3090. The spinor $X_{AB\dot{C}\dot{D}}$ is classified by the algorithm
  3091. by G.~C.~Joly, M.~A.~H.~McCallum and W.~Seixas
  3092. [Class. Quantum Grav. 7 (1990) 541-556,
  3093. Class. Quantum Grav. 8 (1991) 1577-1585].
  3094. The classification process is accompanied by the
  3095. tracing messages which can be eliminated by turning \swinda{TRACE}
  3096. off the switch \comm{TRACE}.
  3097. On the contrary if one turns on \swind{SHOWEXPR}
  3098. the switch \comm{SHOWEXPR} then \grg\ prints
  3099. all expressions which appear during the classification
  3100. to let you check whether the decision about
  3101. nonvanishing of these expressions is really correct or not.
  3102. This facility is important also in classifying
  3103. $X_{AB\dot{C}\dot{D}}$ and $X_{A\dot{B}}$
  3104. since algebraic type for this objects may depend on
  3105. the \emph{sign} of some expressions which
  3106. cannot be determined by \grg\ correctly.
  3107. \subsection{\reduce\ Packages and Functions in \grg}
  3108. \index{Using \reduce\ packages}
  3109. \label{packages}
  3110. Any procedure or function defined
  3111. in \reduce\ package can be used in \grg.
  3112. The package must be loaded either before
  3113. \grg\ is started or during \grg\ session by one of the
  3114. equivalent commands
  3115. \cmdind{Package}\cmdind{Use Package}\cmdind{Load}
  3116. \command{\opt{Use} Package \parm{package};\\\tt
  3117. Load \parm{package};}
  3118. where \parm{package} is the package name. Notice that an
  3119. identifier must be used for the package name unlike
  3120. the \comm{Load "\parm{file}";} command described in \enlargethispage{5mm}
  3121. section \ref{UnloadLoad}. Let us consider some examples.
  3122. The \reduce\ package \file{specfn} contains
  3123. definitions of various special functions and
  3124. below we demonstrate 11th Legendre polynomial
  3125. \begin{slisting}
  3126. <- Coordinates t, x, y, z;
  3127. <- package specfn;
  3128. <- LEGENDREP(11,x);
  3129. 10 8 6 4 2
  3130. x*(88179*x - 230945*x + 218790*x - 90090*x + 15015*x - 693)
  3131. -------------------------------------------------------------------
  3132. 256
  3133. \end{slisting}
  3134. \newpage
  3135. Another example demonstrates the \file{taylor} package
  3136. \begin{slisting}
  3137. <- Coordinates t, x, y, z;
  3138. <- www=d(E^(x+y)*SIN(x));
  3139. <- www;
  3140. x + y x + y
  3141. (E *(COS(x) + SIN(x))) d x + (E *SIN(x)) d y
  3142. <- load taylor;
  3143. <- TAYLOR(www,x,0,5);
  3144. y y
  3145. y y y 2 E 4 E 5 6 y y 2
  3146. (E + 2*E *x + E *x - ----*x - ----*x + O(x )) d x + (E *x + E *x
  3147. 6 15
  3148. y y
  3149. E 3 E 5 6
  3150. + ----*x - ----*x + O(x )) d y
  3151. 3 30
  3152. \end{slisting}
  3153. You can also define your own operators and procedures
  3154. in \reduce\ and later use them in \grg.
  3155. In the following example file \file{lasym.red} contains
  3156. a definition of little \reduce\ procedure
  3157. which computes a leading term of asymptotic expansion
  3158. of the rational function at large values of some
  3159. variable. This file is inputted in \reduce\ before
  3160. \grg\ is started
  3161. \begin{slisting}
  3162. 1: in "lasym.red";
  3163. procedure leadingterm(w,x);
  3164. lterm(num(w),x)/lterm(den(w),x);
  3165. leadingterm
  3166. end;
  3167. 2: load grg;
  3168. This is GRG 3.2 release 2 (Feb 9, 1997) ...
  3169. System directory: c:{\bs}red35{\bs}grg32{\bs}
  3170. System variables are upper-cased: E I PI SIN ...
  3171. Dimension is 4 with Signature (-,+,+,+)
  3172. <- Coordinates t, r, theta, phi;
  3173. <- OMEGA01=(123*r^3+2*r+t)/(r+t)^5*d theta{\w}d phi;
  3174. <- OMEGA01;
  3175. 3
  3176. 123*r + 2*r + t
  3177. (-------------------------------------------------) d theta \w d phi
  3178. 5 4 3 2 2 3 4 5
  3179. r + 5*r *t + 10*r *t + 10*r *t + 5*r*t + t
  3180. <- LEADINGTERM(OMEGA01,r);
  3181. 123
  3182. (-----) d theta \w d phi
  3183. 2
  3184. r
  3185. \end{slisting}
  3186. \subsection{Anholonomic Basis Mode}
  3187. \index{Anholonomic basis mode}\index{Basis}\label{amode}
  3188. \grg\ may work in both holonomic and anholonomic basis modes.
  3189. In the first default case, values of all expressions are
  3190. represented in a natural holonomic (coordinate) basis:
  3191. $d x^\mu,~d x^\mu\wedge x^\nu\dots$ for exterior
  3192. forms and $\partial_\mu=\partial/\partial x^\mu$
  3193. for vectors. In the second case an
  3194. arbitrary basis $b^i=b^i_\mu d x^\mu$ is used for
  3195. forms and inverse vector basis $e_i=e_i^\mu\partial_\mu$ for vectors
  3196. ($b^i_\mu e^\mu_j=\delta^i_j$). You can specify this basis
  3197. assigning a value to built-in object
  3198. {\tt Basis} (identifier {\tt b}). If {\tt Basis} is not
  3199. specified by user then \grg\ assumes that it coincides
  3200. with the frame $b^i=\theta^i$.
  3201. Frame should not be confused with basis. Frame $\theta^a$ is used
  3202. only for ``external'' purposes to represent tensor indices
  3203. while basis $b^i$ and vector basis $e_i$ is used for ``internal''
  3204. purposes to represent form and vector valued object components.
  3205. The command\cmdind{Anholonomic}
  3206. \command{Anholonomic;}
  3207. switches the system to the anholonomic basis mode and
  3208. the command\cmdind{Holonomic}
  3209. \command{Holonomic;}
  3210. switches it back to the standard holonomic mode.
  3211. Working in anholonomic mode \grg\ creates some internal tables
  3212. for efficient calculation of exterior differentiation and
  3213. complex conjugation. In anholonomic mode the command
  3214. \cmdind{Unload}
  3215. \begin{listing}
  3216. Unload All > "\parm{file}";
  3217. \end{listing}
  3218. automatically saves these tables into the \comm{"\parm{file}"}.
  3219. Subsequent\cmdind{Load}
  3220. \begin{listing}
  3221. Load "\parm{file}";
  3222. \end{listing}
  3223. restores the tables and automatically switches the current mode to
  3224. anholonomic one. Note that automatic anholonomic mode
  3225. saving/restoring works only if {\tt All} is used in
  3226. {\tt Unload} command.
  3227. One can find out the current mode with the help of the command
  3228. \cmdind{Show Status}\cmdind{Status}
  3229. \command{\opt{Show} Status;}
  3230. \subsection{Synonymy}
  3231. \index{Synonymy}
  3232. Sometimes \grg\ commands may be rather long. For
  3233. instance, in order to find the curvature 2-form $\Omega_{ab}$
  3234. from the spinorial curvature $\Omega_{AB}$ and $\Omega_{\dot{A}\dot{B}}$
  3235. the following command should be used
  3236. \begin{listing}
  3237. Find Curvature From Spinorial Curvature;
  3238. \end{listing}
  3239. Certainly, this command is clear but typing of such long
  3240. phrases may be very dull. \grg\ has synonymy mechanism
  3241. which allows one to make input much shorter.
  3242. The synonymous words in commands and object names
  3243. are considered to be equivalent. The complete list
  3244. of predefined \grg\ synonymy is given in appendix D.
  3245. Here we present just the most important ones
  3246. \begin{verbatim}
  3247. Connection Con
  3248. Constants Const Constant
  3249. Coordinates Cord
  3250. Curvature Cur
  3251. Dotted Do
  3252. Equation Equations Eq
  3253. Find F Calculate Calc
  3254. Functions Fun Function
  3255. Next N
  3256. Show ?
  3257. Spinor Spin Spinorial Sp
  3258. Switch Sw
  3259. Symmetries Sym Symmetric
  3260. Undotted Un
  3261. Write W
  3262. \end{verbatim}
  3263. Words in each line are considered as equivalent
  3264. in all commands. Thus the above command can be abbreviated as
  3265. \begin{listing}
  3266. F cur from sp cur;
  3267. \end{listing}
  3268. Section \ref{tuning} explains how to change built-in synonymy
  3269. and how to define a new one.
  3270. \subsection{Compound Commands}
  3271. \index{Compound commands}
  3272. Sometime one may need to perform several consecutive actions
  3273. with one object. In this case we can use so called
  3274. \emph{compound commands} to shorten the input.
  3275. Internally \grg\ replaces each compound command by several usual
  3276. ones. For example the compound command
  3277. \begin{listing}
  3278. Find and Write Einstein Equation;
  3279. \end{listing}
  3280. to a pair of usual ones
  3281. \begin{listing}
  3282. Find Einstein Equation;
  3283. Write Einstein Equation;
  3284. \end{listing}
  3285. Actions (commands) can be attached to the end of the
  3286. compound command as well:
  3287. \begin{listing}
  3288. Find, Write Curvature and Erase It;
  3289. \qquad\qquad \udr
  3290. Find \& Write \& Erase Curvature;
  3291. \qquad\qquad \udr
  3292. Find Curvature;
  3293. Write Curvature;
  3294. Erase Curvature;
  3295. \end{listing}
  3296. Note that we have used {\tt ,} and {\tt \&} instead of {\tt and}
  3297. in this example. All these separators are equivalent in compound
  3298. commands.
  3299. Now let us consider the case when one needs to perform a single action
  3300. with several objects. The command
  3301. \begin{listing}
  3302. Write Frame, Vector Frame and Metric;
  3303. \end{listing}
  3304. is equivalent to
  3305. \begin{listing}
  3306. Write Frame;
  3307. Write Vector Frame;
  3308. Write Metric;
  3309. \end{listing}
  3310. Way specification can be attached to the {\tt Find} command:
  3311. \begin{listing}
  3312. Find QT, QP From Torsion using spinors;
  3313. \qquad\qquad \udr
  3314. Find QT From Torsion using spinors;
  3315. Find QP From Torsion using spinors;
  3316. \end{listing}
  3317. One can combine several actions and several objects.
  3318. For example, the command
  3319. \begin{listing}
  3320. Find omega, Curvature by Standard Way and Write and Erase Them;
  3321. \end{listing}
  3322. is equivalent to the sequence of
  3323. $(2{\rm\ objects})\times(3{\rm\ commands}) =6$
  3324. commands
  3325. \begin{listing}
  3326. Find omega by Standard Way;
  3327. Find Curvature by Standard Way;
  3328. Write omega;
  3329. Write Curvature;
  3330. Erase omega;
  3331. Erase Curvature;
  3332. \end{listing}
  3333. Note that the way specification is attached only to ``left''
  3334. commands ({\tt Find} in our case).
  3335. The compound commands mechanism works only with
  3336. {\tt Find}, {\tt Erase}, {\tt Write} and {\tt Evaluate} commands.
  3337. And finally, \grg\ always replaces {\tt Re-\parm{command};} by
  3338. {\tt Erase and \parm{command};}. For example
  3339. \begin{listing}
  3340. Re-Calculate Maxwell Equations;
  3341. \qquad\qquad \udr
  3342. Erase and Calculate Maxwell Equations;
  3343. \end{listing}
  3344. You can see how \grg\ expand compound commands into the
  3345. \swind{SHOWCOMMANDS}
  3346. usual ones by turning switch \comm{SHOWCOMMANDS} on.
  3347. \section{Tuning \grg}
  3348. \label{tuning}
  3349. \grg\ can be tuned according to your needs and preferences.
  3350. The configuration files allow one to change some default settings
  3351. and the environment variable \comm{grg} defines the system
  3352. directory which can be used as the depository for
  3353. frequently used files.
  3354. \subsection{Configuration Files}
  3355. \label{configsect}
  3356. The configuration files allows one to establish
  3357. \begin{list}{$\bullet$}{\labelwidth=8mm\leftmargin=10mm}
  3358. \item Default dimension and signature.
  3359. \item Initial position of switches.
  3360. \item \reduce\ packages which must be preloaded.
  3361. \item Synonymy.
  3362. \item Default \grg\ start up method.
  3363. \end{list}
  3364. There are two configuration files. First \emph{global}
  3365. configuration file \file{grgcfg.sl} defines the settings
  3366. \index{Global configuration file}
  3367. during system installation when \grg\ is compiled.
  3368. These global settings become permanent and can be changed only
  3369. if \grg\ is recompiled. The \emph{local}
  3370. configuration file \file{grg.cfg} allows one to override
  3371. global settings locally.
  3372. \index{Local configuration file}
  3373. When \grg\ starts it search the file \file{grg.cfg}
  3374. in current directory (folder) and if it is present
  3375. uses the corresponding settings.
  3376. Below we are going to explain how to change settings in
  3377. both global and local configuration files but before
  3378. doing this we must emphasize that this need some care.
  3379. First, the configuration files use LISP command format
  3380. which differs from usual \grg\ commands.
  3381. Second, is something is wrong with configuration file
  3382. then no clear diagnostic is provided.
  3383. Finally, if global configuration is damaged you will
  3384. not be able to compile \grg. The best strategy is to
  3385. make a back-up copy of the configuration files before start
  3386. editing them.
  3387. Notice that lines preceded by the percent sign
  3388. \comm{\%} are ignored by the system (comments).
  3389. Both local \file{grg.cfg} and global \file{grgcfg.sl}
  3390. configuration files have similar structure and can include
  3391. the following commands.
  3392. Command\index{Signature!default}\index{Dimension!default}
  3393. \begin{listing}
  3394. (signature!> - + + + +)
  3395. \end{listing}
  3396. establishes default dimension 5 with the signature
  3397. $\scriptstyle(-,+,+,+,+)$. Do not forget \comm{!} and spaces between
  3398. \comm{+} and \comm{-}. This command \emph{must be present}
  3399. in the global configuration file \file{grgcfg.sl}
  3400. otherwise \grg\ cannot be compiled.
  3401. The commands
  3402. \begin{listing}
  3403. (on!> page)
  3404. (off!> allfac)
  3405. \end{listing}
  3406. change default switch position. In this example we
  3407. turn on the switch \comm{PAGE} (this switch is defined
  3408. in DOS \reduce\ only and allows one to scroll back and forth
  3409. through input and output) and turn off switch
  3410. \comm{ALLFAC}.
  3411. The command
  3412. \begin{listing}
  3413. (package!> taylor)
  3414. \end{listing}
  3415. makes the system to load \reduce\ package \file{taylor}
  3416. during \grg\ start.
  3417. The command of the form\index{Synonymy}
  3418. \begin{listing}
  3419. (synonymous!>
  3420. ( affine aff )
  3421. ( antisymmetric asy )
  3422. ( components comp )
  3423. ( unload save )
  3424. )
  3425. \end{listing}
  3426. defines synonymous words. The words in each line will be
  3427. equivalent in all \grg\ commands.
  3428. Finally the command
  3429. \begin{listing}
  3430. (setq ![autostart!] nil)
  3431. \end{listing}
  3432. alters default \grg\ start up method. It makes sense only
  3433. in the global configuration file \file{grgcfg.sl}.
  3434. By default \grg\ is launched by single command
  3435. \begin{listing}
  3436. load grg;
  3437. \end{listing}
  3438. which firstly load the program into memory and then
  3439. automatically starts it. Unfortunately on some systems
  3440. this short method does not work properly: \grg\ shows wrong
  3441. timing during computations, the \comm{quit;} command returns
  3442. the control to \reduce\ session instead of terminating the
  3443. whole program. If the aforementioned option is activated then
  3444. \grg\ must be launched by two commands
  3445. \begin{listing}
  3446. load grg;
  3447. grg;
  3448. \end{listing}
  3449. which fixes the problems. Here first command just loads the program
  3450. into memory and second one starts it manually. Notice that
  3451. one can always use commands
  3452. \begin{listing}
  3453. load grg32;
  3454. grg;
  3455. \end{listing}
  3456. to start \grg\ manually. Command \comm{load grg32;} always
  3457. loads \grg\ into memory without starting it independently
  3458. on the option under consideration.
  3459. \subsection{System Directory}
  3460. \index{System directory}
  3461. The environment variable \comm{grg} or \comm{GRG}
  3462. defines so called \grg\ system directory (folder).
  3463. The way of setting this variable is operating system
  3464. dependent. For example the following commands
  3465. can be used to set \comm{grg} variable in DOS, UNIX and
  3466. VAX/VMS respectively:
  3467. \begin{listing}
  3468. set grg=d:{\bs}xxx{\bs}yyy{\bs} {\rm DOS}
  3469. setenv grg /xxx/yyy/ {\rm UNIX}
  3470. define grg SYS$USER:[xxx.yyy] {\rm VAX/VMS}
  3471. \end{listing}
  3472. The value of the variable \comm{grg} must point
  3473. out to some directory.
  3474. In DOS and UNIX the directory
  3475. name must include trailing \comm{\bs} or \comm{/}
  3476. respectively. The command\cmdind{Show Status}\cmdind{Status}
  3477. \command{\opt{Show} Status;}
  3478. prints current system directory.
  3479. When \grg\ tries to input some batch file containing
  3480. \grg\ commands it first searches it in the current working
  3481. directory and if the file is absent then it tries
  3482. to find it in the system directory. Therefore if you have
  3483. some frequently used files you can define the system directory
  3484. and move these files there. In this case it is not necessary
  3485. to keep them in each working directory. Notice \grg\ uses
  3486. the same strategy when opening local configuration file
  3487. \file{grg.cfg}. Thus if system directory is defined and it
  3488. contains the file \file{grg.cfg} the settings contained in
  3489. this file effectively overrides global settings without
  3490. recompiling \grg.
  3491. \section{Examples}
  3492. In this section we want to demonstrate how \grg\ can be applied
  3493. to solve simple but realistic problem.
  3494. We want to calculate the Ricci tensor for the Robertson-Walker
  3495. metric by three different methods.
  3496. First \grg\ task (program)
  3497. \begin{listing}
  3498. Coordinates t,r,theta,phi;
  3499. Function a(t);
  3500. Frame T0=d t, T1=a*d r, T2=a*r*d theta, T3=a*r*SIN(theta)*d phi;
  3501. ds2;
  3502. Find and Write Ricci Tensor;
  3503. RIC(\_j,\_k);
  3504. \end{listing}
  3505. defines the Robertson-Walker metric using the tetrad
  3506. formalism with the orthonormal Lorentzian tetrad $\theta^a$.
  3507. Using built-in formulas for the Ricci tensor the only one command
  3508. is required to accomplish out goal
  3509. {\tt Find and Write Ricci Tensor;}. The command {\tt ds2;}
  3510. just shows the metric we are dealing with. Notice that
  3511. command {\tt Find ...} gives the \emph{tetrad} components of the Ricci
  3512. tensor $R_{ab}$. Thus, in addition we print coordinate
  3513. components of the tensor $R_{\mu\nu}$ by the command
  3514. {\tt RIC(\_j,\_k);}. The hard-copy of the corresponding
  3515. \grg\ session is presented below \enlargethispage{4mm}
  3516. \begin{slisting}
  3517. <- Coordinates t, r, theta, phi;
  3518. <- Function a(t);
  3519. <- Frame T0=d t, T1=a*d r, T2=a*r*d theta, T3=a*r*SIN(theta)*d phi;
  3520. <- ds2;
  3521. Assuming Default Metric.
  3522. Metric calculated By default. 0.16 sec
  3523. 2 2 2 2 2 2 2 2 2 2 2
  3524. ds = - d t + (a ) d r + (a *r ) d theta + (SIN(theta) *a *r ) d phi
  3525. <- Find and Write Ricci Tensor;
  3526. Sqrt det of metric calculated. 0.21 sec
  3527. Volume calculated. 0.21 sec
  3528. Vector frame calculated From frame. 0.21 sec
  3529. Inverse metric calculated From metric. 0.21 sec
  3530. Frame connection calculated. 0.38 sec
  3531. Curvature calculated. 0.49 sec
  3532. Ricci tensor calculated From curvature. 0.54 sec
  3533. Ricci tensor:
  3534. - 3*DF(a,t,2)
  3535. RIC = ----------------
  3536. 00 a
  3537. \newpage
  3538. 2
  3539. DF(a,t,2)*a + 2*DF(a,t)
  3540. RIC = --------------------------
  3541. 11 2
  3542. a
  3543. 2
  3544. DF(a,t,2)*a + 2*DF(a,t)
  3545. RIC = --------------------------
  3546. 22 2
  3547. a
  3548. 2
  3549. DF(a,t,2)*a + 2*DF(a,t)
  3550. RIC = --------------------------
  3551. 33 2
  3552. a
  3553. <- RIC(_j,_k);
  3554. - 3*DF(a,t,2)
  3555. j=0 k=0 : ----------------
  3556. a
  3557. 2
  3558. j=1 k=1 : DF(a,t,2)*a + 2*DF(a,t)
  3559. 2 2
  3560. j=2 k=2 : r *(DF(a,t,2)*a + 2*DF(a,t) )
  3561. 2 2 2
  3562. j=3 k=3 : SIN(theta) *r *(DF(a,t,2)*a + 2*DF(a,t) )
  3563. \end{slisting}
  3564. Tracing messages demonstrate that \grg\ automatically
  3565. applied several built-in equations to obtain required value of
  3566. $R_{ab}$. The metric is automatically assumed to be
  3567. Lorentzian $g_{ab}={\rm diag}(-1,1,1,1)$.
  3568. First \grg\ computed the frame connection 1-form $\omega^a{}_b$.
  3569. Next the curvature 2-form $\Omega^a{}_b$ was computed using
  3570. standard equation (\ref{omes}) on page \pageref{omes}.
  3571. Finally the Ricci tensor was obtained using
  3572. relation (\ref{rics}) on page \pageref{rics}.
  3573. Second \grg\ task is similar to the first one:
  3574. \begin{listing}
  3575. Coordinates t,r,theta,phi;
  3576. Function a(t);
  3577. Metric G00=-1, G11=a^2, G22=(a*r)^2, G33=(a*r*SIN(theta))^2;
  3578. ds2;
  3579. Find and Write Ricci Tensor;
  3580. \end{listing}
  3581. The only difference is that now we work in the coordinate
  3582. formalism by assigning value to the metric rather than
  3583. frame. The frame is assumed to be holonomic automatically.
  3584. \begin{slisting}
  3585. <- Coordinates t, r, theta, phi;
  3586. <- Function a(t);
  3587. <- Metric G00=-1, G11=a^2, G22=(a*r)^2, G33=(a*r*SIN(theta))^2;
  3588. <- ds2;
  3589. Assuming Default Holonomic Frame.
  3590. Frame calculated By default. 0.11 sec
  3591. 2 2 2 2 2 2 2 2 2 2 2
  3592. ds = - d t + (a ) d r + (a *r ) d theta + (SIN(theta) *a *r ) d phi
  3593. <- Find and Write Ricci Tensor;
  3594. Sqrt det of metric calculated. 0.22 sec
  3595. Volume calculated. 0.22 sec
  3596. Vector frame calculated From frame. 0.22 sec
  3597. Inverse metric calculated From metric. 0.27 sec
  3598. Frame connection calculated. 0.33 sec
  3599. Curvature calculated. 0.60 sec
  3600. Ricci tensor calculated From curvature. 0.60 sec
  3601. Ricci tensor:
  3602. - 3*DF(a,t,2)
  3603. RIC = ----------------
  3604. t t a
  3605. 2
  3606. RIC = DF(a,t,2)*a + 2*DF(a,t)
  3607. r r
  3608. 2 2
  3609. RIC = r *(DF(a,t,2)*a + 2*DF(a,t) )
  3610. theta theta
  3611. 2 2 2
  3612. RIC = SIN(theta) *r *(DF(a,t,2)*a + 2*DF(a,t) )
  3613. phi phi
  3614. \end{slisting}
  3615. Once again \grg\ uses the same built-in formulas to compute
  3616. the Ricci tensor but now all quantities have holonomic
  3617. indices instead of tetrad ones.
  3618. Finally the third task demonstrate how \grg\ can be used
  3619. without built-in equations. Once again we use coordinate
  3620. formalism and declare two new objects the Christoffel symbols
  3621. \comm{Chr} and Ricci tensor \comm{Ric}
  3622. (since \grg\ is case sensitive they are different from the built-in
  3623. objects \comm{CHR} and \comm{RIC}). Next we use
  3624. well-known equations to compute these quantities
  3625. \begin{listing}
  3626. Coordinates t,r,theta,phi;
  3627. Function a(t);
  3628. Metric G00=-1, G11=a^2, G22=(a*r)^2, G33=(a*r*SIN(theta))^2;
  3629. ds2;
  3630. New Chr^a_b_c with s(2,3);
  3631. Chr(j,k,l)= 1/2*GI(j,m)*(@x(k)|G(l,m)+@x(l)|G(k,m)-@x(m)|G(k,l));
  3632. New Ric_a_b with s(1,2);
  3633. Ric(j,k) = @x(n)|Chr(n,j,k) - @x(k)|Chr(n,j,n)
  3634. + Chr(n,m,n)*Chr(m,j,k) - Chr(n,m,k)*Chr(m,n,j);
  3635. Write Ric;
  3636. \end{listing}
  3637. The hard-copy of the corresponding session is
  3638. \begin{slisting}
  3639. <- Coordinates t, r, theta, phi;
  3640. <- Function a(t);
  3641. <- Metric G00=-1, G11=a^2, G22=(a*r)^2, G33=(a*r*SIN(theta))^2;
  3642. <- ds2;
  3643. Assuming Default Holonomic Frame.
  3644. Frame calculated By default. 0.16 sec
  3645. 2 2 2 2 2 2 2 2 2 2 2
  3646. ds = - d t + (a ) d r + (a *r ) d theta + (SIN(theta) *a *r ) d phi
  3647. <- New Chr^a_b_c with s(2,3);
  3648. <- Chr(j,k,l)=1/2*GI(j,m)*(@x(k)|G(l,m)+@x(l)|G(k,m)-@x(m)|G(k,l));
  3649. Inverse metric calculated From metric. 0.27 sec
  3650. <- New Ric_a_b with s(1,2);
  3651. <- Ric(j,k)=@x(n)|Chr(n,j,k)-@x(k)|Chr(n,j,n)+Chr(n,m,n)*Chr(m,j,k)
  3652. -Chr(n,m,k)*Chr(m,n,j);
  3653. <- Write Ric;
  3654. The Ric:
  3655. - 3*DF(a,t,2)
  3656. Ric = ----------------
  3657. t t a
  3658. 2
  3659. Ric = DF(a,t,2)*a + 2*DF(a,t)
  3660. r r
  3661. \newpage
  3662. 2 2
  3663. Ric = r *(DF(a,t,2)*a + 2*DF(a,t) )
  3664. theta theta
  3665. 2 2 2
  3666. Ric = SIN(theta) *r *(DF(a,t,2)*a + 2*DF(a,t) )
  3667. phi phi
  3668. \end{slisting}
  3669. \chapter{Formulas}
  3670. \parindent=0pt
  3671. \arraycolsep=1pt
  3672. \parskip=1.6mm plus 1mm minus 1mm
  3673. This chapter describes in usual mathematical manner all \grg\
  3674. built-in objects and formulas. The description is extremely short
  3675. since it is intended for reference only.
  3676. If not stated explicitly we use lower case greek letters
  3677. ${\scriptstyle \alpha,\beta,\dots}$ for
  3678. holonomic (coordinate) indices; ${\scriptstyle a,b,c,d,m,n}$ for
  3679. anholonomic frame indices and ${\scriptstyle i,j,k,l}$
  3680. for enumerating indices.
  3681. To establish the relationship between \grg\ built-in object6s
  3682. and mathematical quantities we use the following notation
  3683. \[
  3684. \mbox{\tt Frame Connection omega'a.b} = \omega^a{}_b
  3685. \]
  3686. This equality means that there is built-in object named
  3687. {\tt Frame Connection} having identifier {\tt omega}
  3688. which represent the frame connection 1-form $\omega^a{}_b$.
  3689. If the name is omitted then we deal with \emph{macro} object
  3690. (see page \pageref{macro}). The notation for indices
  3691. in the left-hand side of such equalities is the same
  3692. as in the {\tt New object} declaration and
  3693. is explained on page \pageref{indices}.
  3694. This chapter contains not only definitions of all built-in
  3695. objects but all formulas which \grg\ knows and can apply
  3696. to find their value. If an object has
  3697. several formulas for its computation when each formula
  3698. is given together with the corresponding name which is printed
  3699. in the typewriter font.
  3700. In the case then an object has only one associated
  3701. formula the way name is usually omitted.
  3702. \section{Dimension and Signature}
  3703. Let us denote the space-time dimensionality by $d$
  3704. and $n$'th element of the signature specification
  3705. ${\rm diag}{\scriptstyle(+1,-1,\dots)}$ by ${\rm diag}_n$
  3706. ($n$ runs from 0 to $d-1$).
  3707. There are several macro objects which gives access to
  3708. the dimension and signature
  3709. \object{dim}{d}
  3710. \object{sdiag.idim}{{\rm diag}_i}
  3711. \object{sgnt \mbox{=} sign}{s=\prod^{d-1}_{i=0}{\rm diag}_i}
  3712. \object{mpsgn}{{\rm diag}_0}
  3713. \object{pmsgn}{-{\rm diag}_0}
  3714. The macros (two equivalent ones) which give access to
  3715. coordinates
  3716. \object{X\^m \mbox{=} x\^m}{x^\mu}
  3717. \section{Metric, Frame and Basis}
  3718. Frame $\theta^a$ and metric $g_{ab}$ plays the
  3719. fundamental role in \grg. Together they determine the
  3720. space-time line element
  3721. \begin{equation}
  3722. ds^2 = g_{ab}\,\theta^a\!\otimes\theta^b =
  3723. g_{\mu\nu}\,dx^\mu\!\otimes dx^\nu
  3724. \end{equation}
  3725. The corresponding objects are
  3726. \object{Frame T'a}{\theta^a=h^a_\mu dx^\mu}
  3727. \object{Metric G.a.b}{g_{ab}}
  3728. and ``inverse'' objects are
  3729. \object{Vector Frame D.a}{\partial_a=h^\mu_a\partial_\mu}
  3730. \object{Inverse Metric GI'a'b}{g^{ab}}
  3731. The frame can be computed by two ways. First, {\tt By default}
  3732. frame is assumed to be holonomic
  3733. \begin{equation}
  3734. \theta^a = dx^\alpha
  3735. \end{equation}
  3736. and {\tt From vector frame}
  3737. \begin{equation}
  3738. \theta^a= |h_a^\mu|^{-1} d x^\mu
  3739. \end{equation}
  3740. The vector frame can be obtained {\tt From frame}
  3741. \begin{equation}
  3742. \partial_a= |h^a_\mu|^{-1} \partial_\mu
  3743. \end{equation}
  3744. The metric can be computed {\tt By default} \index{Metric!default value}
  3745. \begin{equation}
  3746. g_{ab} = {\rm if}\ a=b\ {\rm then}\ {\rm diag}_a\ {\rm else}\ 0
  3747. \end{equation}
  3748. or {\tt From inverse metric}
  3749. \begin{equation}
  3750. g_{ab} = |g^{ab}|^{-1}
  3751. \end{equation}
  3752. The inverse metric can be computed {\tt From metric}
  3753. \begin{equation}
  3754. g^{ab} = |g_{ab}|^{-1}
  3755. \end{equation}
  3756. The holonomic metric $g_{\mu\nu}$ and frame $h^a_\mu$
  3757. are given by the macro objects:
  3758. \object{g\_m\_n}{g_{\mu\nu}}
  3759. \object{gi\^m\^n}{g^{\mu\nu}}
  3760. \object{h'a\_m}{h^a_\mu}
  3761. \object{hi.a\^m}{h_a^\mu}
  3762. The metric determinants and related densities
  3763. \object{Det of Metric detG}{g={\rm det}|g_{ab}|}
  3764. \object{Det of Holonomic Metric detg}{{\rm det}|g_{\mu\nu}|}
  3765. \object{Sqrt Det of Metric sdetG}{\sqrt{sg}}
  3766. The volume $d$-form
  3767. \object{Volume VOL}{\upsilon = \sqrt{sg}\,\theta^0\wedge\dots\wedge\,\theta^{d-1}
  3768. =\frac{1}{d!}{\cal E}_{a_0\dots a_{d-1}}\,\theta^{a_0}\wedge\dots\wedge\,\theta^{a_{d-1}}}
  3769. The so called s-forms play the role of basis in the space of the
  3770. 2-forms
  3771. \object{S-forms S'a'b}{S^{ab}=\theta^a\wedge\theta^b}
  3772. The basis and corresponding inverse vector basis are used
  3773. when \grg\ works in the anholonomic mode
  3774. \seethis{See page \pageref{amode}.}
  3775. \object{Basis b'idim }{b^i=b^i_\mu dx^\mu}
  3776. \object{Vector Basis e.idim }{e_i=b_i^\mu\partial_\mu}
  3777. The basis can be computed {\tt From frame}
  3778. \begin{equation}
  3779. b^i=\theta^i
  3780. \end{equation}
  3781. or {\tt From vector basis}
  3782. \begin{equation}
  3783. b^i = |b_i^\mu|^{-1}dx^\mu
  3784. \end{equation}
  3785. The vector basis can be computed {\tt From basis}
  3786. \begin{equation}
  3787. e_i = |b^i_\mu|^{-1}\partial_\mu
  3788. \end{equation}
  3789. \section{Delta and Epsilon Symbols}
  3790. Macro objects for Kronecker delta symbols
  3791. \object{del\^m\_n}{\delta^\mu_\nu}
  3792. \object{delh'a.b}{\delta^a_b}
  3793. and totally antisymmetric tensors
  3794. \object{eps.a.b.c.d}{{\cal E}_{abcd},\quad{\cal E}_{0123}=\sqrt{sg}}
  3795. \object{epsi'a'b'c'd}{{\cal E}^{abcd},\quad{\cal E}_{0123}=\frac{s}{\sqrt{sg}}}
  3796. \object{epsh\_m\_n\_k\_l}{{\cal E}_{\mu\nu\kappa\lambda},\quad{\cal E}_{0123}=\sqrt{s\,{\rm det}|g_{\mu\nu}|}}
  3797. \object{epsih\^m\^n\^k\^l}{{\cal E}^{\mu\nu\kappa\lambda},\quad{\cal E}_{0123}=\frac{s}{\sqrt{s\,{\rm det}|g_{\mu\nu}|}}}
  3798. The definition for epsilon-tensors is given for dimension 4.
  3799. The generalization to other dimensions is obvious.
  3800. \section{Dualization}
  3801. We use the following definition for the dualization
  3802. operation. For any $p$-form
  3803. \begin{equation}
  3804. \omega_p=\frac{1}{p!}\omega_{\alpha_1\dots\alpha_p}dx^{\alpha_1}\wedge
  3805. \dots\wedge dx^{\alpha_p}
  3806. \end{equation}
  3807. the dual $(d-p)$-form is
  3808. \begin{equation}
  3809. *\omega_p=\frac{1}{p!(d-p)!}{\cal E}_{\alpha_1\dots\alpha_{d-p}}
  3810. {}^{\beta_1\dots\beta_p}\,\omega_{\beta_1\dots\beta_p}\,
  3811. dx^{\alpha_1}\wedge\dots\wedge dx^{\alpha_{d-p}}
  3812. \end{equation}
  3813. The equivalent relation which also uniquely defines the $*$
  3814. operation is
  3815. \begin{equation}
  3816. *(\theta^{a_1}\wedge\dots\wedge \theta^{a_p}) =
  3817. (-1)^{p(d-p)} \partial_{a_p}\ipr\dots\partial_{a_1}\ipr\,\upsilon
  3818. \end{equation}
  3819. With such convention we have the following identities
  3820. \begin{eqnarray}
  3821. **\omega_p &=& s(-1)^{p(d-p)}\,\omega_p \\[0.5mm]
  3822. *\upsilon &=& s \\[0.5mm]
  3823. *1 &=& \upsilon
  3824. \end{eqnarray}
  3825. \section{Spinors}
  3826. \label{spinors1}
  3827. The notion of spinors in \grg\ is restricted to
  3828. 4-dimensional spaces of Lorentzian signature ${\scriptstyle(-,+,+,+)}$
  3829. or ${\scriptstyle(+,-,-,-)}$ only. In this section the upper sign relates to the
  3830. signature ${\scriptstyle(-,+,+,+)}$ and lower one to
  3831. ${\scriptstyle(+,-,-,-)}$.
  3832. In addition to work with spinors the metric must have the following
  3833. form which we call the \emph{standard null metric} \index{Metric!Standard Null}
  3834. \index{Standard null metric}\index{Spinors}\index{Spinors!Standard null metric}
  3835. \begin{equation}
  3836. g_{ab}=g^{ab}=\pm\left(\begin{array}{rrrr}
  3837. 0 & -1 & 0 & 0 \\
  3838. -1 & 0 & 0 & 0 \\
  3839. 0 & 0 & 0 & 1 \\
  3840. 0 & 0 & 1 & 0
  3841. \end{array}\right)
  3842. \end{equation}
  3843. Such value of the metric can be established by the command
  3844. \cmdind{Null Metric}
  3845. {\tt Null metric;}.
  3846. Therefore the line-element for spinorial formalism has the form
  3847. \begin{equation}
  3848. ds^2 = \pm(-\theta^0\!\otimes\theta^1
  3849. -\theta^1\!\otimes\theta^0
  3850. +\theta^2\!\otimes\theta^3
  3851. +\theta^3\!\otimes\theta^2)
  3852. \end{equation}
  3853. We require also the conjugation rules for this null tetrad (frame) be
  3854. \begin{equation}
  3855. \overline{\theta^0}=\theta^0,\quad
  3856. \overline{\theta^1}=\theta^1,\quad
  3857. \overline{\theta^2}=\theta^3,\quad
  3858. \overline{\theta^3}=\theta^2
  3859. \end{equation}
  3860. For such a metric and frame we fix sigma-matrices in the
  3861. following form \index{Sigma matrices}
  3862. \begin{eqnarray} \label{sigma}
  3863. &&\sigma_0{}^{1\dot{1}}=
  3864. \sigma_1{}^{0\dot{0}}=
  3865. \sigma_2{}^{1\dot{0}}=
  3866. \sigma_3{}^{0\dot{1}}=1 \\[1mm] &&
  3867. \sigma^0{}_{1\dot{1}}=
  3868. \sigma^1{}_{0\dot{0}}=
  3869. \sigma^2{}_{1\dot{0}}=
  3870. \sigma^3{}_{0\dot{1}}=\mp1
  3871. \end{eqnarray}
  3872. The sigma-matrices obey the rules
  3873. \begin{eqnarray}
  3874. g_{mn}\sigma^m\!{}_{A\dot B}\sigma^n\!{}_{C\dot D} &=&
  3875. \mp \epsilon_{AC}\epsilon_{\dot B\dot D} \\[1mm]
  3876. \sigma^{aM\dot N}\sigma^b\!{}_{M\dot N} &=& \mp g^{ab}
  3877. \end{eqnarray}
  3878. The antisymmetric SL(2,C) spinor metric
  3879. \begin{equation}
  3880. \epsilon_{AB}=\epsilon^{AB}
  3881. =\epsilon_{\dot A\dot B}
  3882. =\epsilon^{\dot A\dot B}=
  3883. \left(\begin{array}{rr}
  3884. 0 & 1 \\
  3885. -1 & 0
  3886. \end{array}\right)
  3887. \end{equation}
  3888. can be used to raise and lower spinor indices
  3889. \begin{equation}
  3890. \varphi^A=\varphi_B\,\epsilon^{BA},\qquad
  3891. \varphi_A=\epsilon_{AB}\,\varphi^B
  3892. \end{equation}
  3893. The following macro objects represent standard
  3894. spinorial quantities
  3895. \object{DEL'A.B}{\delta^A_B}
  3896. \object{EPS.A.B}{\epsilon_{AB}}
  3897. \object{EPSI'A'B}{\epsilon^{AB}}
  3898. \object{sigma'a.A.B\cc}{\sigma^a\!{}_{A\dot B}}
  3899. \object{sigmai.a'A'B\cc}{\sigma_a{}^{A\dot B}}
  3900. The relationship between tensors and spinors
  3901. is established by the sigma-matrices
  3902. \begin{eqnarray}
  3903. X^a &\tsst& X^{A\dot A}=A^a\sigma_a{}^{A\dot A} \\
  3904. X_a &\tsst& X_{A\dot A}=A_a\sigma^a\!{}_{A\dot A}
  3905. \end{eqnarray}
  3906. where sigma-matrices are given by Eq. (\ref{sigma})
  3907. We shall denote similar equations by the sign $\tsst$
  3908. conserving alphabetical relationship between tensor indices in the
  3909. left-hand side and spinorial one in the right-hand side:
  3910. $\scriptstyle a\tsst A\dot A$, $\scriptstyle b\tsst B\dot B$.
  3911. There is one quite important special case. Any real
  3912. antisymmetric tensor $X_{ab}$ are equivalent to the
  3913. pair of conjugated irreducible (symmetric) spinors
  3914. \begin{eqnarray}
  3915. && X_{ab}=X_{[ab]} \tsst X_{A\dot AB\dot B}=
  3916. \epsilon_{AB} X_{\dot A\dot B} + \epsilon_{\dot A\dot B}X_{AB}
  3917. \nonumber\\[1mm]
  3918. && X_{AB}=\frac{1}{2}X_{A\dot AB\dot B}\epsilon^{\dot A\dot B},\
  3919. X_{\dot A\dot B}=\frac{1}{2}X_{A\dot AB\dot B}\epsilon^{AB}
  3920. \end{eqnarray}
  3921. The explicit form of these relations for the sigma-matrices
  3922. (\ref{sigma}) is
  3923. \begin{equation}
  3924. \begin{array}{rclrcl}
  3925. X_0 &=& X_{13} & X_{\dot0} &=& X_{12} \\[1mm]
  3926. X_1 &=&-\frac{1}{2}(X_{01}-X_{23})\qquad & X_{\dot1} &=&
  3927. -\frac{1}{2}(X_{01}+X_{23}) \\[1mm]
  3928. X_2 &=& -X_{02} & X_{\dot2} &=& -X_{03}
  3929. \end{array}\label{asys}
  3930. \end{equation}
  3931. and the ``inverse'' relation
  3932. \begin{equation}
  3933. \begin{array}{rclrcl}
  3934. X_{01} &=& -X_1-X_{\dot1},\qquad & X_{23} &=& X_1-X_{\dot1}, \\[1mm]
  3935. X_{02} &=& -X_2, & X_{12} &=& X_{\dot0}, \\[1mm]
  3936. X_{03} &=& -X_{\dot 2}, & X_{13} &=& X_0
  3937. \end{array}\label{asyt}
  3938. \end{equation}
  3939. We shall apply the relations (\ref{asys}) and (\ref{asyt}) to various
  3940. antisymmetric quantities. In particular the {\tt Spinorial S-forms}
  3941. \object{Undotted S-forms SU.AB}{S_{AB}}
  3942. \object{Dotted S-forms SD.AB\cc}{S_{\dot A\dot B}}
  3943. The {\tt Standard way} to compute these quantities uses
  3944. relations (\ref{asys})
  3945. \begin{equation}
  3946. S_{ab}=\theta_a\wedge\theta_b \tsst
  3947. \epsilon_{AB} S_{\dot A\dot B} + \epsilon_{\dot A\dot B}S_{AB}
  3948. \end{equation}
  3949. Spinorial S-forms are self dual
  3950. \begin{equation}
  3951. *S_{AB}=iS_{AB},\qquad
  3952. *S_{\dot A\dot B}=-iS_{\dot A\dot B}
  3953. \end{equation}
  3954. and exteriorly orthogonal
  3955. \begin{equation}
  3956. S_{AB}\wedge S_{CD}=-\frac{i}2\upsilon(\epsilon_{AC}\epsilon_{BD}+
  3957. \epsilon_{AD}\epsilon_{BC}),\quad S_{AB}\wedge S_{\dot C\dot D}=0
  3958. \end{equation}
  3959. There is one subtle pint concerning tensor quantities in the
  3960. spinorial formalism. Since spinorial null tetrad is complex
  3961. with the conjugation rule $\overline{\theta^2}=\theta^3$
  3962. all tensor quantities represented in this frame also becomes
  3963. complex with similar conjugation rules for any tensor index.
  3964. There is special macro object {\tt cci} which performs such
  3965. ``index conjugation'': {\tt cci{0}=0}, {\tt cci(1)=1},
  3966. {\tt cci{2}=3}, {\tt cci(3)=2}. Therefore the correct expression
  3967. for the $\overline{\theta^a}$ is {\tt \cc T(cci(a))} but not
  3968. {\tt \cc T(a)}.
  3969. \section{Connection, Torsion and Nonmetricity}
  3970. \label{conn1}
  3971. Covariant derivatives and differentials for
  3972. quantities having frame and coordinate indices are
  3973. \begin{eqnarray}
  3974. DX^a{}_b &=& dX^a{}_b
  3975. + \omega^a{}_m\wedge X^m{}_b - \omega^m{}_b\wedge X^a{}_m \\[1mm]
  3976. DX^\mu{}_\nu &=& dX^\mu{}_\nu
  3977. + \Gamma^\mu{}_\pi\wedge X^\pi{}_\nu - \Gamma^\pi{}_\nu\wedge X^\mu{}_\pi
  3978. \end{eqnarray}
  3979. The corresponding built-in connection 1-forms are
  3980. \object{Frame Connection omega'a.b}{\omega^a{}_b=\omega^a{}_{b\mu}dx^\mu}
  3981. \object{Holonomic Connection GAMMA\^m\_n}
  3982. {\Gamma^\mu{}_\nu=\Gamma^\mu{}_{\nu\pi}dx^\pi}
  3983. Frame connection can be computed {\tt From holonomic connection}
  3984. \begin{equation}
  3985. \omega^a{}_b = \Gamma^a{}_b + dh^\mu_b\,h^a_\mu
  3986. \end{equation}
  3987. and inversely holonomic connection can be obtained
  3988. {\tt From frame connection}
  3989. \begin{equation}
  3990. \Gamma^\mu{}_\nu=\omega^\mu{}_\nu + dh^b_\nu\,h^\mu_b
  3991. \end{equation}
  3992. By default these connections are Riemannian (i.e. symmetric and
  3993. metric compatible). To work with nonsymmetric
  3994. connection with torsion the switch \comm{TORSION}\swinda{TORSION}
  3995. must be turned on. Then the torsion 2-form is
  3996. \object{Torsion THETA'a}{\Theta^a=\frac12Q^a{}_{pq}S^{pq},\quad
  3997. Q^a{}_{bc}=\Gamma^a{}_{bc}-\Gamma^a_{cb}}
  3998. Finally to work with non metric-compatible
  3999. spaces with nonmetricity the switch \comm{NONMETR}\swinda{NONMETR}
  4000. must be turned on. The nonmetricity 1-form is
  4001. \object{Nonmetricity N.a.b}{N_{ab}=N_{ab\mu}dx^\mu,
  4002. \quad N_{ab\mu}=-\nabla_\mu g_{ab}}
  4003. In general any torsion or nonmetricity related object is
  4004. defined iff the corresponding switch is on.
  4005. If either \comm{TORSION} or \comm{NONMETR} is on then Riemannian
  4006. versions of the connection 1-forms are available as well
  4007. \object{Riemann Frame Connection romega'a.b}
  4008. {\rim{\omega}{}^a{}_b}
  4009. \object{Riemann Holonomic Connection RGAMMA\^m\_n}
  4010. {\rim{\Gamma}{}^\mu{}_\nu}
  4011. The Riemann holonomic connection can be obtained
  4012. {\tt From Riemann frame connection}
  4013. \begin{equation}
  4014. \rim{\Gamma}{}^\mu{}_\nu=\rim{\omega}{}^\mu{}_\nu + dh^b_\nu\,h^\mu_b
  4015. \end{equation}
  4016. If torsion is nonzero but nonmetricity vanishes
  4017. (\comm{TORSION} is on, \comm{NONMETR} is off) then
  4018. the difference between the connection and Riemann connection
  4019. is called the contorsion 1-form
  4020. \object{Contorsion KQ'a.b}{\stackrel{\scriptscriptstyle Q}{K}\!{}^a{}_b=
  4021. \stackrel{\scriptscriptstyle Q}{K}\!{}^a{}_{b\mu}dx^\mu=
  4022. \Gamma^a{}_b-\rim{\Gamma}{}^a{}_b}
  4023. If nonmetricity is nonzero but torsion vanishes
  4024. (\comm{TORSION} is off, \comm{NONMETR} is on) then
  4025. the difference between the connection and Riemann connection
  4026. is called the nonmetricity defect
  4027. \object{Nonmetricity Defect KN'a.b}
  4028. {\stackrel{\scriptscriptstyle N}{K}\!{}^a{}_b=
  4029. \stackrel{\scriptscriptstyle N}{K}\!{}^a{}_{b\mu}dx^\mu=
  4030. \Gamma^a{}_b-\rim{\Gamma}{}^a{}_b}
  4031. Finally if both torsion and nonmetricity are nonzero
  4032. (\comm{TORSION} and \comm{NONMETR} are on) then we
  4033. \object{Connection Defect K'a.b}
  4034. {K^a{}_b=K^a{}_{b\mu}dx^\mu=
  4035. \Gamma^a{}_b-\rim{\Gamma}{}^a{}_b}
  4036. \begin{equation}
  4037. K^a{}_b = \stackrel{\scriptscriptstyle Q}{K}\!{}^a{}_b
  4038. + \stackrel{\scriptscriptstyle N}{K}\!{}^a{}_b
  4039. \end{equation}
  4040. For the sake of convenience we introduce also macro objects
  4041. which compute the usual Christoffel symbols
  4042. \object{CHR\^m\_n\_p }{ \{{}^\mu_{\nu\pi}\} =
  4043. \frac{1}{2}g^{\mu\tau}(\partial_\pi g_{\nu\tau}
  4044. +\partial_\nu g_{\pi\tau}
  4045. -\partial_\tau g_{\nu\pi})}
  4046. \object{CHRF\_m\_n\_p }{ [{}_{\mu},_{\nu\pi}] =
  4047. \frac{1}{2}(\partial_\pi g_{\nu\mu}
  4048. +\partial_\nu g_{\pi\mu}
  4049. -\partial_\mu g_{\nu\pi})}
  4050. \object{CHRT\_m }{ \{{}^\pi_{\pi\mu}\} =
  4051. \frac{1}{2{\rm det}|g_{\alpha\beta}|}\partial_\mu\left(
  4052. {\rm det}|g_{\alpha\beta}|\right)}
  4053. The connection, frame, metric, torsion and nonmetricity are
  4054. related to each other by the so called structural equations
  4055. which in the most general case read
  4056. \begin{eqnarray}
  4057. && D\theta^a + \Theta^a = 0 \nonumber\\[2mm]
  4058. && Dg_{ab} + N_{ab} = 0 \label{str0}
  4059. \end{eqnarray}
  4060. or in the equivalent ``explicit'' form
  4061. \begin{equation}
  4062. \begin{array}{ll}
  4063. \omega^a{}_b\wedge\theta^b = -t^a,\qquad & t^a=d\theta^a+\Theta^a,\\[2mm]
  4064. \omega_{ab}+\omega_{ba} = n_{ab},\qquad & n_{ab}=dg_{ab}+N_{ab} \label{str}
  4065. \end{array}
  4066. \end{equation}
  4067. The solution to equations (\ref{str}) are given by the relation
  4068. \begin{equation}
  4069. \omega^a{}_b =
  4070. \frac{1}{2}\left[ -\partial^a\ipr t_b + \partial_b\ipr t^a + n^a{}_b
  4071. +\big(\partial^a\ipr(\partial_b\ipr t_c-n_{bc})
  4072. +\partial_b\ipr n^a{}_c\big)\theta^c\right] \label{solstr}
  4073. \end{equation}
  4074. For various specific values of $n_{ab}$ and $t^a$ equations
  4075. (\ref{str}) and (\ref{solstr}) can be used for different purposes.
  4076. In the most general case (\ref{solstr}) is the {\tt Standard way} to
  4077. compute connection 1-form $\omega^a{}_b$.
  4078. The torsion and nonmetricity are included in
  4079. these equations depending on the switches \comm{TORSION} and
  4080. \comm{NONMETR}.
  4081. The same equation (\ref{solstr}) with $n_{ab}=dg_{ab}$ and
  4082. $t^a=d\theta^a$ is the {\tt Standard way} to find Riemann
  4083. frame connection $\rim{\omega}{}^a{}_b$.
  4084. If torsion is nonzero then $\omega^a{}_b$ can be computed
  4085. {\tt From contorsion}
  4086. \begin{equation}
  4087. \omega^a{}_b = \rim{\omega}{}^a{}_b
  4088. + \stackrel{\scriptscriptstyle Q}{K}\!{}^a{}_b \label{a1}
  4089. \end{equation}
  4090. where $\rim{\omega}{}^a{}_b$ is given by Eq. (\ref{solstr}).
  4091. Similarly if nonmetricity is nonzero then $\omega^a{}_b$ can be computed
  4092. {\tt From nonmetricity defect}
  4093. \begin{equation}
  4094. \omega^a{}_b = \rim{\omega}{}^a{}_b
  4095. + \stackrel{\scriptscriptstyle N}{K}\!{}^a{}_b \label{a2}
  4096. \end{equation}
  4097. where $\rim{\omega}{}^a{}_b$ is given by Eq. (\ref{solstr}).
  4098. Finally if both torsion and nonmetricity are
  4099. nonzero then $\omega^a{}_b$ can be computed
  4100. {\tt From connection defect}
  4101. \begin{equation}
  4102. \omega^a{}_b = \rim{\omega}{}^a{}_b + K^a{}_b \label{a3}
  4103. \end{equation}
  4104. where $\rim{\omega}{}^a{}_b$ is given by Eq. (\ref{solstr}).
  4105. The Riemannian part of connection in Eqs. (\ref{a1}),
  4106. (\ref{a2}), (\ref{a3}) are directly computed by Eq. (\ref{solstr})
  4107. (not via the object \comm{romega}).
  4108. The contorsion $\stackrel{\scriptscriptstyle Q}{K}\!{}^a{}_b$
  4109. is obtained {\tt From torsion} by (\ref{solstr})
  4110. with $t^a=\Theta^a$, $n_{ab}=0$.
  4111. The nonmetricity defect $\stackrel{\scriptscriptstyle N}{K}\!{}^a{}_b$
  4112. is obtained {\tt From nonmetricity} by (\ref{solstr})
  4113. with $t^a=0$, $n_{ab}=N_{ab}$.
  4114. Analogously (\ref{solstr}) with $t^a=\Theta^a$, $n_{ab}=N_{ab}$
  4115. is the {\tt Standard way} to compute the connection defect $K^a{}_b$.
  4116. The torsion $\Theta^a$ can be calculated {\tt From contorsion}
  4117. \begin{equation}
  4118. \Theta^a = -\stackrel{\scriptscriptstyle Q}{K}\!{}^a{}_b\wedge\theta^b
  4119. \end{equation}
  4120. or {\tt From connection defect}
  4121. \begin{equation}
  4122. \Theta^a = -K^a{}_b\wedge\theta^b
  4123. \end{equation}
  4124. The nonmetricity $N_{ab}$ can be computed {\tt From nonmetricity defect}
  4125. \begin{equation}
  4126. N_{ab} = \stackrel{\scriptscriptstyle N}{K}_{ab}+
  4127. \stackrel{\scriptscriptstyle N}{K}_{ba}
  4128. \end{equation}
  4129. or {\tt From connection defect}
  4130. \begin{equation}
  4131. N_{ab} = K_{ab}+K_{ba}
  4132. \end{equation}
  4133. \section{Spinorial Connection and Torsion}
  4134. Spinorial connection is defined in \grg\ iff nonmetricity
  4135. is zero and switch \comm{NONMETR} is turned off.
  4136. The upper sign in this section correspond to the signature
  4137. ${\scriptstyle(-,+,+,+)}$ while lower one to the signature
  4138. ${\scriptstyle(+,-,-,-)}$.
  4139. Spinorial connection is defined by the equation
  4140. \begin{equation}
  4141. DX^A_{\dot B} = dX^A{}_{\dot B}
  4142. \mp\omega^A{}_M\,X^M{}_{\dot B}
  4143. \pm\omega^{\dot M}{}_{\dot B}\,X^A{}_{\dot M}
  4144. \end{equation}
  4145. where due to antisymmetry of the frame connection
  4146. $\omega_{ab}=\omega_{[ab]}$ we have {\tt Spinorial connection}
  4147. 1-forms
  4148. \begin{equation}
  4149. \omega_{ab} \tsst
  4150. \epsilon_{AB} \omega_{\dot A\dot B}
  4151. + \epsilon_{\dot A\dot B} \omega_{AB}
  4152. \end{equation}
  4153. \object{Undotted Connection omegau.AB}{\omega_{AB}}
  4154. \object{Dotted Connection omegad.AB\cc}{\omega_{\dot A\dot B}}
  4155. The spinorial connection 1-forms
  4156. $\omega_{AB}$ and $\omega_{\dot A\dot B}$
  4157. can be calculated {\tt From frame connection} by the
  4158. standard spinor $\tsst$ tensor relation (\ref{asys}).
  4159. Inversely the frame connection $\omega_{ab}$ can be
  4160. found {\tt From spinorial connection} by relation (\ref{asyt}).
  4161. Since $\omega_{ab}$ is real the spinorial equivalents
  4162. $\omega_{AB}$ and $\omega_{\dot A\dot B}$ can be computed from
  4163. each other {\tt By conjugation}
  4164. \begin{equation}
  4165. \omega_{\dot A\dot B}=\overline{\omega_{AB}},\qquad
  4166. \omega_{AB}=\overline{\omega_{\dot A\dot B}}
  4167. \end{equation}
  4168. If torsion is nonzero (\comm{TORSION} is on) when we have
  4169. in addition the {\tt Riemann spinorial connection}
  4170. \object{Riemann Undotted Connection romegau.AB}{\rim{\omega}_{AB}}
  4171. \object{Riemann Dotted Connection romegad.AB\cc}{\rim{\omega}_{\dot A\dot B}}
  4172. The Riemann spinorial connection $\rim{\omega}_{AB}$
  4173. can be calculated by {\tt Standard way}
  4174. \begin{equation}
  4175. \stackrel{{\scriptscriptstyle\{\}}}{\omega}_{AB}= \label{ssolver}
  4176. \pm i*[ d S_{AB}\wedge\theta_{C\dot C}
  4177. -\epsilon_{C(A} d S_{B)M}\wedge \theta^M_{\ \ \dot C}]\theta^{C\dot C}
  4178. \end{equation}
  4179. The conjugated relation is used for $\rim{\omega}_{\dot A\dot B}$.
  4180. The {\tt Spinorial contorsion} 1-forms
  4181. \object{Undotted Contorsion KU.AB}{\stackrel{\scriptscriptstyle Q}{K}\!{}_{AB}}
  4182. \object{Dotted Contorsion KD.AB\cc}{\stackrel{\scriptscriptstyle Q}{K}\!{}_{\dot A\dot B}}
  4183. are the spinorial analogues of the contorsion 1-form
  4184. \begin{equation}
  4185. \stackrel{\scriptscriptstyle Q}{K}_{ab} \tsst
  4186. \epsilon_{AB} \stackrel{\scriptscriptstyle Q}{K}_{\dot A\dot B}
  4187. + \epsilon_{\dot A\dot B} \stackrel{\scriptscriptstyle Q}{K}_{AB}
  4188. \end{equation}
  4189. The spinorial contorsion 1-forms
  4190. $\stackrel{\scriptscriptstyle Q}{K}_{AB}$ and $\stackrel{\scriptscriptstyle Q}{K}_{\dot A\dot B}$
  4191. can be calculated {\tt From contorsion} by the
  4192. standard spinor $\tsst$ tensor relation (\ref{asys}).
  4193. Inversely the contorsion $\stackrel{\scriptscriptstyle Q}{K}_{ab}$ can be
  4194. found {\tt From spinorial contorsion} by relation (\ref{asyt}).
  4195. The spinorial equivalents
  4196. $\stackrel{\scriptscriptstyle Q}{K}_{AB}$ and $\stackrel{\scriptscriptstyle Q}{K}_{\dot A\dot B}$
  4197. can be computed from
  4198. each other {\tt By conjugation}
  4199. \begin{equation}
  4200. \stackrel{\scriptscriptstyle Q}{K}_{\dot A\dot B}=\overline{\stackrel{\scriptscriptstyle Q}{K}_{AB}},\qquad
  4201. \stackrel{\scriptscriptstyle Q}{K}_{AB}=\overline{\stackrel{\scriptscriptstyle Q}{K}_{\dot A\dot B}}
  4202. \end{equation}
  4203. The {\tt Standard way} to find $\omega_{AB}$ is
  4204. \begin{equation}
  4205. \omega_{AB} = \rim{\omega}_{AB}+\stackrel{\scriptscriptstyle Q}{K}_{AB}
  4206. \end{equation}
  4207. where $\rim{\omega}_{AB}$ is given directly by Eq. (\ref{ssolver}).
  4208. The conjugated Eq. is used for $\omega_{\dot A\dot B}$.
  4209. \section{Curvature}
  4210. The curvature 2-form
  4211. \object{Curvature OMEGA'a.b}{\Omega^a{}_b=
  4212. \frac{1}{2}R^a_{bcd}\,S^{cd}}
  4213. can be computed {\tt By standard way}
  4214. \begin{equation}
  4215. \Omega^a{}_b = d\omega^a{}_b + \omega^a{}_n \wedge \omega^n{}_b \label{omes}
  4216. \end{equation}
  4217. The Riemann curvature tensor is given by the relation
  4218. \object{Riemann Tensor RIM'a.b.c.d}{R^a{}_{bcd}=
  4219. \partial_d\ipr\partial_c\ipr\Omega^a{}_b}
  4220. The Ricci tensor
  4221. \object{Ricci Tensor RIC.a.b}{R_{ab}}
  4222. can be computed {\tt From Curvature}
  4223. \begin{equation}
  4224. R_{ab} = \partial_b\ipr\partial_m\ipr\Omega^m{}_a \label{rics}
  4225. \end{equation}
  4226. or {\tt From Riemann tensor}
  4227. \begin{equation}
  4228. R_{ab} = R^m{}_{amb}
  4229. \end{equation}
  4230. The
  4231. \object{Scalar Curvature RR}{R}
  4232. can be computed {\tt From Ricci Tensor}
  4233. \begin{equation}
  4234. R = R_{mn}\,g^{mn}
  4235. \end{equation}
  4236. The Einstein tensor is given by the relation
  4237. \object{Einstein Tensor GT.a.b}{G_{ab}=R_{ab}-\frac{1}{2}g_{ab}R}
  4238. If nonmetricity is nonzero (\comm{NONMETR} is on) then we have
  4239. \object{Homothetic Curvature OMEGAH}{\OO{h}}
  4240. \object{A-Ricci Tensor RICA.a.b}{\RR{A}_{ab}}
  4241. \object{S-Ricci Tensor RICS.a.b}{\RR{S}_{ab}}
  4242. They can be calculated {\tt From curvature} by the
  4243. relations
  4244. \begin{equation}
  4245. \OO{h}=\Omega^n{}_n
  4246. \end{equation}
  4247. \begin{equation}
  4248. \RR{A}_{ab}= \partial_b\ipr\partial^m\ipr\Omega_{[ma]}
  4249. \end{equation}
  4250. \begin{equation}
  4251. \RR{S}_{ab}= \partial_b\ipr\partial^m\ipr\Omega_{(ma)}
  4252. \end{equation}
  4253. and the scalar curvature can be computed {\tt From A-Ricci tensor}
  4254. \begin{equation}
  4255. R = \RR{A}_{mn}g^{mn}
  4256. \end{equation}
  4257. \section{Spinorial Curvature}
  4258. Spinorial curvature is defined in \grg\ iff nonmetricity
  4259. is zero and switch \comm{NONMETR} is turned off.
  4260. The upper sign in this section correspond to the signature
  4261. ${\scriptstyle(-,+,+,+)}$ while lower one to the signature
  4262. ${\scriptstyle(+,-,-,-)}$.
  4263. The {\tt Spinorial curvature} 2-forms
  4264. \object{Undotted Curvature OMEGAU.AB}{\Omega_{AB}}
  4265. \object{Dotted Curvature OMEGAD.AB\cc}{\Omega_{\dot A\dot B}}
  4266. is related to the curvature 2-form $\Omega_{ab}$ by the standard
  4267. relation
  4268. \begin{equation}
  4269. \Omega_{ab} \tsst
  4270. \epsilon_{AB} \Omega_{\dot A\dot B}
  4271. + \epsilon_{\dot A\dot B} \Omega_{AB}
  4272. \end{equation}
  4273. The spinorial curvature 1-forms
  4274. $\Omega_{AB}$ and $\Omega_{\dot A\dot B}$
  4275. can be calculated {\tt From curvature} by the
  4276. relation (\ref{asys}).
  4277. The frame curvature $\Omega_{ab}$ can be
  4278. found {\tt From spinorial curvature} by relation (\ref{asyt}).
  4279. The $\Omega_{AB}$ and $\Omega_{\dot A\dot B}$ can be
  4280. computed from each other {\tt By conjugation}
  4281. \begin{equation}
  4282. \Omega_{\dot A\dot B}=\overline{\Omega_{AB}},\qquad
  4283. \Omega_{AB}=\overline{\Omega_{\dot A\dot B}}
  4284. \end{equation}
  4285. The {\tt Standard way} to calculate $\Omega_{AB}$ is
  4286. \begin{equation}
  4287. \Omega_{AB} = d\omega_{AB} \pm \omega_A{}^M\wedge\omega_{MB}
  4288. \end{equation}
  4289. The conjugated relation is used for $\Omega_{\dot A\dot B}$.
  4290. \section{Curvature Decomposition}
  4291. In general curvature consists of 11 irreducible pieces.
  4292. If nonmetricity is nonzero then one can
  4293. perform decomposition
  4294. \begin{equation}
  4295. R_{abcd}=\RR{A}_{abcd}+\RR{S}_{abcd},\qquad
  4296. \RR{A}_{abcd}=R_{[ab]cd},\qquad
  4297. \RR{S}_{abcd}=R_{(ab)cd}
  4298. \end{equation}
  4299. Here the S-part of the curvature vanishes identically if
  4300. nonmetricity is zero and we consider further decomposition
  4301. of A and S parts independently.
  4302. First we consider the A-part of the curvature. It can be
  4303. decomposed into 6 pieces
  4304. \begin{equation}
  4305. \RR{A}_{abcd} =
  4306. \RR{w}_{abcd}+
  4307. \RR{c}_{abcd}+
  4308. \RR{r}_{abcd}+
  4309. \RR{a}_{abcd}+
  4310. \RR{b}_{abcd}+
  4311. \RR{d}_{abcd}
  4312. \end{equation}
  4313. Here first three terms are the well-known irreducible pieces
  4314. of the Riemannian curvature while last three terms vanish if
  4315. torsion is zero. The corresponding 2-forms are
  4316. \object{Weyl 2-form OMW.a.b }
  4317. {\OO{w}_{ab} = \frac12 \RR{w}_{abcd}\,S^{cd}}
  4318. \object{Traceless Ricci 2-form OMC.a.b }
  4319. {\OO{c}_{ab} = \frac12 \RR{c}_{abcd}\,S^{cd}}
  4320. \object{Scalar Curvature 2-form OMR.a.b }
  4321. {\OO{r}_{ab} = \frac12 \RR{r}_{abcd}\,S^{cd}}
  4322. \object{Ricanti 2-form OMA.a.b }
  4323. {\OO{a}_{ab} = \frac12 \RR{a}_{abcd}\,S^{cd}}
  4324. \object{Traceless Deviation 2-form OMB.a.b }
  4325. {\OO{b}_{ab} = \frac12 \RR{b}_{abcd}\,S^{cd}}
  4326. \object{Antisymmetric Curvature 2-form OMD.a.b }
  4327. {\OO{d}_{ab} = \frac12 \RR{d}_{abcd}\,S^{cd}}
  4328. The {\tt Standard way} to find these quantities is given
  4329. by the following formulas.
  4330. \begin{equation}
  4331. \OO{r}_{ab} = \frac{1}{d(d-1)}R\,S_{ab}
  4332. \end{equation}
  4333. \begin{equation}
  4334. \OO{c}_{ab} = \frac{1}{(d-2)}\left[
  4335. C_{am}\,\theta^m\!\wedge\theta_b
  4336. -C_{bm}\,\theta^m\!\wedge\theta_a\right],\quad
  4337. C_{ab}=\RR{A}_{(ab)}-\frac{1}{d}g_{ab}R
  4338. \end{equation}
  4339. \begin{equation}
  4340. \OO{a}_{ab} = \frac{1}{(d-2)}\left[
  4341. A_{am}\,\theta^m\!\wedge\theta_b
  4342. -A_{bm}\,\theta^m\!\wedge\theta_a\right],\quad
  4343. A_{ab}=\RR{A}_{[ab]}
  4344. \end{equation}
  4345. \begin{equation}
  4346. \OO{d}_{ab} = \frac{1}{12}\partial_b\ipr\partial_a\ipr
  4347. (\OO{A}_{mn}\wedge\theta^m\!\wedge\theta^n)
  4348. \end{equation}
  4349. \begin{equation}
  4350. \OO{b}_{ab} =\frac{1}{2}\left[
  4351. \partial_b\ipr(\theta^m\!\wedge\OO{A0}_{am})
  4352. -\partial_a\ipr(\theta^m\!\wedge\OO{A0}_{bm})
  4353. \right]
  4354. \end{equation}
  4355. where
  4356. \[
  4357. \OO{A0}_{ab} =
  4358. \OO{A}_{ab}
  4359. -\OO{c}_{ab}
  4360. -\OO{r}_{ab}
  4361. -\OO{a}_{ab}
  4362. -\OO{d}_{ab}
  4363. \]
  4364. And finally
  4365. \begin{equation}
  4366. \OO{w}_{ab} =
  4367. \OO{A}_{ab}
  4368. -\OO{c}_{ab}
  4369. -\OO{r}_{ab}
  4370. -\OO{a}_{ab}
  4371. -\OO{b}_{ab}
  4372. -\OO{d}_{ab}
  4373. \end{equation}
  4374. If $d=2$ then $\OO{A}_{ab}$ turns out to be irreducible and
  4375. coincides with the scalar curvature irreducible piece
  4376. \begin{equation}
  4377. \OO{A}_{ab} = \OO{r}_{ab}
  4378. \end{equation}
  4379. Now we consider the decomposition of the S curvature part which
  4380. is nonzero iff nonmetricity is nonzero. First we consider
  4381. the case $d\geq3$. In this case we have 5 irreducible components
  4382. \begin{equation}
  4383. \RR{S}_{abcd} =
  4384. \RR{h}_{abcd}+
  4385. \RR{sc}_{abcd}+
  4386. \RR{sa}_{abcd}+
  4387. \RR{v}_{abcd}+
  4388. \RR{u}_{abcd}
  4389. \end{equation}
  4390. The corresponding 2-forms are
  4391. \object{Homothetic Curvature 2-form OSH.a.b }
  4392. {\OO{h}_{ab} = \frac12 \RR{h}_{abcd}\,S^{cd}}
  4393. \object{Antisymmetric S-Ricci 2-form OSA.a.b }
  4394. {\OO{sa}_{ab} = \frac12 \RR{sa}_{abcd}\,S^{cd}}
  4395. \object{Traceless S-Ricci 2-form OSC.a.b }
  4396. {\OO{sc}_{ab} = \frac12 \RR{sc}_{abcd}\,S^{cd}}
  4397. \object{Antisymmetric S-Curvature 2-form OSV.a.b }
  4398. {\OO{v}_{ab} = \frac12 \RR{v}_{abcd}\,S^{cd}}
  4399. \object{Symmetric S-Curvature 2-form OSU.a.b }
  4400. {\OO{u}_{ab} = \frac12 \RR{u}_{abcd}\,S^{cd}}
  4401. The {\tt Standard way} to compute the decomposition is
  4402. \begin{equation}
  4403. \OO{h}_{ab}=-\frac{1}{(d^2-4)}\left[
  4404. \theta_a\wedge\partial_b\ipr\OO{h}{}
  4405. +\theta_b\wedge\partial_a\ipr\OO{h}{}
  4406. -g_{ab}\OO{h}{}d\right]
  4407. \end{equation}
  4408. \begin{equation}
  4409. \OO{sa}_{ab} =\frac{d}{(d^2-4)}\left[
  4410. \theta_a\wedge(\RR{S}_{[bm]}\wedge\theta^m)
  4411. +\theta_b\wedge(\RR{S}_{[am]}\wedge\theta^m)
  4412. -\frac{2}{d}g_{ab}\,\RR{S}_{cd}S^{cd}\right]
  4413. \end{equation}
  4414. \begin{equation}
  4415. \OO{sc}_{ab} =\frac{1}{d}\left[
  4416. \theta_a\wedge(\RR{S}_{(bm)}\wedge\theta^m)
  4417. +\theta_b\wedge(\RR{S}_{(am)}\wedge\theta^m)\right] \label{ccc}
  4418. \end{equation}
  4419. \begin{equation}
  4420. \OO{v}_{ab} = \frac{1}{4}\left[
  4421. \partial_a\ipr(\OO{S0}_{bm}\wedge\theta^m)
  4422. +\partial_b\ipr(\OO{S0}_{am}\wedge\theta^m)\right]
  4423. \end{equation}
  4424. where
  4425. \[
  4426. \OO{S0}_{ab} =
  4427. \OO{S}_{ab}
  4428. -\OO{h}_{ab}
  4429. -\OO{sa}_{ab}
  4430. -\OO{sc}_{ab}
  4431. \]
  4432. And finally
  4433. \begin{equation}
  4434. \OO{u}_{ab} =
  4435. \OO{S}_{ab}
  4436. -\OO{h}_{ab}
  4437. -\OO{sa}_{ab}
  4438. -\OO{sc}_{ab}
  4439. -\OO{v}_{ab}
  4440. \end{equation}
  4441. If $d=2$ then only the h- and sc-components are nonzero.
  4442. The $\OO{sc}_{ab}$ are given by (\ref{ccc}) and
  4443. \begin{equation}
  4444. \OO{h}_{ab} = \OO{S}_{ab}-\OO{sc}_{ab}
  4445. \end{equation}
  4446. \begin{center}
  4447. \begin{tabular}{|c|c|c|}
  4448. \hline object & exists if & and has $n$ components \\
  4449. \hline
  4450. \vv$R_{abcd}$ & & $\frac{d^3(d-1)}{2}$ \\[1mm]
  4451. \hline\vv$\rim{R}{}_{abcd}$ & & $\frac{d^2(d^2-1)}{12}$ \\[1mm]
  4452. \hline\vv$\RR{A}_{abcd}$ & & $\frac{d^2(d-1)^2}{4}$ \\[1mm]
  4453. \hline\vv$\RR{S}_{abcd}$ & & $\frac{d^2(d^2-1)}{4}$ \\[1mm]
  4454. \hline\vv$\RR{w}_{abcd}$ & $d\geq4$ & $\frac{d(d+1)(d+2)(d-3)}{12}$ \\
  4455. \vv$\RR{c}_{abcd}$ & $d\geq3$ & $\frac{(d+2)(d-1)}{2}$ \\
  4456. \vv$\RR{r}_{abcd}$ & & $1$ \\[1mm]
  4457. \hline\vv$\RR{a}_{abcd}$ & $d\geq3$ & $\frac{d(d-1)}{2}$ \\
  4458. \vv$\RR{b}_{abcd}$ & $d\geq4$ & $\frac{d(d-1)(d+2)(d-3)}{8}$ \\
  4459. \vv$\RR{d}_{abcd}$ & $d\geq4$ & $\frac{d(d-1)(d-2)(d-3)}{24}$ \\[1mm]
  4460. \hline\vv$\RR{h}_{abcd}$ & & $\frac{d(d-1)}{2}$ \\
  4461. \vv$\RR{sa}_{abcd}$ & $d\geq3$ & $\frac{d(d-1)}{2}$ \\
  4462. \vv$\RR{sc}_{abcd}$ & & $\frac{(d+2)(d-1)}{2}$ \\
  4463. \vv$\RR{v}_{abcd}$ & $d\geq4$ & $\frac{d(d+2)(d-1)(d-3)}{8}$ \\
  4464. \vv$\RR{u}_{abcd}$ & $d\geq3$ & $\frac{(d-2)(d+4)(d^2-1)}{8}$ \\[1mm]
  4465. \hline
  4466. \end{tabular}
  4467. \end{center}
  4468. \section{Spinorial Curvature Decomposition}
  4469. Spinorial curvature is defined in \grg\ iff nonmetricity
  4470. is zero and switch \comm{NONMETR} is turned off.
  4471. The upper sign in this section correspond to the signature
  4472. ${\scriptstyle(-,+,+,+)}$ while lower one to the signature
  4473. ${\scriptstyle(+,-,-,-)}$.
  4474. Let us introduce the spinorial analog of the curvature tensor
  4475. \begin{eqnarray}
  4476. R_{abcd}&\tsst&
  4477. \ \ R_{ABCD}\epsilon_{\dot{A}\dot{B}}\epsilon_{\dot{C}\dot{D}}
  4478. +R_{\dot{A}\dot{B}\dot{C}\dot{D}}\epsilon_{AB}\epsilon_{CD} \nonumber\\[1mm]
  4479. &&+R_{AB\dot{C}\dot{D}}\epsilon_{\dot{A}\dot{B}}\epsilon_{CD}
  4480. +R_{\dot{A}\dot{B} CD}\epsilon_{AB}\epsilon_{\dot{C}\dot{D}}, \\[1.5mm]
  4481. R_{ABCD}&=&-i*(\Omega_{AB}\wedge S_{CD}),\ \
  4482. R_{AB\dot{C}\dot{D}}\ =\ i*(\Omega_{AB}\wedge S_{\dot{C}\dot{D}})\\[1.5mm]
  4483. R_{\dot{A}\dot{B}\dot{C}\dot{D}}&=&\overline{R_{ABCD}},\ \
  4484. R_{\dot{A}\dot{B} CD}\ =\ \overline{R_{AB\dot{C}\dot{D}}}
  4485. \end{eqnarray}
  4486. The quantities $R_{ABCD}$ and $R_{AB\dot C\dot D}$ can be used to compute
  4487. the {\tt Curvature spinors} ($\equiv$ {\tt Curvature components})
  4488. \object{Weyl Spinor RW.ABCD}{C_{ABCD}}
  4489. \object{Traceless Ricci Spinor RC.AB.CD\cc}{C_{AB\dot C\dot D}}
  4490. \object{Scalar Curvature RR}{R}
  4491. \object{Ricanti Spinor RA.AB}{A_{AB}}
  4492. \object{Traceless Deviation Spinor RB.AB.CD\cc}{B_{AB\dot C\dot D}}
  4493. \object{Scalar Deviation RD}{D}
  4494. All these spinors are irreducible (totally symmetric).
  4495. Weyl spinor $C_{ABCD}$ {\tt From spinor curvature} is
  4496. \begin{eqnarray}
  4497. C_{abcd}&\tsst& C_{ABCD}\epsilon_{\dot{A}\dot{B}}\epsilon_{\dot{C}\dot{D}}
  4498. +C_{\dot{A}\dot{B}\dot{C}\dot{D}}\epsilon_{AB}\epsilon_{CD} \\[1mm]
  4499. C_{ABCD}&=&R_{(ABCD)} \label{RW}
  4500. \end{eqnarray}
  4501. Traceless Ricci spinor $C_{AB\dot{A}\dot{B}}$ {\tt From spinor curvature} is
  4502. \begin{eqnarray}
  4503. C_{ab}&\tsst&C_{AB\dot{A}\dot{B}}\\[2mm]
  4504. C_{AB\dot{C}\dot{D}}&=&\pm(R_{AB\dot{C}\dot{D}}+R_{\dot{C}\dot{D} AB})
  4505. \end{eqnarray}
  4506. Scalar curvature {\tt From spinor curvature} is
  4507. \begin{equation} R=2(R^{MN}_{\ \ \ \ MN}+R^{\dot{M}\dot{N}}_{\ \ \ \ \dot{M}\dot{N}})
  4508. \end{equation}
  4509. Antisymmetric Ricci spinor $A_{AB}$ {\tt From spinor curvature} is
  4510. \begin{eqnarray}
  4511. A_{ab}&\tsst& A_{AB}\epsilon_{\dot{A}\dot{B}}+A_{\dot{A}\dot{B}}\epsilon_{AB}\\[1mm]
  4512. A_{AB}&=&\mp R^{\ \ \ \,M}_{(A|\ \ M|B)}
  4513. \end{eqnarray}
  4514. Traceless deviation spinor $B_{AB\dot{A}\dot{B}}$ {\tt From spinor curvature} is
  4515. \begin{eqnarray}
  4516. B_{ab}&\tsst&B_{AB\dot{A}\dot{B}}\\[1mm]
  4517. B_{AB\dot{C}\dot{D}}&=&\pm i(R_{AB\dot{C}\dot{D}}-R_{\dot{C}\dot{D} AB})
  4518. \end{eqnarray}
  4519. Deviation trace {\tt From spinor curvature} is
  4520. \begin{equation}
  4521. D=-2i(R^{MN}_{\ \ \ \ MN}-R^{\dot{M}\dot{N}}_{\ \ \ \ \dot{M}\dot{N}})
  4522. \end{equation}
  4523. Note that spinors $C_{AB\dot{A}\dot{B}},B_{AB\dot{A}\dot{B}}$ are Hermitian
  4524. \begin{equation}
  4525. C_{AB\dot{C}\dot{D}}=\overline{C_{CD\dot{A}\dot{B}}},\ \
  4526. B_{AB\dot{C}\dot{D}}=\overline{B_{CD\dot{A}\dot{B}}}
  4527. \end{equation}
  4528. Finally we introduce the decomposition for the spinorial
  4529. curvature 2-form
  4530. \begin{equation}
  4531. \Omega_{AB}=
  4532. \OO{w}_{AB}+\OO{c}_{AB}+\OO{r}_{AB}
  4533. +\OO{a}_{AB}+\OO{b}_{AB}+\OO{c}_{AB}
  4534. \end{equation}
  4535. where the {\tt Undotted curvature 2-forms}
  4536. \object{Undotted Weyl 2-form OMWU.AB }{\OO{w}_{AB}}
  4537. \object{Undotted Traceless Ricci 2-form OMCU.AB }{\OO{c}_{AB}}
  4538. \object{Undotted Scalar Curvature 2-form OMRU.AB }{\OO{r}_{AB}}
  4539. \object{Undotted Ricanti 2-form OMAU.AB }{\OO{a}_{AB}}
  4540. \object{Undotted Traceless Deviation 2-form OMBU.AB }{\OO{b}_{AB}}
  4541. \object{Undotted Scalar Deviation 2-form OMDU.AB }{\OO{d}_{AB}}
  4542. are given by
  4543. \begin{eqnarray}
  4544. \OO{w}_{AB}&=&C_{ABCD}S^{CD} \\[1mm]
  4545. \OO{c}_{AB}&=&\pm\frac12 C_{AB\dot{C}\dot{D}}S^{\dot{C}\dot{D}} \\[1mm]
  4546. \OO{r}_{AB}&=&\frac1{12}S_{AB}R \\[1mm]
  4547. \OO{a}_{AB}&=&\pm A_{(A}^{\ \ \ M}S_{M|B)} \\[1mm]
  4548. \OO{b}_{AB}&=&\mp\frac{i}2 B_{AB\dot{C}\dot{D}}S^{\dot{C}\dot{D}} \\[1mm]
  4549. \OO{d}_{AB}&=&\frac{i}{12}S_{AB}D
  4550. \end{eqnarray}
  4551. \section{Torsion Decomposition}
  4552. The torsion tensor
  4553. \begin{equation}
  4554. Q_{abc}=Q_{a[bc]},\qquad
  4555. \Theta^a=\frac{1}{2}Q^a{}_{bc}\,S^{bc}
  4556. \end{equation}
  4557. consists of three irreducible pieces
  4558. \begin{equation}
  4559. Q_{abc} =
  4560. \stackrel{\rm c}{Q}_{abc}
  4561. +\stackrel{\rm t}{Q}_{abc}
  4562. +\stackrel{\rm a}{Q}_{abc}
  4563. \end{equation}
  4564. \begin{center}
  4565. \begin{tabular}{|c|c|c|}
  4566. \hline object & exists if & and has $n$ components \\
  4567. \hline
  4568. \vv$Q_{abc}$ & & $\frac{d^2(d-1)}{2}$ \\[1mm]
  4569. \hline\vv$\stackrel{\rm c}{Q}_{abc}$ & $d\geq3$ & $\frac{d(d^2-4)}{3}$ \\
  4570. \vv$\stackrel{\rm t}{Q}_{abc}$ & & $d$ \\
  4571. \vv$\stackrel{\rm a}{Q}_{abc}$ & $d\geq3$ & $\frac{d(d-1)(d-2)}{6}$ \\[1mm]
  4572. \hline
  4573. \end{tabular}
  4574. \end{center}
  4575. The corresponding union of three objects {\tt Torsion 2-forms} is
  4576. \object{Traceless Torsion 2-form THQC'a}
  4577. {\stackrel{\rm c}{\Theta}\!{}^a=\frac{1}{2}
  4578. \stackrel{\rm c}{Q}\!{}^a{}_{bc}\,S^{bc}}
  4579. \object{Torsion Trace 2-form THQT'a}
  4580. {\stackrel{\rm t}{\Theta}\!{}^a=\frac{1}{2}
  4581. \stackrel{\rm t}{Q}\!{}^a{}_{bc}\,S^{bc}}
  4582. \object{Antisymmetric Torsion 2-form THQA'a}
  4583. {\stackrel{\rm a}{\Theta}\!{}^a=\frac{1}{2}
  4584. \stackrel{\rm a}{Q}\!{}^a{}_{bc}\,S^{bc}}
  4585. And the auxiliary quantities
  4586. \object{Torsion Trace QT'a}{Q^a}
  4587. \object{Torsion Trace 1-form QQ}{Q=-\partial_a\ipr\Theta^a}
  4588. \object{Antisymmetric Torsion 3-form QQA}{\stackrel{\rm a}{Q}=\theta_a\wedge\Theta^a}
  4589. The torsion trace $Q^a=Q^m{}_{am}$ can be obtained {\tt From torsion
  4590. trace 1-form}
  4591. \begin{equation}
  4592. Q^a = \partial^a\ipr Q
  4593. \end{equation}
  4594. The {\tt Standard way} for the irreducible torsion 2-forms is
  4595. \begin{equation}
  4596. \stackrel{\rm t}{\Theta}\!{}^a = -\frac{1}{(d-1)}\theta^a\wedge Q
  4597. \end{equation}
  4598. \begin{equation}
  4599. \stackrel{\rm t}{\Theta}\!{}^a = \frac{1}{3}\partial^a\ipr\stackrel{\rm a}{Q}
  4600. \end{equation}
  4601. \begin{equation}
  4602. \stackrel{\rm c}{\Theta}\!{}^a = \Theta^a
  4603. -\stackrel{\rm t}{\Theta}\!{}^a
  4604. -\stackrel{\rm a}{\Theta}\!{}^a
  4605. \end{equation}
  4606. The rest of this section is valid in dimension 4 only.
  4607. In this case one can introduce the torsion pseudo trace
  4608. \object{Torsion Pseudo Trace QP'a}{
  4609. P^a = \stackrel{*}{Q}\!{}^{ma}{}_{m},
  4610. \ \stackrel{*}{Q}\!{}^a{}_{bc} = \frac{1}{2}{\cal E}_{bc}{}^{pq}
  4611. Q^a{}_{pq}}
  4612. which can be computed {\tt From antisymmetric torsion 3-form}
  4613. \begin{equation}
  4614. P^a = \partial^a\ipr\,*\!\stackrel{\rm a}{Q}
  4615. \end{equation}
  4616. Finally let us consider the spinorial representation of the
  4617. torsion.
  4618. Below the upper sign corresponds to the
  4619. \seethis{See \pref{spinors}\ or \ref{spinors1}.}
  4620. signature ${\scriptstyle(-,+,+,+)}$ and lower one to the
  4621. signature ${\scriptstyle(+,-,-,-)}$.
  4622. First we introduce the spinorial analog of the torsion tensor
  4623. \begin{equation}
  4624. Q_{abc}\tsst Q_{A\dot{A} BC}\epsilon_{\dot{B}\dot{C}}
  4625. +Q_{A\dot{A}\dot{B}\dot{C}}\epsilon_{BC}
  4626. \end{equation}
  4627. where
  4628. \begin{equation}
  4629. Q_{A\dot{A} BC}=-i*(\Theta_{A\dot{A}}\wedge S_{BC}),\qquad
  4630. Q_{A\dot{A}\dot{B}\dot{C}}=i*(\Theta_{A\dot{A}}\wedge S_{\dot{B}\dot{C}})
  4631. \end{equation}
  4632. These spinors are reducible but the
  4633. \object{Traceless Torsion Spinor QC.ABC.D\cc}{C_{ABC\dot D}}
  4634. \[
  4635. \stackrel{\rm c}{Q}_{abc}\tsst C_{ABC\dot A}\epsilon_{\dot{B}\dot{C}}
  4636. +Q_{\dot{A}\dot{B}\dot{C}A}\epsilon_{BC},\quad
  4637. C_{\dot{A}\dot{B}\dot{C} A}=\overline{C_{ABC\dot{A}}}
  4638. \]
  4639. is irreducible (symmetric in $\scriptstyle ABC$). And it can be
  4640. computed {\tt From torsion} by the relation
  4641. \begin{equation}
  4642. C_{ABC\dot A} = Q_{(A|\dot{A}|BC)}
  4643. \end{equation}
  4644. The torsion trace can be calculated {\tt From torsion using spinors}
  4645. \begin{equation}
  4646. Q^a\tsst Q^{A\dot{A}},\quad
  4647. Q_{A\dot{B}}=\mp(Q^M{}_{\dot{B}MA}+Q_A{}^{\dot M}{}_{\dot M\dot{B}})
  4648. \end{equation}
  4649. And similarly the torsion pseudo-trace can be found
  4650. {\tt From torsion using spinors}
  4651. \begin{equation}
  4652. P^a\tsst P^{A\dot{A}},\quad
  4653. P_{A\dot{B}}=\mp i(Q^M{}_{\dot{B}MA}-Q_A{}^{\dot M}{}_{\dot M\dot{B}})
  4654. \end{equation}
  4655. Finally we introduce the {\tt Undotted trace 2-forms}
  4656. which are selfdual parts of the irreducible torsion 2-forms
  4657. \object{Undotted Traceless Torsion 2-form THQCU'a}
  4658. {\stackrel{\rm c}{\vartheta}\!{}^a}
  4659. \object{Undotted Torsion Trace 2-form THQTU'a}
  4660. {\stackrel{\rm t}{\vartheta}\!{}^a}
  4661. \object{Undotted Antisymmetric Torsion 2-form THQAU'a}
  4662. {\stackrel{\rm a}{\vartheta}\!{}^a} \seethis{See \pref{thetau}.}
  4663. These quantities will be used in the gravitational equations.
  4664. This complex 2-forms can be obtained by the equations
  4665. ({\tt Standard way}):
  4666. \begin{eqnarray}
  4667. \stackrel{\rm c}{\vartheta}\!{}^a &\tsst& \stackrel{\rm c}{\vartheta}\!{}^{A\dot A}
  4668. =C^A_{\ \ BC}{}^{\dot{A}}S^{BC}\\[1mm]
  4669. \stackrel{\rm t}{\vartheta}\!{}^a &\tsst& \stackrel{\rm t}{\vartheta}\!{}^{A\dot A}
  4670. =\mp\frac13 Q_{M}^{\ \ \ \dot{A}}S^{AM}\\[1mm]
  4671. \stackrel{\rm a}{\vartheta}\!{}^a &\tsst& \stackrel{\rm a}{\vartheta}\!{}^{A\dot A}
  4672. =\pm\frac{i}3 P_{M}^{\ \ \ \dot{A}}S^{AM}
  4673. \end{eqnarray}
  4674. \section{Nonmetricity Decomposition}
  4675. In general the nonmetricity tensor
  4676. \begin{equation}
  4677. N_{abc}=N_{(ab)c},\qquad N_{ab}=N_{abc}\theta^c
  4678. \end{equation}
  4679. consist of 4 irreducible pieces
  4680. \begin{equation}
  4681. N_{abcd} =
  4682. \stackrel{\rm c}{N}_{abc}
  4683. +\stackrel{\rm a}{N}_{abc}
  4684. +\stackrel{\rm t}{N}_{abc}
  4685. +\stackrel{\rm w}{N}_{abc}
  4686. \end{equation}
  4687. \begin{center}
  4688. \begin{tabular}{|c|c|c|}
  4689. \hline object & exists if & and has $n$ components \\
  4690. \hline
  4691. \vv$N_{abc}$ & & $\frac{d^2(d+1)}{2}$ \\[1mm]
  4692. \hline\vv$\stackrel{\rm c}{N}_{abc}$ & & $\frac{d(d-1)(d+4)}{6}$ \\
  4693. \vv$\stackrel{\rm a}{N}_{abc}$ & $d\geq3$ & $\frac{d(d^2-4)}{3}$ \\
  4694. \vv$\stackrel{\rm t}{N}_{abc}$ & & $d$ \\
  4695. \vv$\stackrel{\rm w}{N}_{abc}$ & & $d$ \\[1mm]
  4696. \hline
  4697. \end{tabular}
  4698. \end{center}
  4699. The corresponding union of objects {\tt Nonmetricity 1-forms}
  4700. consist of
  4701. \object{Symmetric Nonmetricity 1-form NC.a.b}
  4702. {\stackrel{\rm c}{N}_{ab}=\stackrel{\rm c}{N}_{abc}\theta^c}
  4703. \object{Antisymmetric Nonmetricity 1-form NA.a.b}
  4704. {\stackrel{\rm a}{N}_{ab}=\stackrel{\rm a}{N}_{abc}\theta^c}
  4705. \object{Nonmetricity Trace 1-form NT.a.b}
  4706. {\stackrel{\rm t}{N}_{ab}=\stackrel{\rm t}{N}_{abc}\theta^c}
  4707. \object{Weyl Nonmetricity 1-form NW.a.b}
  4708. {\stackrel{\rm w}{N}_{ab}=\stackrel{\rm w}{N}_{abc}\theta^c}
  4709. We have also two auxiliary 1-forms
  4710. \object{Weyl Vector NNW}{\stackrel{\rm w}{N}}
  4711. \object{Nonmetricity Trace NNT}{\stackrel{\rm t}{N}}
  4712. They are computed according to the following formulas
  4713. \begin{equation}
  4714. \stackrel{\rm w}{N} = N^a{}_a
  4715. \end{equation}
  4716. \begin{equation}
  4717. \stackrel{\rm t}{N} = \theta^a\,\partial^b\ipr N_{ab}
  4718. - \frac{1}{d} \stackrel{\rm w}{N}
  4719. \end{equation}
  4720. \begin{equation}
  4721. \stackrel{\rm w}{N}_{ab} = \frac{1}{d}g_{ab}\stackrel{\rm w}{N}
  4722. \end{equation}
  4723. \begin{equation}
  4724. \stackrel{\rm t}{N}_{ab}=\frac{d}{(d-1)(d+2)}\left[
  4725. \theta_b\partial_a\ipr\stackrel{\rm t}{N}
  4726. +\theta_a\partial_b\ipr\stackrel{\rm t}{N}
  4727. -\frac{2}{d} g_{ab} \stackrel{\rm t}{N}\right]
  4728. \end{equation}
  4729. \begin{equation}
  4730. \stackrel{\rm a}{N}_{ab}=\frac{1}{3}\left[
  4731. \partial_a\ipr(\theta^m\wedge\stackrel{0}{N}_{bm})
  4732. +\partial_b\ipr(\theta^m\wedge\stackrel{0}{N}_{am})\right]
  4733. \end{equation}
  4734. where
  4735. \[
  4736. \stackrel{\rm 0}{N}_{ab}=
  4737. N_{abc}
  4738. -\stackrel{\rm t}{N}_{abc}
  4739. -\stackrel{\rm w}{N}_{abc}
  4740. \]
  4741. And finally
  4742. \begin{equation}
  4743. \stackrel{\rm c}{N}_{ab}=
  4744. N_{abc}
  4745. -\stackrel{\rm a}{N}_{abc}
  4746. -\stackrel{\rm t}{N}_{abc}
  4747. -\stackrel{\rm w}{N}_{abc}
  4748. \end{equation}
  4749. \section{Newman-Penrose Formalism}
  4750. The method of spinorial differential forms described in the
  4751. previous sections are essentially equivalent to the well
  4752. known Newman-Penrose formalism but for the sake of convenience
  4753. \grg\ has complete set of macro objects which allows to
  4754. write the Newman-Penrose equations in
  4755. traditional notation. All these objects refer (up to some sign
  4756. and 1/2 factors) to other \grg\ built-in objects.
  4757. In this section upper sign corresponds to the
  4758. signature ${\scriptstyle(-,+,+,+)}$ and lower one to the
  4759. signature ${\scriptstyle(+,-,-,-)}$.
  4760. \seethis{See \pref{spinors}.}
  4761. The frame must be null as explained in section \ref{spinors}.
  4762. For the Newman-Penrose formalism we use notation and conventions
  4763. of the book \emph{Exact Solutions of the Einstein Field Equations}
  4764. by D. Kramer, H. Stephani, M. MacCallum and E. Herlt, ed.
  4765. E. Schmutzer (Berlin, 1980). We denote this book as ESEFE.
  4766. We chose the relationships between NP null tetrad and \grg\ null
  4767. frame as follows
  4768. \begin{equation}
  4769. l^\mu=h^\mu_0,\quad
  4770. k^\mu=h^\mu_1,\quad
  4771. \overline{m}\!{}^\mu=h^\mu_2,\quad
  4772. m^\mu=h^\mu_3
  4773. \end{equation}
  4774. The NP vector operators are just the components of the
  4775. vector frame $\partial_a$
  4776. \begin{eqnarray}
  4777. \mbox{\tt DD}&=& D =\partial_1 \\
  4778. \mbox{\tt DT}&=& \Delta=\partial_0 \\
  4779. \mbox{\tt du}&=& \delta=\partial_3 \\
  4780. \mbox{\tt dd}&=& \overline\delta=\partial_2
  4781. \end{eqnarray}
  4782. The spin coefficient are the components of the connection
  4783. 1-form
  4784. \object{SPCOEF.AB.c}{ \omega_{AB\,c}=\partial_c\ipr\omega_{AB}}
  4785. or in the NP notation
  4786. \begin{eqnarray}
  4787. \mbox{\tt alphanp }&=& \alpha =\pm\omega_{(1)2} \\
  4788. \mbox{\tt betanp }&=& \beta =\pm\omega_{(1)3} \\
  4789. \mbox{\tt gammanp }&=& \gamma =\pm\omega_{(1)0} \\
  4790. \mbox{\tt epsilonnp }&=& \epsilon =\pm\omega_{(1)1} \\
  4791. \mbox{\tt kappanp }&=& \kappa =\pm\omega_{(0)1} \\
  4792. \mbox{\tt rhonp }&=& \rho =\pm\omega_{(0)2} \\
  4793. \mbox{\tt sigmanp }&=& \sigma =\pm\omega_{(0)3} \\
  4794. \mbox{\tt taunp }&=& \tau =\pm\omega_{(0)0} \\
  4795. \mbox{\tt munp }&=& \mu =\pm\omega_{(2)3} \\
  4796. \mbox{\tt nunp }&=& \nu =\pm\omega_{(2)0} \\
  4797. \mbox{\tt lambdanp }&=& \lambda =\pm\omega_{(2)2} \\
  4798. \mbox{\tt pinp }&=& \pi =\pm\omega_{(2)1} \\
  4799. \end{eqnarray}
  4800. where the first index of the
  4801. quantity $\omega_{(AB)c}$ is included inn parentheses to remind
  4802. that it is summed spinorial index.
  4803. Finally for the curvature we have
  4804. \object{PHINP.AB.CD\cc }{
  4805. \Phi_{AB\dot{C}\dot{D}} = \pm\frac{1}{2}C_{AB\dot C\dot D} }
  4806. \object{PSINP.ABCD }{\Psi_{ABCD}=C_{ABCD}}
  4807. the conventions for the scalar curvature $R$ in ESEFE and
  4808. in \grg\ are the same.
  4809. For the signature ${\scriptstyle(-,+,+,+)}$ the Newman-Penrose equations for
  4810. the quantities introduced above can be found in section 7.1 of ESEFE.
  4811. For other signature ${\scriptstyle(+,-,-,-)}$ one must alter the sign of
  4812. $\Psi_{ABCD}$, $\Phi_{AB\dot{C}\dot{D}}$ and $R$ in Eqs. (7.28)--(7.45).
  4813. \section{Electromagnetic Field}
  4814. Formulas in this section are valid only in spaces
  4815. with the signature ${\scriptstyle(-,+,\dots,+)}$ and
  4816. ${\scriptstyle(+,-,\dots,-)}$.
  4817. The sign factor $\sigma$ in the expressions below is
  4818. $\sigma=-{\rm diag}_0$ ($+1$ for the first signature and $-1$
  4819. for the second).
  4820. Let us introduce the
  4821. \object{EM Potential A}{A=A_\mu dx^\mu}
  4822. and the
  4823. \object{Current 1-form J}{J=j_\mu dx^\mu}
  4824. The EM strength tensor
  4825. $F_{\alpha\beta}=\partial_\alpha A_\beta-\partial_\beta A_\alpha$
  4826. \object{EM Tensor FT.a.b}{F_{ab}=
  4827. \partial_b\ipr\partial_a\ipr F}
  4828. where $F$ is the
  4829. \object{EM 2-form FF}{F}
  4830. which can be found {\tt From EM potential}
  4831. \begin{equation}
  4832. F=dA
  4833. \end{equation}
  4834. or {\tt From EM tensor}
  4835. \begin{equation}
  4836. F = \frac{1}{2}F_{ab}\,S^{ab}
  4837. \end{equation}
  4838. The EM action $d$-form
  4839. \object{EM Action EMACT}{L_{\rm EM}=
  4840. -\frac{1}{8\pi}\,F\wedge *F}
  4841. The {\tt Maxwell Equations}
  4842. \object{First Maxwell Equation MWFq}{d*F=-4\pi\sigma\,(-1)^{d}\,*J}
  4843. \object{Second Maxwell Equation MWSq}{dF=0}
  4844. The current must satisfy the
  4845. \object{Continuity Equation COq}{d*J=0}
  4846. The
  4847. \object{EM Energy-Momentum Tensor TEM.a.b}{T_{ab}^{\rm EM}}
  4848. is given by the equation
  4849. \begin{equation}
  4850. T^{\rm EM}_{ab} = \frac{\sigma}{4\pi}
  4851. F_{am}F_b{}^m +s\sigma\,g_{ab}\,*L_{\rm EM}
  4852. \end{equation}
  4853. The rest of the section is valid in the dimension 4 only.
  4854. In 4 dimensions the tensor $F_{ab}$ and its dual
  4855. $\stackrel{*}{F}_{ab}=\frac{1}{2}{\cal E}_{ab}{}^{mn}F_{mn}$
  4856. are expressed via usual 3-dimensional vectors $\vec E$ and
  4857. $\vec H$
  4858. \begin{eqnarray}
  4859. F_{ab}&=&-\sigma\left(\begin{array}{rrr}
  4860. E_1&E_2&E_3\\
  4861. &-H_3&H_2\\
  4862. &&-H_1\end{array}\right)\\[1.5mm]
  4863. \stackrel{*}{F}_{ab}&=&\sigma\left(\begin{array}{rrr}
  4864. H_1&H_2&H_3\\
  4865. &E_3&-E_2\\
  4866. &&E_1\end{array}\right)
  4867. \end{eqnarray}
  4868. Similarly for the current we have
  4869. \begin{equation}
  4870. J=\sigma(-\rho dt + \vec j\,d\vec x)
  4871. \end{equation}
  4872. The {\tt EM scalars}
  4873. \object{First EM Scalar SCF}{I_1=\frac12F_{ab}F^{ab}
  4874. ={\vec H}^2-{\vec E}^2}
  4875. \object{Second EM Scalar SCS}{I_2=\frac12\stackrel{*}{F}_{ab}F^{ab}
  4876. =2\vec E\cdot\vec H}
  4877. can be obtained as follows by {\tt Standard way}
  4878. \begin{equation}
  4879. I_1 = -*(F\wedge*F)
  4880. \end{equation}
  4881. \begin{equation}
  4882. I_2 = *(F\wedge F)
  4883. \end{equation}
  4884. The
  4885. \object{Complex EM 2-form FFU}{\Phi}
  4886. can be found {\tt From EM 2-form}
  4887. \begin{equation}
  4888. \Phi=F-i*F
  4889. \end{equation}
  4890. or {\tt From EM Spinor}
  4891. \begin{equation}
  4892. \Phi = 2\Phi_{AB}\,S^{AB}
  4893. \end{equation}
  4894. The 2-form $\Phi$ must obey the
  4895. \object{Selfduality Equation SDq.AB\cc}{\Phi\wedge S_{\dot A\dot B}}
  4896. and gives rise to the
  4897. \object{Complex Maxwell Equation MWUq}{d\Phi=-4i\sigma\pi\,*J}
  4898. The EM 2-form $F$ can be restored {\tt From Complex EM 2-form}
  4899. \begin{equation}
  4900. F=\frac{1}{2}(\Phi+\overline\Phi)
  4901. \end{equation}
  4902. The symmetric
  4903. \object{Undotted EM Spinor FIU.AB}{\Phi_{AB}}
  4904. is the spinorial analog of the tensor $F_{ab}$
  4905. \begin{equation}
  4906. F_{ab} \tsst \epsilon_{AB} \Phi_{\dot A\dot B}
  4907. + \epsilon_{\dot A\dot B} \Phi_{AB}
  4908. \end{equation}
  4909. It can be obtained either {\tt From complex EM 2-form}
  4910. \begin{equation}
  4911. \Phi_{AB} = -\frac{i}{2}*(\Phi\wedge S_{AB})
  4912. \end{equation}
  4913. of {\tt From EM 2-form}
  4914. \begin{equation}
  4915. \Phi_{AB} = -i*(F\wedge S_{AB})
  4916. \end{equation}
  4917. The
  4918. \object{Complex EM Scalar SCU}{\iota=I_1-iI_2}
  4919. can be found {\tt From EM Spinor}
  4920. \begin{equation}
  4921. \iota = 2\Phi_{AB}\Phi^{AB}
  4922. \end{equation}
  4923. or {\tt From Complex EM 2-form}
  4924. \begin{equation}
  4925. \iota = -\frac{i}{2} *(\Phi\wedge\Phi)
  4926. \end{equation}
  4927. Finally we have the
  4928. \object{EM Energy-Momentum Spinor TEMS.AB.CD\cc}
  4929. {T^{\rm EM}_{AB\dot A\dot B}=\frac{1}{2\pi}\Phi_{AB}\Phi_{\dot A\dot B}}
  4930. \section{Dirac Field}
  4931. In this section upper sign corresponds to the
  4932. signature ${\scriptstyle(-,+,+,+)}$ and lower one to the
  4933. signature ${\scriptstyle(+,-,-,-)}$.
  4934. The four component Dirac spinor consists of two 1-index spinors
  4935. \begin{equation}
  4936. \psi=\left(\begin{array}{c}\phi^A\\ \chi_{\dot A}\end{array}\right),\ \
  4937. \overline\psi=\left(\chi_A\ \ \phi^{\dot A}\right)
  4938. \end{equation}
  4939. Thus we have the {\tt Dirac spinor} as the union of two objects
  4940. \object{Phi Spinor PHI.A}{\phi_A}
  4941. \object{Chi Spinor CHI.B}{\chi_B}
  4942. The gamma-matrices are expressed via sigma-matrices as follows
  4943. \begin{equation}
  4944. \gamma^m=\sqrt2\left(\begin{array}{cc}
  4945. 0&\sigma^{mA\dot B}\\ \sigma^m\!{}_{B\dot A}&0\end{array}\right)
  4946. \end{equation}
  4947. Dirac field action 4-form
  4948. \begin{eqnarray}
  4949. &&\mbox{\tt Dirac Action 4-form DACT}=L_{\rm D}=\nonumber\\[1mm]
  4950. &&\quad=\left[\frac{i}2(\overline\psi\gamma^a
  4951. (\nabla_a+ieA_a)\psi-(\nabla_a-ieA_a)\overline\psi\gamma^a\psi)
  4952. -m_{\rm D}\overline\psi\psi\right]\upsilon
  4953. \end{eqnarray}
  4954. The {\tt Standard way} to compute this quantity is
  4955. \begin{eqnarray}
  4956. L_{\rm D} &=& -\frac{i}{\sqrt2}\left[
  4957. \phi_{\dot A}\theta^{A\dot A}\!\wedge*(D+ieA)\phi_A-{\rm c.c.}
  4958. -\chi_{\dot A} \theta^{A\dot A}\!\wedge*(D-ieA)\chi_A -{\rm c.c.}\right]-
  4959. \nonumber\\[1mm]&&\qquad\qquad\quad
  4960. -m_{\rm D}\left(\phi^A\chi_A+{\rm c.c.}\right)\upsilon
  4961. \end{eqnarray}
  4962. The {\tt Dirac equation} is
  4963. \object{Phi Dirac Equation DPq.A\cc}{
  4964. i\sqrt2\partial_{B\dot A}\ipr(D+ieA-\frac12Q)\phi^B-m_{\rm D}\chi_{\dot A}=0}
  4965. \object{Chi Dirac Equation DCq.A\cc}{
  4966. i\sqrt2\partial_{B\dot A}\ipr(D-ieA-\frac12Q)\chi^B-m_{\rm D}\phi_{\dot A}=0}
  4967. where $Q$ is the torsion trace 1-form. Notice that terms with the
  4968. electromagnetic field $eA$ are included in equations iff
  4969. the value of $A$ is defined. The unit charge $e$ is given by the
  4970. constant \comm{ECONST}.
  4971. The current 1-form can be computed {\tt From Dirac Spinor}
  4972. \begin{equation}
  4973. J=\mp\sqrt2e(\phi_A\phi_{\dot A}+\chi_A\chi_{\dot A})\theta^{A\dot A}
  4974. \end{equation}
  4975. The symmetrized
  4976. \object{Dirac Energy-Momentum Tensor TDI.a.b}{T^{\rm D}_{ab}}
  4977. can be obtained as follows
  4978. \begin{eqnarray}
  4979. T^{\rm D}_{ab}&=&
  4980. *(\theta_{(a}\wedge T^{\rm D}_{b)})\nonumber\\[1mm]
  4981. T^{\rm D}_a&=&\mp\frac{i}{\sqrt2}\Big[
  4982. *\theta^{A\dot A}\partial_a\ipr(D+ieA)\phi_A\phi_{\dot A}
  4983. -{\rm c.c.}\nonumber\\
  4984. &&\qquad-*\theta^{A\dot A}\partial_a\ipr(D-ieA)\chi_A\chi_{\dot A}
  4985. -{\rm c.c.}\Big]
  4986. \pm\partial_a\ipr L_{\rm D}
  4987. \end{eqnarray}
  4988. The
  4989. \object{Undotted Dirac Spin 3-Form SPDIU.AB}{s^{\rm D}_{AB}}
  4990. \begin{equation}
  4991. s^{\rm D}_{AB}=\frac{i}{2\sqrt2}
  4992. \left(*\theta_{(A|\dot A}\phi_{B)}\phi^{\dot A}
  4993. -*\theta_{(A|\dot A}\chi_{B)}\chi^{\dot A}\right)
  4994. \end{equation}
  4995. The Dirac field mass $m_{\rm D}$ is given by the constant
  4996. \comm{DMASS}.
  4997. \section{Scalar Field}
  4998. Formulas in this section are valid in any dimension
  4999. with the signature ${\scriptstyle(-,+,\dots,+)}$ and
  5000. ${\scriptstyle(+,-,\dots,-)}$.
  5001. The sign factor $\sigma$ is $\sigma=-{\rm diag}_0$
  5002. ($+1$ for the first signature and $-1$ for the second).
  5003. The scalar field
  5004. \object{Scalar Field FI}{\phi}
  5005. The minimal scalar field action $d$-form
  5006. \object{Minimal Scalar Action SACTMIN}{
  5007. L_{\rm Smin}=
  5008. -\frac{1}{2}\left[\sigma(\partial_\alpha\phi)^2+
  5009. m_{\rm s}^2 \phi^2\right]\upsilon}
  5010. The nonminimal scalar field action
  5011. \object{Scalar Action SACT}{
  5012. L_{\rm S}=
  5013. -\frac{1}{2}\left[\sigma(\partial_\alpha\phi)^2+
  5014. (m_{\rm s}^2+a_0R) \phi^2\right]\upsilon}
  5015. The scalar field equation
  5016. \object{Scalar Equation SCq}
  5017. {s\sigma(-1)^d*d*d\phi-(m_{\rm s}^2+a_0R)\phi=0}
  5018. which gives
  5019. \[
  5020. -\sigma\rim{\nabla}{}^\pi\rim{\nabla}_\pi\phi-(m_{\rm s}^2+a_0R)\phi=0
  5021. \]
  5022. The minimal energy-momentum tensor is
  5023. \begin{eqnarray}
  5024. &&\mbox{\tt Minimal Scalar Energy-Momentum Tensor TSCLMIN.a.b}
  5025. =T^{\rm Smin}_{ab}= \nonumber\\
  5026. &&\qquad\qquad=\partial_a\phi\partial_b\phi+s\sigma\,g_{ab}
  5027. *L_{\rm Smin}
  5028. \end{eqnarray}
  5029. The nonminimal part of the scalar field energy-momentum
  5030. \seethis{See pages \pageref{graveq}\ and \pageref{metreq}.}
  5031. tensor can be taken into account in the left-hand side
  5032. of gravitational equations.
  5033. The scalar field mass $m_{\rm s}$ are given by the
  5034. constant {\tt SMASS}. The nonminimal interaction
  5035. terms are included iff the switch \comm{NONMIN} \swind{NONMIN}
  5036. is turned on and the value of nonminimal interaction constant
  5037. $a_0$ is determined by the object
  5038. \object{A-Constants ACONST.i2}{a_i}
  5039. The default value of $a_0$ is the constant \comm{AC0}.
  5040. \section{Yang-Mills Field}
  5041. Formulas in this section are valid in any dimension
  5042. with the signature ${\scriptstyle(-,+,\dots,+)}$ and
  5043. ${\scriptstyle(+,-,\dots,-)}$.
  5044. The sign factor $\sigma$ in the expressions below is
  5045. $\sigma=-{\rm diag}_0$ ($+1$ for the first signature and $-1$
  5046. for the second). The indices $\scriptstyle i,j,k,l,m,n$
  5047. are the internal space Yang-Mills indices and we a
  5048. assume that the internal Yang-Mills metric is $\delta_{ij}$.
  5049. The Yang-Mills potential 1-form
  5050. \object{YM Potential AYM.i9}{A^i=A^i_\mu dx^\mu}
  5051. The structural constants
  5052. \object{Structural Constants SCONST.i9.j9.k9}{c^i{}_{jk}=c^i{}_{[jk]}}
  5053. The Yang-Mills strength 2-form
  5054. \object{YM 2-form FFYM.i9}{F^i}
  5055. and strength tensor
  5056. \object{YM Tensor FTYM.i9.a.b}{F^i{}_{ab}}
  5057. The $F^i$ can be computed {\tt From YM potential}
  5058. \begin{equation}
  5059. F^i = dA^i + \frac12 c^i{}_{jk} \, A^j\wedge A^k
  5060. \end{equation}
  5061. or {\tt From YM tensor}
  5062. \begin{equation}
  5063. F^i = \frac12 F^i{}_{ab}\, S^{ab}
  5064. \end{equation}
  5065. The {\tt Standard way} to find Yang-Mills strength tensor is
  5066. \begin{equation}
  5067. F^i{}_{ab}=\partial_b\ipr\partial_a\ipr F^i
  5068. \end{equation}
  5069. The Yang-Mills action $d$-form
  5070. \object{YM Action YMACT}{L_{\rm YM}=
  5071. -\frac{1}{8\pi}F^i\wedge*F_i}
  5072. The {\tt YM Equations}
  5073. \object{First YM Equation YMFq.i9}{d*F^i + c^i{}_{jk} \, A^j\wedge *F^k=0}
  5074. \object{Second YM Equation YMSq.i9}{dF^i + c^i{}_{jk} \, A^j\wedge F^k=0}
  5075. The energy-momentum tensor
  5076. \object{YM Energy-Momentum Tensor TYM.a.b}
  5077. {\frac{\sigma}{4\pi}F^i{}_{am}F^i{}_b{}^m + s\sigma\,g_{ab}\,
  5078. *L_{\rm YM}}
  5079. \section{Geodesics}
  5080. The geodesic equation
  5081. \object{Geodesic Equation GEOq\^m}{
  5082. \frac{d^2x^\mu}{dt^2}+\{^\mu_{\pi\tau}\}
  5083. \frac{dx^\pi}{dt}\frac{dx^\tau}{dt}=0}
  5084. Here the parameter $t$ must be declared by the
  5085. \seethis{See page \pageref{affpar}.}
  5086. \cmdind{Affine Parameter}
  5087. {\tt Affine parameter} declaration.
  5088. \section{Null Congruence and Optical Scalars}
  5089. Let us consider the congruence defined by the vector field
  5090. $k^\alpha$
  5091. \object{Congruence KV}{k=k^\mu\partial_\mu}
  5092. This congruence is null iff
  5093. \object{Null Congruence Condition NCo}{k\cdot k=0}
  5094. holds.
  5095. The congruence is geodesic iff the condition
  5096. \object{Geodesics Congruence Condition GCo'a}{k^\mu\rim{\nabla}_\mu k^a=0}
  5097. is fulfilled.
  5098. For the null geodesic congruence one can calculate the
  5099. {\tt Optical scalars}
  5100. \object{Congruence Expansion thetaO}{\theta=
  5101. \frac{1}{2}\rim{\nabla}{}^\pi k_\pi}
  5102. \object{Congruence Squared Rotation omegaSQO}{\omega^2=
  5103. \frac{1}{2}(\rim{\nabla}_{[\alpha}k_{\beta]})^2}
  5104. \object{Congruence Squared Shear sigmaSQO}{\sigma\overline\sigma=
  5105. \frac{1}{2}\left[ (\rim{\nabla}_{(\alpha}k_{\beta)})^2
  5106. -2\theta^2\right]}
  5107. \section{Timelike Congruences and Kinematics}
  5108. Let us consider the congruence determined by the velocity
  5109. vector $u^\alpha$
  5110. \object{Velocity UU'a}{u^a}
  5111. \object{Velocity Vector UV}{u=u^a\partial_a}
  5112. The velocity vector must be normalized and the quantity
  5113. \object{Velocity Square USQ}{u^2=u\cdot u}
  5114. must be constant but nonzero.
  5115. If the frame metric coincides with its default
  5116. diagonal value \seethis{See \pref{defaultmetric}.}
  5117. $g_{ab}={\rm diag}(-1,\dots)$
  5118. then {\tt By default} we have for the velocity
  5119. \begin{equation}
  5120. u^a=(1,0,\dots,0)
  5121. \end{equation}
  5122. which means that the congruence is comoving in the given frame.
  5123. In general case the velocity can be obtained
  5124. {\tt From velocity vector}
  5125. \begin{equation}
  5126. u^a=u\ipr \theta^a
  5127. \end{equation}
  5128. We introduce the auxiliary object
  5129. \object{Projector PR'a.b}{P^a{}_b=
  5130. \delta^a_b-\frac{1}{u^2}u^an_b}
  5131. The following four quantities called {\tt Kinematics}
  5132. comprise the complete set of the congruence characteristics
  5133. \object{Acceleration accU'a}{A^a=\rim{\nabla}_uu^a}
  5134. \object{Vorticity omegaU.a.b}{\omega_{ab}=
  5135. P^m{}_aP^n{}_b \rim{\nabla}_{[m}u_{n]}}
  5136. \object{Volume Expansion thetaU}{\Theta=\rim{\nabla}_au^a}
  5137. \object{Shear sigmaU.a.b}{
  5138. P^m{}_aP^n{}_b \rim{\nabla}_{(m}u_{n)}-
  5139. \frac{1}{(d-1)}P_{ab}\Theta}
  5140. \section{Ideal And Spin Fluid}
  5141. The ideal fluid is characterized by the
  5142. \object{Pressure PRES}{p}
  5143. and
  5144. \object{Energy Density ENER}{\varepsilon}
  5145. The ideal fluid energy-momentum tensor is
  5146. \begin{eqnarray}
  5147. &&\mbox{\tt Ideal Fluid Energy-Momentum Tensor TIFL.a.b}=
  5148. T^{\rm IF}_{ab} = \nonumber\\
  5149. &&\qquad\qquad=(\varepsilon+p)u_a u_b - u^2p g_{ab}
  5150. \end{eqnarray}
  5151. The rest of the section requires the nonmetricity be zero
  5152. (\comm{NONMETR} is off).
  5153. In addition spin-fluid is characterized by
  5154. \object{Spin Density SPFLT.a.b }{S^{\rm SF}_{ab}=S^{\rm SF}_{[ab]}}
  5155. or equivalently by
  5156. \object{Spin Density 2-form SPFL }{S^{\rm SF}}
  5157. The spin 2-form can be obtained {\tt From spin density}
  5158. \begin{equation}
  5159. S^{\rm SF}=\frac{1}{2}S^{\rm SF}_{ab} \theta^a\wedge\theta^a
  5160. \end{equation}
  5161. and $s_{ab}$ is determined {\tt From spin density 2-form}
  5162. \begin{equation}
  5163. S^{\rm SF}_{ab}= \partial_b\ipr\partial_a\ipr S^{\rm SF}
  5164. \end{equation}
  5165. The spin density must satisfy the Frenkel condition
  5166. \object{Frenkel Condition FCo}{u\ipr S^{\rm SF}=0}
  5167. The spin fluid energy-momentum tensor is
  5168. \begin{eqnarray}
  5169. &&\mbox{\tt Spin Fluid Energy-Momentum Tensor TSFL.a.b}=T^{\rm SF}_{ab}=
  5170. \nonumber\\
  5171. &&\qquad\qquad=(\varepsilon+p)u_a u_b - u^2p g_{ab}+\Delta_{(ab)}
  5172. \end{eqnarray}
  5173. where
  5174. \begin{equation}
  5175. \Delta_{ab}=-2(g^{cd}+u^{-2}\,u^cu^d) \nabla_c S^{\rm SF}_{(ab)d}
  5176. \end{equation}
  5177. \begin{equation}
  5178. s^{\rm SF}_{abc}=u_a\,S^{\rm SF}_{bc}
  5179. \end{equation}
  5180. if torsion is zero (\comm{TORSION} off) and
  5181. \begin{equation}
  5182. \Delta_{ab}=2u^{-2}\,u_au^d\,\nabla_u S^{\rm SF}_{bd}
  5183. \end{equation}
  5184. if torsion is nonzero (\comm{TORSION} on).
  5185. Notice that the energy-momentum \seethis{See \pref{tsym}.}
  5186. tensor $T^{\rm SF}_{ab}$ is symmetrized.
  5187. Finally yet another representation for the spin
  5188. is the undotted spin 3-form
  5189. \object{Undotted Fluid Spin 3-form SPFLU.AB }{s^{\rm SF}_{AB}}
  5190. which is given by the standard spinor $\tsst$ tensor correspondence rules
  5191. \begin{equation}
  5192. s^{\rm SF}_{mab}\,*\theta^m \tsst \epsilon_{AB} s^{\rm SF}_{\dot A\dot B}
  5193. + \epsilon_{\dot A\dot B}s^{\rm SF}_{AB}
  5194. \end{equation}
  5195. according to Eq. (\ref{asys}). \seethis{See \pref{asys}.}
  5196. This quantity is used in the right-hand side of gravitational equations.
  5197. \section{Total Energy-Momentum And Spin}
  5198. \label{totalc}
  5199. \enlargethispage{4mm}
  5200. The total energy-momentum tensor
  5201. \object{Total Energy-Momentum Tensor TENMOM.a.b}{T_{ab}}
  5202. and the total undotted spin 3-form \seethis{See pages \pageref{graveq}\ and \pageref{metreq}.}
  5203. \object{Total Undotted Spin 3-form SPINU.AB}{s_{AB}}
  5204. play the role of sources in the right-hand side of the
  5205. gravitational equations.
  5206. The expression for these quantities read
  5207. \begin{equation}
  5208. T_{ab} =
  5209. T^{\rm D}_{ab}+
  5210. T^{\rm EM}_{ab}+
  5211. T^{\rm YM}_{ab}+
  5212. T^{\rm Smin}_{ab}+
  5213. T^{\rm IF}_{ab}+
  5214. T^{\rm SF}_{ab} \label{b1}
  5215. \end{equation}
  5216. \begin{equation}
  5217. s_{AB} = s_{AB}^{\rm D} + s_{AB}^{\rm SF} \label{b2}
  5218. \end{equation}
  5219. When $T_{ab}$ and
  5220. $s_{AB}$ are calculated \grg\ does not tries to find value
  5221. of all objects in the right-hand side of Eqs. (\ref{b1}), (\ref{b2})
  5222. instead it adds only the quantities whose value are currently
  5223. defined. In particular if none of above tensors and spinors are
  5224. defined then $T_{ab}=s_{AB}=0$.
  5225. Notice that $T_{ab}$ and all tensors in the right-hand side
  5226. of Eq. (\ref{b1}) are symmetric.
  5227. \seethis{See \pref{tsym}.}
  5228. They are the symmetric parts of the canonical energy-momentum tensors.
  5229. In addition we introduce the
  5230. \object{Total Energy-Momentum Trace TENMOMT}{T=T^a{}_a}
  5231. and the spinor
  5232. \object{Total Energy-Momentum Spinor TENMOMS.AB.CD\cc}{T_{AB\dot C\dot D}}
  5233. is a spinorial equivalent of the traceless part of $T_{ab}$
  5234. \begin{equation}
  5235. T_{ab}-\frac{1}{4}g_{ab}T \tsst T_{AB\dot A\dot B}
  5236. \end{equation}
  5237. \section{Einstein Equations}
  5238. The Einstein equation
  5239. \object{Einstein Equation EEq.a.b}
  5240. {R_{ab}-\frac{1}{2}g_{ab}R +\Lambda R =8\pi G\, T_{ab}}
  5241. And the {\tt Spinor Einstein equations}
  5242. \object{Traceless Einstein Equation CEEq.AB.CD\cc}{
  5243. C_{AB\dot C\dot D} = 8\pi G\, T_{AB\dot C\dot D}}
  5244. \object{Trace of Einstein Equation TEEq}
  5245. {R-4\Lambda = -8\pi G\, T}
  5246. The cosmological constant is included in these equations
  5247. iff the switch \comm{CCONST} is turned on \swind{CCONST}
  5248. and its value is given by the constant \comm{CCONST}.
  5249. The gravitational constant $G$ is given by the constant \comm{GCONST}.
  5250. \section{Gravitational Equations in Space With Torsion}
  5251. Equations in this section are valid in dimension $d=4$
  5252. with the signature ${\scriptstyle(-,+,+,+)}$ and
  5253. ${\scriptstyle(+,-,-,-)}$ only.
  5254. The $\sigma=1$ for the first signature and $\sigma=-1$
  5255. for the second. The nonmetricity must be zero and the
  5256. switch \comm{NONMETR} turned off.
  5257. Let us consider the action
  5258. \begin{equation}
  5259. S=\int\left[\frac{\sigma}{16\pi G}L_{\rm g}
  5260. +L_{\rm m}\right]
  5261. \end{equation}
  5262. where
  5263. \object{Action LACT}{L_{\rm g}=\upsilon\,{\cal L}_{\rm g}}
  5264. is the gravitational action 4-form and
  5265. \begin{equation}
  5266. L_{\rm m} = \upsilon\,{\cal L}_{\rm m}
  5267. \end{equation}
  5268. is the matter action 4-form.
  5269. Let us define the following variational derivatives
  5270. \begin{equation}
  5271. Z^\mu{}_{a} = \frac{1}{\sqrt{-g}}
  5272. \frac{\delta\sqrt{-g}{\cal L}_{\rm g}}{\delta h^a_\mu}
  5273. ,\qquad
  5274. t^\mu{}_{a} = \frac{\sigma}{\sqrt{-g}}
  5275. \frac{\delta\sqrt{-g}{\cal L}_{\rm m}}{\delta h^a_\mu}
  5276. \end{equation}
  5277. \begin{equation}
  5278. V^\mu{}_{ab} = \frac{1}{\sqrt{-g}}
  5279. \frac{\delta\sqrt{-g}{\cal L}_{\rm g}}{\delta \omega^{ab}{}_\mu}
  5280. ,\qquad
  5281. s^\mu{}_{ab} = \frac{\sigma}{\sqrt{-g}}
  5282. \frac{\delta\sqrt{-g}{\cal L}_{\rm m}}{\delta \omega^{ab}{}_\mu}
  5283. \end{equation}
  5284. Then the gravitational equations reads
  5285. \begin{eqnarray}
  5286. Z^\mu{}_a &=& -16\pi G\,t^\mu{}_a \label{zma} \\[2mm]
  5287. V^\mu{}_{ab} &=& -16\pi G\,s^\mu{}_{ab} \label{vab}
  5288. \end{eqnarray}
  5289. Here the first equation is an analog of Einstein equation
  5290. and has the canonical nonsymmetric energy-momentum
  5291. tensor $t^\mu{}_a$ as a source. The source in the second
  5292. equation is the spin tensor $s^\mu{}_{ab}$.
  5293. Now we rewrite these equation in other equivalent form.
  5294. First let us define the following 3-forms
  5295. \begin{equation}
  5296. Z_a = Z^m{}_a\,*\theta_m,\qquad t_a = t^m{}_a\,*\theta_m
  5297. \end{equation}
  5298. \begin{equation}
  5299. V_{ab} = V^m{}_{ab}\,*\theta_m,\qquad s_{ab} = s^m{}_{ab}\,*\theta_m
  5300. \end{equation}
  5301. Notice that Eq. (\ref{zma}) is not symmetric but \label{tsym}
  5302. the antisymmetric part of this equation is expressed via second
  5303. Eq. (\ref{vab}) due to Bianchi identity. Therefore only the
  5304. symmetric part of Eq. (\ref{zma}) is essential.
  5305. Eq. (\ref{vab}) is
  5306. antisymmetric and we can consider its spinorial analog
  5307. using the standard relations
  5308. \begin{eqnarray}
  5309. V_{ab} &\tsst& V_{A\dot AB\dot B}=
  5310. \epsilon_{AB} V_{\dot A\dot B} + \epsilon_{\dot A\dot B}V_{AB} \\
  5311. s_{ab} &\tsst& s_{A\dot AB\dot B}=
  5312. \epsilon_{AB} s_{\dot A\dot B} + \epsilon_{\dot A\dot B}s_{AB}
  5313. \end{eqnarray} \seethis{See \pref{asys}.}
  5314. Finally we define the {\tt Gravitational equations} in the form \label{graveq}
  5315. \object{Metric Equation METRq.a.b}{-\frac12Z_{(ab)}=8\pi G\,T_{ab}}
  5316. \object{Torsion Equation TORSq.AB}{V_{AB}=-16\pi G\,s_{AB}}
  5317. where the currents in the right-hand side of equations are
  5318. \seethis{See \pref{totalc}.}
  5319. \object{Total Energy-Momentum Tensor TENMOM.a.b}{T_{ab}=t_{(ab)}}
  5320. \object{Total Undotted Spin 3-form SPINU.AB}{s_{AB}}
  5321. Now let us consider the equations which are used in \grg\ to
  5322. compute the left-hand side of the gravitational equations
  5323. $Z_{(ab)}$ and $V_{AB}$. We have to emphasize that we use
  5324. \seethis{See \pref{spinors}.}
  5325. spinors and all restrictions imposed by the spinorial formalism
  5326. must be fulfilled.
  5327. We consider the Lagrangian which is an arbitrary algebraic function
  5328. of the curvature and torsion tensors
  5329. \begin{equation}
  5330. {\cal L}_{\rm g} = {\cal L}_{\rm g}(R_{abcd},Q_{abc})
  5331. \end{equation}
  5332. No derivatives of the torsion or curvature are permitted.
  5333. For such a Lagrangian we define so called curvature and torsion
  5334. momentums
  5335. \begin{equation}
  5336. \widetilde{R}{}^{abcd} =
  5337. 2\frac{\partial{\cal L}_{\rm g}(R,Q)}{\partial R_{abcd}},\qquad
  5338. \widetilde{Q}{}^{abc} =
  5339. 2\frac{\partial{\cal L}_{\rm g}(R,Q)}{\partial Q_{abc}},\qquad
  5340. \end{equation}
  5341. The corresponding objects are
  5342. \object{Undotted Curvature Momentum POMEGAU.AB}{\widetilde{\Omega}_{AB}}
  5343. \object{Torsion Momentum PTHETA'a}{\widetilde{\Theta}{}^a}
  5344. where
  5345. \begin{eqnarray}
  5346. \widetilde{\Omega}_{ab} &=& \frac12 \widetilde{R}_{abcd}\,S^{cd} \\[1mm]
  5347. \widetilde{\Theta}{}^a &=& \frac12 \widetilde{Q}{}^a{}_{cd}\,S^{cd}
  5348. \end{eqnarray}
  5349. and
  5350. \begin{equation}
  5351. \widetilde{\Omega}_{ab} \tsst \widetilde{\Omega}_{A\dot AB\dot B}=
  5352. \epsilon_{AB} \widetilde{\Omega}_{\dot A\dot B}
  5353. + \epsilon_{\dot A\dot B}\widetilde{\Omega}_{AB}
  5354. \end{equation}
  5355. If value of three objects $L_{\rm g}$ ({\tt Action}),
  5356. $\widetilde{\Omega}_{AB}$ ({\tt Undotted curvature momentum})
  5357. and $\widetilde{\Theta}{}^a$ are specified then the
  5358. {\tt Gravitational equations} can be calculated using equations
  5359. ({\tt Standard way})
  5360. \begin{eqnarray}
  5361. Z_{(ab)} &=& *(\theta_{(a}\wedge Z_{b)}),\nonumber\\[1mm]
  5362. Z_a &=& D\widetilde{\Theta}_a
  5363. + (\partial_a\ipr\Theta^b)\wedge\widetilde{\Theta}_b
  5364. +2(\partial_a\ipr\Omega^{MN})\wedge\widetilde{\Omega}_{MN}
  5365. \nonumber\\
  5366. && + {\rm c.c.}-\partial_a L_{\rm g}
  5367. \end{eqnarray}
  5368. \begin{eqnarray}
  5369. &&V_{AB} = -D\widetilde{\Omega}_{AB} - \widetilde{\Theta}_{AB},\nonumber\\[1mm]
  5370. &&
  5371. \theta_{[a}\wedge\widetilde{\Theta}_{b]} \tsst
  5372. \epsilon_{AB} \widetilde{\Theta}_{\dot A\dot B}
  5373. + \epsilon_{\dot A\dot B}\widetilde{\Theta}_{AB}
  5374. \end{eqnarray}
  5375. Since gravitational equations are computed in the
  5376. spinorial formalism with the standard null frame
  5377. \seethis{See pages \pageref{spinors}\ and \pageref{spinors1}.}
  5378. the metric equation is complex and components $\scriptstyle02$,
  5379. $\scriptstyle12$, $\scriptstyle22$ are conjugated to $\scriptstyle03$.
  5380. $\scriptstyle13$, $\scriptstyle33$. Since these components are not independent
  5381. For the sake of efficiency by default \grg\ computes only
  5382. the $\scriptstyle00$, $\scriptstyle01$, $\scriptstyle02$,
  5383. $\scriptstyle11$, $\scriptstyle12$, $\scriptstyle22$ and $\scriptstyle23$
  5384. components of $Z_{(ab)}$ only.
  5385. If you want to have all components the switch \comm{FULL} must be
  5386. turned on. \swind{FULL}
  5387. These equations allows one to compute field equations for
  5388. gravity theory with an arbitrary Lagrangian.
  5389. But the value of three quantities $L_{\rm g}$,
  5390. $\widetilde{\Omega}_{AB}$ and $\widetilde{\Theta}{}^a$
  5391. must be specified by the user. In addition \grg\ has built-in
  5392. formulas for the most general quadratic in torsion and curvature
  5393. Lagrangian. The {\tt Standard way} for $L_{\rm g}$,
  5394. $\widetilde{\Omega}_{AB}$ and $\widetilde{\Theta}{}^a$ is \label{thetau}
  5395. \begin{eqnarray}
  5396. \widetilde{\Theta}{}^a &=&
  5397. i\mu_1 (\stackrel{\scriptscriptstyle\rm c}{\vartheta}{}^a -{\rm c.c.})
  5398. +i\mu_2 (\stackrel{\scriptscriptstyle\rm t}{\vartheta}{}^a -{\rm c.c.})
  5399. +i\mu_3 (\stackrel{\scriptscriptstyle\rm a}{\vartheta}\!{}^a -{\rm c.c.}), \\[2mm]
  5400. \widetilde{\Omega}_{AB} &=&
  5401. i(\lambda_0-\sigma\,8\pi G\, a_0\phi^2)\, S_{AB} \nonumber\\&&
  5402. +i\lambda_1 \OO{w}_{AB}
  5403. -i\lambda_2 \OO{c}_{AB}
  5404. +i\lambda_3 \OO{r}_{AB} \nonumber\\&&
  5405. +i\lambda_4 \OO{a}_{AB}
  5406. -i\lambda_5 \OO{b}_{AB}
  5407. +i\lambda_6 \OO{d}_{AB} , \\[2mm]
  5408. L_{\rm g} &=& (-2\Lambda +\frac{1}{2}\lambda_0R
  5409. -\sigma\,4\pi G a_0 \phi^2 R) \upsilon
  5410. + \Omega^{AB}\wedge\widetilde{\Omega}_{AB} + {\rm c.c.} \nonumber\\&&
  5411. + \frac{1}{2} \Theta^a\wedge\widetilde{\Theta}_a
  5412. \end{eqnarray}
  5413. The cosmological term $\Lambda$ is included into
  5414. equations iff the switch \comm{CCONST} is turned on \swinda{CCONST}
  5415. and the value of $\Lambda$ is given by the constant \comm{CCONST}.
  5416. The term with the scalar field $\phi$ is included into
  5417. equations iff the switch \comm{NONMIN} is on. \swinda{NONMIN}
  5418. The gravitational constant $G$ is given by the constant \comm{GCONST}.
  5419. The parameters of the quadratic Lagrangian are given by the objects
  5420. \object{L-Constants LCONST.i6}{\lambda_i}
  5421. \object{M-Constants MCONST.i3}{\mu_i}
  5422. \object{A-Constants ACONST.i2}{a_i}
  5423. The default value of these objects ({\tt Standard way}) is
  5424. \begin{eqnarray}
  5425. \lambda_i &=& (\mbox{\tt LC0},\mbox{\tt LC1},\mbox{\tt LC2},\mbox{\tt LC3},\mbox{\tt LC4},\mbox{\tt LC5},\mbox{\tt LC6}), \\
  5426. \mu_i &=& (0,\mbox{\tt MC1},\mbox{\tt MC2},\mbox{\tt MC32}), \\
  5427. a_i &=& (\mbox{\tt AC0},0,0)
  5428. \end{eqnarray}
  5429. \section{Gravitational Equations in Riemann Space}
  5430. Equations in this section are valid in dimension $d=4$
  5431. with the signature ${\scriptstyle(-,+,+,+)}$ and
  5432. ${\scriptstyle(+,-,-,-)}$ only.
  5433. The $\sigma=1$ for the first signature and $\sigma=-1$
  5434. for the second. The nonmetricity and torsion must be zero and the
  5435. switches \comm{NONMETR} and \comm{TORSION} must be turned off.
  5436. Let us consider the action
  5437. \begin{equation}
  5438. S=\int\left[\frac{\sigma}{16\pi G}L_{\rm g}
  5439. +L_{\rm m}\right]
  5440. \end{equation}
  5441. where
  5442. \object{Action LACT}{L_{\rm g}=\upsilon\,{\cal L}_{\rm g}}
  5443. is the gravitational action 4-form and
  5444. \begin{equation}
  5445. L_{\rm m} = \upsilon\,{\cal L}_{\rm m}
  5446. \end{equation}
  5447. is the matter action 4-form.
  5448. Let us define the following variational derivatives
  5449. \begin{equation}
  5450. Z^\mu{}_{a} = \frac{1}{\sqrt{-g}}
  5451. \frac{\delta\sqrt{-g}{\cal L}_{\rm g}}{\delta h^a_\mu}
  5452. ,\qquad
  5453. T^\mu{}_{a} = \frac{\sigma}{\sqrt{-g}}
  5454. \frac{\delta\sqrt{-g}{\cal L}_{\rm m}}{\delta h^a_\mu}
  5455. \end{equation}
  5456. Then the {\tt Metric equation} is \label{metreq}
  5457. \object{Metric Equation METRq.a.b}{-\frac12Z_{ab}=8\pi G\,T_{ab}}
  5458. Notice that $Z_{ab}$ and $T_{ab}$ are automatically symmetric.
  5459. Let us define 3-form
  5460. \begin{equation}
  5461. Z_a = Z^m{}_a\,*\theta_m,\qquad t_a = t^m{}_a\,*\theta_m
  5462. \end{equation}
  5463. Now we consider the equations which are used in \grg\ to
  5464. compute the left-hand side of the metric equation
  5465. $Z_{ab}$. We have to emphasize that we use
  5466. spinors and all restrictions imposed by the spinorial formalism
  5467. \seethis{See pages \pageref{spinors}\ or \pageref{spinors1}.}
  5468. must be fulfilled.
  5469. We consider the Lagrangian which is an arbitrary algebraic function
  5470. of the curvature tensor
  5471. \begin{equation}
  5472. {\cal L}_{\rm g} = {\cal L}_{\rm g}(R_{abcd})
  5473. \end{equation}
  5474. No derivatives of the curvature are permitted.
  5475. For such a Lagrangian we define so called curvature momentum
  5476. \begin{equation}
  5477. \widetilde{R}{}^{abcd} =
  5478. 2\frac{\partial{\cal L}_{\rm g}(R)}{\partial R_{abcd}}
  5479. \end{equation}
  5480. The corresponding \grg\ built-in object is
  5481. \object{Undotted Curvature Momentum POMEGAU.AB}{\widetilde{\Omega}_{AB}}
  5482. where
  5483. \begin{eqnarray}
  5484. \widetilde{\Omega}_{ab} &=& \frac12 \widetilde{R}_{abcd}\,S^{cd} \\[1mm]
  5485. \end{eqnarray}
  5486. and
  5487. \begin{equation}
  5488. \widetilde{\Omega}_{ab} \tsst \widetilde{\Omega}_{A\dot AB\dot B}=
  5489. \epsilon_{AB} \widetilde{\Omega}_{\dot A\dot B}
  5490. + \epsilon_{\dot A\dot B}\widetilde{\Omega}_{AB}
  5491. \end{equation}
  5492. If value of the objects $L_{\rm g}$ ({\tt Action}) and
  5493. $\widetilde{\Omega}_{AB}$ ({\tt Undotted curvature momentum}) is specified
  5494. then the {\tt Metric equation} can be calculated using equations
  5495. ({\tt Standard way})
  5496. \begin{eqnarray}
  5497. Z_{ab} &=& *(\theta_{(a}\wedge Z_{b)}),\nonumber\\[1mm]
  5498. Z_a &=& D [
  5499. 2\partial_m\ipr D\widetilde{\Omega}_a{}^{m}
  5500. -{\frac{1}{2}}\theta_a\!\wedge
  5501. (\partial_m\ipr\partial_n\ipr D\widetilde{\Omega}{}^{mn})]
  5502. \nonumber\\&&
  5503. +2(\partial_a\ipr\Omega^{MN})\wedge\widetilde{\Omega}_{MN}
  5504. + {\rm c.c.}-\partial_a L_{\rm g}
  5505. \end{eqnarray}
  5506. Since gravitational equations are computed in the
  5507. spinorial formalism with the standard null frame
  5508. \seethis{See \pref{spinors}\ or \pref{spinors1}.}
  5509. the metric equation is complex and components $\scriptstyle02$,
  5510. $\scriptstyle12$, $\scriptstyle22$ are conjugated to $\scriptstyle03$,
  5511. $\scriptstyle13$, $\scriptstyle33$.
  5512. For the sake of efficiency by default \grg\ computes only
  5513. the components $\scriptstyle00$, $\scriptstyle01$, $\scriptstyle02$,
  5514. $\scriptstyle11$, $\scriptstyle12$, $\scriptstyle22$ and $\scriptstyle23$
  5515. only. If you want to have all components the switch \comm{FULL} must be
  5516. turned on. \swinda{FULL}
  5517. These equations allows one to compute field equations for
  5518. gravity theory with an arbitrary Lagrangian.
  5519. But the value of three quantities $L_{\rm g}$ and
  5520. $\widetilde{\Omega}_{AB}$ must be specified by user.
  5521. In addition \grg\ has built-in
  5522. formulas for the most general quadratic in the curvature
  5523. Lagrangian. The {\tt Standard way} for $L_{\rm g}$ and
  5524. $\widetilde{\Omega}_{AB}$ is
  5525. \begin{eqnarray}
  5526. \widetilde{\Omega}_{AB} &=&
  5527. i(\lambda_0-\sigma8\pi G\, a_0\phi^2)\, S_{AB} \nonumber\\&&
  5528. +i\lambda_1 \OO{w}_{AB}
  5529. -i\lambda_2 \OO{c}_{AB}
  5530. +i\lambda_3 \OO{r}_{AB}, \\[2mm]
  5531. L_{\rm g} &=& (-2\Lambda +{\frac{1}{2}}\lambda_0R
  5532. -\sigma4\pi G a_0 \phi^2 R) \upsilon
  5533. + \Omega^{AB}\wedge\widetilde{\Omega}_{AB} + {\rm c.c.}
  5534. \end{eqnarray}
  5535. The cosmological term is included into
  5536. equations iff the switch \comm{CCONST} is on \swinda{CCONST}
  5537. and the value of $\Lambda$ is given by the constant \comm{CCONST}.
  5538. The term with the scalar field $\phi$ is included into
  5539. equations iff the switch \comm{NONMIN} is on. \swinda{NONMIN}
  5540. The gravitational constant $G$ is given by the constant \comm{GCONST}.
  5541. The parameters of the quadratic lagrangian are given by the object
  5542. \object{L-Constants LCONST.i6}{\lambda_i}
  5543. \object{A-Constants ACONST.i2}{a_i}
  5544. The default value of these objects ({\tt Standard way}) is
  5545. \begin{eqnarray}
  5546. \lambda_i &=& (\mbox{\tt LC0},\mbox{\tt LC1},\mbox{\tt LC2},\mbox{\tt LC3},\mbox{\tt LC4},\mbox{\tt LC5},\mbox{\tt LC6}), \\
  5547. a_i &=& (\mbox{\tt AC0},0,0)
  5548. \end{eqnarray}
  5549. \appendix
  5550. \chapter{\grg\ Switches}\vspace*{-6mm}
  5551. \index{Switches}
  5552. \tabcolsep=1.5mm
  5553. \begin{tabular}{|c|c|l|c|}
  5554. \hline
  5555. Switch & Default &\qquad Description & See \\
  5556. & State & & page\\
  5557. \hline
  5558. \tt AEVAL & Off & Use {\tt AEVAL} instead of {\tt REVAL}. &\pageref{AEVAL}\\
  5559. \tt WRS & On & Re-simplify object before printing. &\pageref{WRS}\\
  5560. \tt WMATR & Off & Write 2-index objects in matrix form. &\pageref{WMATR}\\
  5561. \tt TORSION & Off & Torsion. &\pageref{TORSION}\\
  5562. \tt NONMETR & Off & Nonmetricity. &\pageref{NONMETR}\\
  5563. \tt UNLCORD & On & Save coordinates in {\tt Unload}. &\pageref{UNLCORD}\\
  5564. \tt AUTO & On & Automatic object calculation in expressions. &\pageref{AUTO}\\
  5565. \tt TRACE & On & Trace the calculation process. &\pageref{TRACE}\\
  5566. \tt SHOWCOMMANDS & Off & Show compound command expansion. &\pageref{SHOWCOMMANDS}\\
  5567. \tt EXPANDSYM & Off & Enable {\tt Sy Asy Cy} in expressions &\pageref{EXPANDSYM}\\
  5568. \tt DFPCOMMUTE & On & Commutativity of {\tt DFP} derivatives. &\pageref{DFPCOMMUTE}\\
  5569. \tt NONMIN & Off & Nonminimal interaction for scalar field. &\pageref{NONMIN}\\
  5570. \tt NOFREEVARS & Off & Prohibit free variables in {\tt Print}. &\pageref{NOFREEVARS}\\
  5571. \tt CCONST & Off & Include cosmological constant in equations. &\pageref{CCONST}\\
  5572. \tt FULL & Off & Number of components in {\tt Metric Equation}. &\pageref{FULL}\\
  5573. \tt LATEX & Off & \LaTeX\ output mode. &\pageref{LATEX}\\
  5574. \tt GRG & Off & \grg\ output mode. &\pageref{GRG}\\
  5575. \tt REDUCE & Off & \reduce\ output mode. &\pageref{REDUCE}\\
  5576. \tt MAPLE & Off & {\sc Maple} output mode. &\pageref{MAPLE}\\
  5577. \tt MATH & Off & {\sc Mathematica} output mode. &\pageref{MATH}\\
  5578. \tt MACSYMA & Off & {\sc Macsyma} output mode. &\pageref{MACSYMA}\\
  5579. \tt DFINDEXED & Off & Print {\tt DF} in index notation. &\pageref{DFINDEXED}\\
  5580. \tt BATCH & Off & Batch mode. &\pageref{BATCH}\\
  5581. \tt HOLONOMIC & On & Keep frame holonomic. &\pageref{HOLONOMIC}\\
  5582. \tt SHOWEXPR & Off & Print expressions during algebraic &\pageref{SHOWEXPR}\\
  5583. \tt & & classification. &\\
  5584. \hline
  5585. \end{tabular}
  5586. \chapter{Macro Objects}
  5587. \index{Macro Objects}
  5588. Macro objects can be used in expression, in {\tt Write} and
  5589. {\tt Show} commands but not in the {\tt Find} command.
  5590. The notation for indices is the same as in the {\tt New Object}
  5591. declaration (see page \pageref{indices}).
  5592. \begin{center}
  5593. \section{Dimension and Signature}
  5594. \begin{tabular}{|l|l|}
  5595. \hline
  5596. \tt dim & Dimension $d$ \\
  5597. \hline
  5598. \tt sdiag.idim & {\tt sdiag(\parm{n})} is the $n$'th element of the \\
  5599. & signature diag($-1,+1$\dots) \\
  5600. \hline
  5601. \tt sign & Product of the signature specification \\
  5602. \tt sgnt & elements $\prod_{n=0}^{d-1}\mbox{\tt sdiag(}n\mbox{\tt)}$ \\[1mm]
  5603. \hline
  5604. \tt mpsgn & {\tt sdiag(0)} \\
  5605. \tt pmsgn & {\tt -sdiag(0)} \\
  5606. \hline
  5607. \end{tabular}
  5608. \section{Metric and Frame}
  5609. \begin{tabular}{|l|l|}
  5610. \hline
  5611. \tt x\^m & $m$'th coordinate \\
  5612. \tt X\^m & \\
  5613. \hline
  5614. \tt h'a\_m & Frame coefficients \\
  5615. \tt hi.a\^m & \\
  5616. \hline
  5617. \tt g\_m\_n & Holonomic metric \\
  5618. \tt gi\^m\^n & \\
  5619. \hline
  5620. \end{tabular}
  5621. \section{Delta and Epsilon Symbols}
  5622. \begin{tabular}{|l|l|}
  5623. \hline
  5624. \tt del'a.b & Delta symbols \\
  5625. \tt delh\^m\_n & \\
  5626. \hline
  5627. \tt eps.a.b.c.d & Totally antisymmetric symbols \\
  5628. \tt epsi'a'b'c'd & (number of indices depend on $d$) \\
  5629. \tt epsh\_m\_n\_p\_q & \\
  5630. \tt epsih\^m\^n\^p\^q & \\
  5631. \hline
  5632. \end{tabular}
  5633. \section{Spinors}
  5634. \begin{tabular}{|l|l|}
  5635. \hline
  5636. \tt DEL'A.B & Delta symbol \\
  5637. \hline
  5638. \tt EPS.A.B & Spinorial metric \\
  5639. \tt EPSI'A'B & \\
  5640. \hline
  5641. \tt sigma'a.A.B\cc & Sigma matrices \\
  5642. \tt sigmai.a'A'B\cc & \\
  5643. \hline
  5644. \tt cci.i3 & Frame index conjugation in standard null frame \\
  5645. & {\tt cci(0)=0}\ {\tt cci(1)=1}\ {\tt cci(2)=3}\ {\tt cci(3)=2} \\
  5646. \hline
  5647. \end{tabular}
  5648. \section{Connection Coefficients}
  5649. \begin{tabular}{|l|l|}
  5650. \hline
  5651. \tt CHR\^m\_n\_p & Christoffel symbols $\{{}^\mu_{\nu\pi}\}$ \\
  5652. \tt CHRF\_m\_n\_p & and $[{}_{\mu},_{\nu\pi}]$ \\
  5653. \tt CHRT\_m & Christoffel symbol trace $\{{}^\pi_{\pi\mu}\}$ \\
  5654. \hline
  5655. \tt SPCOEF.AB.c & Spin coefficients $\omega_{AB\,c}$ \\
  5656. \hline
  5657. \end{tabular}
  5658. \section{NP Formalism}
  5659. \begin{tabular}{|l|c|}
  5660. \hline
  5661. \tt PHINP.AB.CD~ & $\Phi_{AB\dot{c}\dot{D}}$ \\
  5662. \tt PSINP.ABCD & $\Psi_{ABCD}$ \\
  5663. \hline
  5664. \tt alphanp & $\alpha$ \\
  5665. \tt betanp & $\beta$ \\
  5666. \tt gammanp & $\gamma$ \\
  5667. \tt epsilonnp & $\epsilon$ \\
  5668. \tt kappanp & $\kappa$ \\
  5669. \tt rhonp & $\rho$ \\
  5670. \tt sigmanp & $\sigma$ \\
  5671. \tt taunp & $\tau$ \\
  5672. \tt munp & $\mu$ \\
  5673. \tt nunp & $\nu$ \\
  5674. \tt lambdanp & $\lambda$ \\
  5675. \tt pinp & $\pi$ \\
  5676. \hline
  5677. \tt DD & $D$ \\
  5678. \tt DT & $\Delta$ \\
  5679. \tt du & $\delta$ \\
  5680. \tt dd & $\overline\delta$ \\
  5681. \hline
  5682. \end{tabular}
  5683. \end{center}
  5684. \chapter{Objects}
  5685. Here we present the complete list of built-in objects
  5686. with names and identifiers.
  5687. The notation for indices is the same as in the
  5688. {\tt New Object} declaration (see page \pageref{indices}).
  5689. Some names (group names) refer to a set of objects.
  5690. For example the group name {\tt Spinorial S - forms} below
  5691. denotes {\tt SU.AB} and {\tt SD.AB\cc}
  5692. \begin{center}
  5693. \section{Metric, Frame, Basis, Volume \dots}
  5694. \begin{tabular}{|l|l|}\hline
  5695. \tt Frame &\tt T'a\\
  5696. \tt Vector Frame &\tt D.a\\
  5697. \hline
  5698. \tt Metric &\tt G.a.b\\
  5699. \tt Inverse Metric &\tt GI'a'b\\
  5700. \tt Det of Metric &\tt detG\\
  5701. \tt Det of Holonomic Metric &\tt detg\\
  5702. \tt Sqrt Det of Metric &\tt sdetG\\
  5703. \hline
  5704. \tt Volume &\tt VOL\\
  5705. \hline
  5706. \tt Basis &\tt b'idim \\
  5707. \tt Vector Basis &\tt e.idim \\
  5708. \hline
  5709. \tt S-forms &\tt S'a'b\\
  5710. \hline
  5711. \multicolumn{2}{|c|}{\tt Spinorial S-forms} \\
  5712. \tt Undotted S-forms &\tt SU.AB\\
  5713. \tt Dotted S-forms &\tt SD.AB\cc\\
  5714. \hline\end{tabular}
  5715. \section{Rotation Matrices}
  5716. \begin{tabular}{|l|l|}\hline
  5717. \tt Frame Transformation &\tt L'a.b \\
  5718. \tt Spinorial Transformation &\tt LS.A'B \\
  5719. \hline\end{tabular}
  5720. \section{Connection and related objects}
  5721. \begin{tabular}{|l|l|}\hline
  5722. \tt Frame Connection &\tt omega'a.b\\
  5723. \tt Holonomic Connection &\tt GAMMA\^m\_n\\
  5724. \hline
  5725. \multicolumn{2}{|c|}{\tt Spinorial Connection}\\
  5726. \tt Undotted Connection &\tt omegau.AB\\
  5727. \tt Dotted Connection &\tt omegad.AB\cc\\
  5728. \hline
  5729. \tt Riemann Frame Connection &\tt romega'a.b\\
  5730. \tt Riemann Holonomic Connection &\tt RGAMMA\^m\_n\\
  5731. \hline
  5732. \multicolumn{2}{|c|}{\tt Riemann Spinorial Connection}\\
  5733. \tt Riemann Undotted Connection &\tt romegau.AB\\
  5734. \tt Riemann Dotted Connection &\tt romegad.AB\cc\\
  5735. \hline
  5736. \tt Connection Defect &\tt K'a.b\\
  5737. \hline\end{tabular}
  5738. \section{Torsion}
  5739. \begin{tabular}{|l|l|}\hline
  5740. \tt Torsion &\tt THETA'a\\
  5741. \tt Contorsion &\tt KQ'a.b\\
  5742. \tt Torsion Trace 1-form &\tt QQ\\
  5743. \tt Antisymmetric Torsion 3-form &\tt QQA\\
  5744. \hline
  5745. \multicolumn{2}{|c|}{\tt Spinorial Contorsion}\\
  5746. \tt Undotted Contorsion &\tt KU.AB\\
  5747. \tt Dotted Contorsion &\tt KD.AB\cc\\
  5748. \hline
  5749. \multicolumn{2}{|c|}{\tt Torsion Spinors }\\
  5750. \multicolumn{2}{|c|}{\tt Torsion Components }\\
  5751. \tt Torsion Trace &\tt QT'a\\
  5752. \tt Torsion Pseudo Trace &\tt QP'a\\
  5753. \tt Traceless Torsion Spinor &\tt QC.ABC.D\cc\\
  5754. \hline
  5755. \multicolumn{2}{|c|}{\tt Torsion 2-forms}\\
  5756. \tt Traceless Torsion 2-form &\tt THQC'a\\
  5757. \tt Torsion Trace 2-form &\tt THQT'a\\
  5758. \tt Antisymmetric Torsion 2-form &\tt THQA'a\\
  5759. \hline
  5760. \multicolumn{2}{|c|}{\tt Undotted Torsion 2-forms}\\
  5761. \tt Undotted Torsion Trace 2-form &\tt THQTU'a\\
  5762. \tt Undotted Antisymmetric Torsion 2-form &\tt THQAU'a\\
  5763. \tt Undotted Traceless Torsion 2-form &\tt THQCU'a\\
  5764. \hline\end{tabular}
  5765. \section{Curvature}
  5766. \label{curspincoll}
  5767. \begin{tabular}{|l|l|}\hline
  5768. \tt Curvature &\tt OMEGA'a.b\\
  5769. \hline
  5770. \multicolumn{2}{|c|}{\tt Spinorial Curvature}\\
  5771. \tt Undotted Curvature &\tt OMEGAU.AB\\
  5772. \tt Dotted Curvature &\tt OMEGAD.AB\cc\\
  5773. \hline
  5774. \tt Riemann Tensor &\tt RIM'a.b.c.d\\
  5775. \tt Ricci Tensor &\tt RIC.a.b\\
  5776. \tt A-Ricci Tensor &\tt RICA.a.b\\
  5777. \tt S-Ricci Tensor &\tt RICS.a.b\\
  5778. \tt Homothetic Curvature &\tt OMEGAH\\
  5779. \tt Einstein Tensor &\tt GT.a.b\\
  5780. \hline
  5781. \multicolumn{2}{|c|}{\tt Curvature Spinors}\\
  5782. \multicolumn{2}{|c|}{\tt Curvature Components}\\
  5783. \tt Weyl Spinor &\tt RW.ABCD\\
  5784. \tt Traceless Ricci Spinor &\tt RC.AB.CD\cc\\
  5785. \tt Scalar Curvature &\tt RR\\
  5786. \tt Ricanti Spinor &\tt RA.AB\\
  5787. \tt Traceless Deviation Spinor &\tt RB.AB.CD\cc\\
  5788. \tt Scalar Deviation &\tt RD\\
  5789. \hline
  5790. \multicolumn{2}{|c|}{\tt Undotted Curvature 2-forms}\\
  5791. \tt Undotted Weyl 2-form &\tt OMWU.AB \\
  5792. \tt Undotted Traceless Ricci 2-form &\tt OMCU.AB \\
  5793. \tt Undotted Scalar Curvature 2-form &\tt OMRU.AB \\
  5794. \tt Undotted Ricanti 2-form &\tt OMAU.AB \\
  5795. \tt Undotted Traceless Deviation 2-form &\tt OMBU.AB \\
  5796. \tt Undotted Scalar Deviation 2-form &\tt OMDU.AB \\
  5797. \hline
  5798. \multicolumn{2}{|c|}{\tt Curvature 2-forms}\\
  5799. \tt Weyl 2-form &\tt OMW.a.b \\
  5800. \tt Traceless Ricci 2-form &\tt OMC.a.b \\
  5801. \tt Scalar Curvature 2-form &\tt OMR.a.b \\
  5802. \tt Ricanti 2-form &\tt OMA.a.b \\
  5803. \tt Traceless Deviation 2-form &\tt OMB.a.b \\
  5804. \tt Antisymmetric Curvature 2-form &\tt OMD.a.b \\
  5805. \tt Homothetic Curvature 2-form &\tt OSH.a.b \\
  5806. \tt Antisymmetric S-Ricci 2-form &\tt OSA.a.b \\
  5807. \tt Traceless S-Ricci 2-form &\tt OSC.a.b \\
  5808. \tt Antisymmetric S-Curvature 2-form &\tt OSV.a.b \\
  5809. \tt Symmetric S-Curvature 2-form &\tt OSU.a.b \\
  5810. \hline
  5811. \end{tabular}
  5812. \section{Nonmetricity}
  5813. \begin{tabular}{|l|l|}\hline
  5814. \tt Nonmetricity &\tt N.a.b\\
  5815. \tt Nonmetricity Defect &\tt KN'a.b\\
  5816. \tt Weyl Vector &\tt NNW\\
  5817. \tt Nonmetricity Trace &\tt NNT\\
  5818. \hline
  5819. \multicolumn{2}{|c|}{\tt Nonmetricity 1-forms}\\
  5820. \tt Symmetric Nonmetricity 1-form &\tt NC.a.b\\
  5821. \tt Antisymmetric Nonmetricity 1-form &\tt NA.a.b\\
  5822. \tt Nonmetricity Trace 1-form &\tt NT.a.b\\
  5823. \tt Weyl Nonmetricity 1-form &\tt NW.a.b\\
  5824. \hline\end{tabular}
  5825. \section{EM field}
  5826. \begin{tabular}{|l|l|}\hline
  5827. \tt EM Potential &\tt A\\
  5828. \tt Current 1-form &\tt J\\
  5829. \tt EM Action &\tt EMACT\\
  5830. \tt EM 2-form &\tt FF\\
  5831. \tt EM Tensor &\tt FT.a.b\\
  5832. \hline
  5833. \multicolumn{2}{|c|}{\tt Maxwell Equations}\\
  5834. \tt First Maxwell Equation &\tt MWFq\\
  5835. \tt Second Maxwell Equation &\tt MWSq\\
  5836. \hline
  5837. \tt Continuity Equation &\tt COq\\
  5838. \tt EM Energy-Momentum Tensor &\tt TEM.a.b\\
  5839. \hline
  5840. \multicolumn{2}{|c|}{\tt EM Scalars}\\
  5841. \tt First EM Scalar &\tt SCF\\
  5842. \tt Second EM Scalar &\tt SCS\\
  5843. \hline
  5844. \tt Selfduality Equation &\tt SDq.AB\cc\\
  5845. \tt Complex EM 2-form &\tt FFU\\
  5846. \tt Complex Maxwell Equation &\tt MWUq\\
  5847. \tt Undotted EM Spinor &\tt FIU.AB\\
  5848. \tt Complex EM Scalar &\tt SCU\\
  5849. \tt EM Energy-Momentum Spinor &\tt TEMS.AB.CD\cc\\
  5850. \hline\end{tabular}
  5851. \section{Scalar field}
  5852. \begin{tabular}{|l|l|}\hline
  5853. \tt Scalar Equation &\tt SCq\\
  5854. \tt Scalar Field &\tt FI\\
  5855. \tt Scalar Action &\tt SACT\\
  5856. \tt Minimal Scalar Action &\tt SACTMIN\\
  5857. \tt Minimal Scalar Energy-Momentum Tensor &\tt TSCLMIN.a.b\\
  5858. \hline\end{tabular}
  5859. \section{YM field}
  5860. \begin{tabular}{|l|l|}\hline
  5861. \tt YM Potential &\tt AYM.i9\\
  5862. \tt Structural Constants &\tt SCONST.i9.j9.k9\\
  5863. \tt YM Action &\tt YMACT\\
  5864. \tt YM 2-form &\tt FFYM.i9\\
  5865. \tt YM Tensor &\tt FTYM.i9.a.b\\
  5866. \hline
  5867. \multicolumn{2}{|c|}{\tt YM Equations}\\
  5868. \tt First YM Equation &\tt YMFq.i9\\
  5869. \tt Second YM Equation &\tt YMSq.i9\\
  5870. \hline
  5871. \tt YM Energy-Momentum Tensor &\tt TYM.a.b\\
  5872. \hline\end{tabular}
  5873. \section{Dirac field}
  5874. \begin{tabular}{|l|l|}\hline
  5875. \multicolumn{2}{|c|}{\tt Dirac Spinor}\\
  5876. \tt Phi Spinor &\tt PHI.A\\
  5877. \tt Chi Spinor &\tt CHI.B\\
  5878. \hline
  5879. \tt Dirac Action 4-form &\tt DACT\\
  5880. \tt Undotted Dirac Spin 3-Form &\tt SPDIU.AB\\
  5881. \tt Dirac Energy-Momentum Tensor &\tt TDI.a.b\\
  5882. \hline
  5883. \multicolumn{2}{|c|}{\tt Dirac Equation}\\
  5884. \tt Phi Dirac Equation &\tt DPq.A\cc\\
  5885. \tt Chi Dirac Equation &\tt DCq.A\cc\\
  5886. \hline\end{tabular}
  5887. \section{Geodesics}
  5888. \begin{tabular}{|l|l|}\hline
  5889. \tt Geodesic Equation &\tt GEOq\^m\\
  5890. \hline\end{tabular}
  5891. \section{Null Congruence}
  5892. \begin{tabular}{|l|l|}\hline
  5893. \tt Congruence &\tt KV\\
  5894. \tt Null Congruence Condition &\tt NCo\\
  5895. \tt Geodesics Congruence Condition&\tt GCo'a\\
  5896. \hline
  5897. \multicolumn{2}{|c|}{\tt Optical Scalars}\\
  5898. \tt Congruence Expansion &\tt thetaO\\
  5899. \tt Congruence Squared Rotation &\tt omegaSQO\\
  5900. \tt Congruence Squared Shear &\tt sigmaSQO\\
  5901. \hline\end{tabular}
  5902. \section{Kinematics}
  5903. \begin{tabular}{|l|l|}\hline
  5904. \tt Velocity Vector &\tt UV\\
  5905. \tt Velocity &\tt UU'a\\
  5906. \tt Velocity Square &\tt USQ\\
  5907. \tt Projector &\tt PR'a.b\\
  5908. \hline
  5909. \multicolumn{2}{|c|}{\tt Kinematics}\\
  5910. \tt Acceleration &\tt accU'a\\
  5911. \tt Vorticity &\tt omegaU.a.b\\
  5912. \tt Volume Expansion &\tt thetaU\\
  5913. \tt Shear &\tt sigmaU.a.b\\
  5914. \hline\end{tabular}
  5915. \section{Ideal and Spin Fluid}
  5916. \begin{tabular}{|l|l|}\hline
  5917. \tt Pressure &\tt PRES\\
  5918. \tt Energy Density &\tt ENER\\
  5919. \tt Ideal Fluid Energy-Momentum Tensor &\tt TIFL.a.b\\
  5920. \hline
  5921. \tt Spin Fluid Energy-Momentum Tensor &\tt TSFL.a.b \\
  5922. \tt Spin Density &\tt SPFLT.a.b \\
  5923. \tt Spin Density 2-form &\tt SPFL \\
  5924. \tt Undotted Fluid Spin 3-form &\tt SPFLU.AB \\
  5925. \tt Frenkel Condition &\tt FCo \\
  5926. \hline\end{tabular}
  5927. \section{Total Energy-Momentum and Spin}
  5928. \begin{tabular}{|l|l|}\hline
  5929. \tt Total Energy-Momentum Tensor &\tt TENMOM.a.b\\
  5930. \tt Total Energy-Momentum Spinor &\tt TENMOMS.AB.CD\cc\\
  5931. \tt Total Energy-Momentum Trace &\tt TENMOMT\\
  5932. \tt Total Undotted Spin 3-form &\tt SPINU.AB\\
  5933. \hline\end{tabular}
  5934. \section{Einstein Equations}
  5935. \begin{tabular}{|l|l|}\hline
  5936. \tt Einstein Equation &\tt EEq.a.b\\
  5937. \hline
  5938. \multicolumn{2}{|c|}{\tt Spinor Einstein Equations}\\
  5939. \tt Traceless Einstein Equation &\tt CEEq.AB.CD\cc\\
  5940. \tt Trace of Einstein Equation &\tt TEEq\\
  5941. \hline\end{tabular}
  5942. \section{Constants}
  5943. \begin{tabular}{|l|l|}\hline
  5944. \tt A-Constants &\tt ACONST.i2\\
  5945. \tt L-Constants &\tt LCONST.i6\\
  5946. \tt M-Constants &\tt MCONST.i3\\
  5947. \hline\end{tabular}
  5948. \section{Gravitational Equations}
  5949. \begin{tabular}{|l|l|}\hline
  5950. \tt Action &\tt LACT\\
  5951. \tt Undotted Curvature Momentum &\tt POMEGAU.AB\\
  5952. \tt Torsion Momentum &\tt PTHETA'a\\
  5953. \hline
  5954. \multicolumn{2}{|c|}{\tt Gravitational Equations}\\
  5955. \tt Metric Equation &\tt METRq.a.b\\
  5956. \tt Torsion Equation &\tt TORSq.AB\\
  5957. \hline\end{tabular}
  5958. \end{center}
  5959. \chapter{Standard Synonymy}
  5960. \index{Synonymy}
  5961. Below we present the default synonymy as it is defined in the
  5962. global configuration file. See section \ref{tuning} to find out
  5963. how to change the default synonymy or define a new one.
  5964. \begin{verbatim}
  5965. Affine Aff
  5966. Anholonomic Nonholonomic AMode ABasis
  5967. Antisymmetric Asy
  5968. Change Transform
  5969. Classify Class
  5970. Components Comp
  5971. Connection Con
  5972. Constants Const Constant
  5973. Coordinates Cord
  5974. Curvature Cur
  5975. Dimension Dim
  5976. Dotted Do
  5977. Equation Equations Eq
  5978. Erase Delete Del
  5979. Evaluate Eval Simplify
  5980. Find F Calculate Calc
  5981. Form Forms
  5982. Functions Fun Function
  5983. Generic Gen
  5984. Gravitational Gravity Gravitation Grav
  5985. Holonomic HMode HBasis
  5986. Inverse Inv
  5987. Load Restore
  5988. Next N
  5989. Normalize Normal
  5990. Object Obj
  5991. Output Out
  5992. Parameter Par
  5993. Rotation Rot
  5994. Scalar Scal
  5995. Show ?
  5996. Signature Sig
  5997. Solutions Solution Sol
  5998. Spinor Spin Spinorial Sp
  5999. standardlisp lisp
  6000. Switch Sw
  6001. Symmetries Sym Symmetric
  6002. Tensor Tensors Tens
  6003. Torsion Tors
  6004. Transformation Trans
  6005. Undotted Un
  6006. Unload Save
  6007. Vector Vec
  6008. Write W
  6009. Zero Nullify
  6010. \end{verbatim}
  6011. \makeatletter
  6012. \if@openright\cleardoublepage\else\clearpage\fi
  6013. \makeatother
  6014. \thispagestyle{empty}
  6015. \def\indexname{INDEX}
  6016. \printindex
  6017. \end{document}
  6018. %======== End of grg32.tex ==============================================%