encrypted.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016
  1. /*
  2. * Copyright (C) 2010 IBM Corporation
  3. * Copyright (C) 2010 Politecnico di Torino, Italy
  4. * TORSEC group -- http://security.polito.it
  5. *
  6. * Authors:
  7. * Mimi Zohar <zohar@us.ibm.com>
  8. * Roberto Sassu <roberto.sassu@polito.it>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation, version 2 of the License.
  13. *
  14. * See Documentation/security/keys/trusted-encrypted.rst
  15. */
  16. #include <linux/uaccess.h>
  17. #include <linux/module.h>
  18. #include <linux/init.h>
  19. #include <linux/slab.h>
  20. #include <linux/parser.h>
  21. #include <linux/string.h>
  22. #include <linux/err.h>
  23. #include <keys/user-type.h>
  24. #include <keys/trusted-type.h>
  25. #include <keys/encrypted-type.h>
  26. #include <linux/key-type.h>
  27. #include <linux/random.h>
  28. #include <linux/rcupdate.h>
  29. #include <linux/scatterlist.h>
  30. #include <linux/ctype.h>
  31. #include <crypto/aes.h>
  32. #include <crypto/algapi.h>
  33. #include <crypto/hash.h>
  34. #include <crypto/sha.h>
  35. #include <crypto/skcipher.h>
  36. #include "encrypted.h"
  37. #include "ecryptfs_format.h"
  38. static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  39. static const char KEY_USER_PREFIX[] = "user:";
  40. static const char hash_alg[] = "sha256";
  41. static const char hmac_alg[] = "hmac(sha256)";
  42. static const char blkcipher_alg[] = "cbc(aes)";
  43. static const char key_format_default[] = "default";
  44. static const char key_format_ecryptfs[] = "ecryptfs";
  45. static unsigned int ivsize;
  46. static int blksize;
  47. #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  48. #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  49. #define KEY_ECRYPTFS_DESC_LEN 16
  50. #define HASH_SIZE SHA256_DIGEST_SIZE
  51. #define MAX_DATA_SIZE 4096
  52. #define MIN_DATA_SIZE 20
  53. static struct crypto_shash *hash_tfm;
  54. enum {
  55. Opt_err = -1, Opt_new, Opt_load, Opt_update
  56. };
  57. enum {
  58. Opt_error = -1, Opt_default, Opt_ecryptfs
  59. };
  60. static const match_table_t key_format_tokens = {
  61. {Opt_default, "default"},
  62. {Opt_ecryptfs, "ecryptfs"},
  63. {Opt_error, NULL}
  64. };
  65. static const match_table_t key_tokens = {
  66. {Opt_new, "new"},
  67. {Opt_load, "load"},
  68. {Opt_update, "update"},
  69. {Opt_err, NULL}
  70. };
  71. static int aes_get_sizes(void)
  72. {
  73. struct crypto_skcipher *tfm;
  74. tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  75. if (IS_ERR(tfm)) {
  76. pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  77. PTR_ERR(tfm));
  78. return PTR_ERR(tfm);
  79. }
  80. ivsize = crypto_skcipher_ivsize(tfm);
  81. blksize = crypto_skcipher_blocksize(tfm);
  82. crypto_free_skcipher(tfm);
  83. return 0;
  84. }
  85. /*
  86. * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
  87. *
  88. * The description of a encrypted key with format 'ecryptfs' must contain
  89. * exactly 16 hexadecimal characters.
  90. *
  91. */
  92. static int valid_ecryptfs_desc(const char *ecryptfs_desc)
  93. {
  94. int i;
  95. if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
  96. pr_err("encrypted_key: key description must be %d hexadecimal "
  97. "characters long\n", KEY_ECRYPTFS_DESC_LEN);
  98. return -EINVAL;
  99. }
  100. for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
  101. if (!isxdigit(ecryptfs_desc[i])) {
  102. pr_err("encrypted_key: key description must contain "
  103. "only hexadecimal characters\n");
  104. return -EINVAL;
  105. }
  106. }
  107. return 0;
  108. }
  109. /*
  110. * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
  111. *
  112. * key-type:= "trusted:" | "user:"
  113. * desc:= master-key description
  114. *
  115. * Verify that 'key-type' is valid and that 'desc' exists. On key update,
  116. * only the master key description is permitted to change, not the key-type.
  117. * The key-type remains constant.
  118. *
  119. * On success returns 0, otherwise -EINVAL.
  120. */
  121. static int valid_master_desc(const char *new_desc, const char *orig_desc)
  122. {
  123. int prefix_len;
  124. if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
  125. prefix_len = KEY_TRUSTED_PREFIX_LEN;
  126. else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
  127. prefix_len = KEY_USER_PREFIX_LEN;
  128. else
  129. return -EINVAL;
  130. if (!new_desc[prefix_len])
  131. return -EINVAL;
  132. if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
  133. return -EINVAL;
  134. return 0;
  135. }
  136. /*
  137. * datablob_parse - parse the keyctl data
  138. *
  139. * datablob format:
  140. * new [<format>] <master-key name> <decrypted data length>
  141. * load [<format>] <master-key name> <decrypted data length>
  142. * <encrypted iv + data>
  143. * update <new-master-key name>
  144. *
  145. * Tokenizes a copy of the keyctl data, returning a pointer to each token,
  146. * which is null terminated.
  147. *
  148. * On success returns 0, otherwise -EINVAL.
  149. */
  150. static int datablob_parse(char *datablob, const char **format,
  151. char **master_desc, char **decrypted_datalen,
  152. char **hex_encoded_iv)
  153. {
  154. substring_t args[MAX_OPT_ARGS];
  155. int ret = -EINVAL;
  156. int key_cmd;
  157. int key_format;
  158. char *p, *keyword;
  159. keyword = strsep(&datablob, " \t");
  160. if (!keyword) {
  161. pr_info("encrypted_key: insufficient parameters specified\n");
  162. return ret;
  163. }
  164. key_cmd = match_token(keyword, key_tokens, args);
  165. /* Get optional format: default | ecryptfs */
  166. p = strsep(&datablob, " \t");
  167. if (!p) {
  168. pr_err("encrypted_key: insufficient parameters specified\n");
  169. return ret;
  170. }
  171. key_format = match_token(p, key_format_tokens, args);
  172. switch (key_format) {
  173. case Opt_ecryptfs:
  174. case Opt_default:
  175. *format = p;
  176. *master_desc = strsep(&datablob, " \t");
  177. break;
  178. case Opt_error:
  179. *master_desc = p;
  180. break;
  181. }
  182. if (!*master_desc) {
  183. pr_info("encrypted_key: master key parameter is missing\n");
  184. goto out;
  185. }
  186. if (valid_master_desc(*master_desc, NULL) < 0) {
  187. pr_info("encrypted_key: master key parameter \'%s\' "
  188. "is invalid\n", *master_desc);
  189. goto out;
  190. }
  191. if (decrypted_datalen) {
  192. *decrypted_datalen = strsep(&datablob, " \t");
  193. if (!*decrypted_datalen) {
  194. pr_info("encrypted_key: keylen parameter is missing\n");
  195. goto out;
  196. }
  197. }
  198. switch (key_cmd) {
  199. case Opt_new:
  200. if (!decrypted_datalen) {
  201. pr_info("encrypted_key: keyword \'%s\' not allowed "
  202. "when called from .update method\n", keyword);
  203. break;
  204. }
  205. ret = 0;
  206. break;
  207. case Opt_load:
  208. if (!decrypted_datalen) {
  209. pr_info("encrypted_key: keyword \'%s\' not allowed "
  210. "when called from .update method\n", keyword);
  211. break;
  212. }
  213. *hex_encoded_iv = strsep(&datablob, " \t");
  214. if (!*hex_encoded_iv) {
  215. pr_info("encrypted_key: hex blob is missing\n");
  216. break;
  217. }
  218. ret = 0;
  219. break;
  220. case Opt_update:
  221. if (decrypted_datalen) {
  222. pr_info("encrypted_key: keyword \'%s\' not allowed "
  223. "when called from .instantiate method\n",
  224. keyword);
  225. break;
  226. }
  227. ret = 0;
  228. break;
  229. case Opt_err:
  230. pr_info("encrypted_key: keyword \'%s\' not recognized\n",
  231. keyword);
  232. break;
  233. }
  234. out:
  235. return ret;
  236. }
  237. /*
  238. * datablob_format - format as an ascii string, before copying to userspace
  239. */
  240. static char *datablob_format(struct encrypted_key_payload *epayload,
  241. size_t asciiblob_len)
  242. {
  243. char *ascii_buf, *bufp;
  244. u8 *iv = epayload->iv;
  245. int len;
  246. int i;
  247. ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
  248. if (!ascii_buf)
  249. goto out;
  250. ascii_buf[asciiblob_len] = '\0';
  251. /* copy datablob master_desc and datalen strings */
  252. len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
  253. epayload->master_desc, epayload->datalen);
  254. /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
  255. bufp = &ascii_buf[len];
  256. for (i = 0; i < (asciiblob_len - len) / 2; i++)
  257. bufp = hex_byte_pack(bufp, iv[i]);
  258. out:
  259. return ascii_buf;
  260. }
  261. /*
  262. * request_user_key - request the user key
  263. *
  264. * Use a user provided key to encrypt/decrypt an encrypted-key.
  265. */
  266. static struct key *request_user_key(const char *master_desc, const u8 **master_key,
  267. size_t *master_keylen)
  268. {
  269. const struct user_key_payload *upayload;
  270. struct key *ukey;
  271. ukey = request_key(&key_type_user, master_desc, NULL);
  272. if (IS_ERR(ukey))
  273. goto error;
  274. down_read(&ukey->sem);
  275. upayload = user_key_payload_locked(ukey);
  276. if (!upayload) {
  277. /* key was revoked before we acquired its semaphore */
  278. up_read(&ukey->sem);
  279. key_put(ukey);
  280. ukey = ERR_PTR(-EKEYREVOKED);
  281. goto error;
  282. }
  283. *master_key = upayload->data;
  284. *master_keylen = upayload->datalen;
  285. error:
  286. return ukey;
  287. }
  288. static int calc_hash(struct crypto_shash *tfm, u8 *digest,
  289. const u8 *buf, unsigned int buflen)
  290. {
  291. SHASH_DESC_ON_STACK(desc, tfm);
  292. int err;
  293. desc->tfm = tfm;
  294. desc->flags = 0;
  295. err = crypto_shash_digest(desc, buf, buflen, digest);
  296. shash_desc_zero(desc);
  297. return err;
  298. }
  299. static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
  300. const u8 *buf, unsigned int buflen)
  301. {
  302. struct crypto_shash *tfm;
  303. int err;
  304. tfm = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
  305. if (IS_ERR(tfm)) {
  306. pr_err("encrypted_key: can't alloc %s transform: %ld\n",
  307. hmac_alg, PTR_ERR(tfm));
  308. return PTR_ERR(tfm);
  309. }
  310. err = crypto_shash_setkey(tfm, key, keylen);
  311. if (!err)
  312. err = calc_hash(tfm, digest, buf, buflen);
  313. crypto_free_shash(tfm);
  314. return err;
  315. }
  316. enum derived_key_type { ENC_KEY, AUTH_KEY };
  317. /* Derive authentication/encryption key from trusted key */
  318. static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
  319. const u8 *master_key, size_t master_keylen)
  320. {
  321. u8 *derived_buf;
  322. unsigned int derived_buf_len;
  323. int ret;
  324. derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
  325. if (derived_buf_len < HASH_SIZE)
  326. derived_buf_len = HASH_SIZE;
  327. derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
  328. if (!derived_buf)
  329. return -ENOMEM;
  330. if (key_type)
  331. strcpy(derived_buf, "AUTH_KEY");
  332. else
  333. strcpy(derived_buf, "ENC_KEY");
  334. memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
  335. master_keylen);
  336. ret = calc_hash(hash_tfm, derived_key, derived_buf, derived_buf_len);
  337. kzfree(derived_buf);
  338. return ret;
  339. }
  340. static struct skcipher_request *init_skcipher_req(const u8 *key,
  341. unsigned int key_len)
  342. {
  343. struct skcipher_request *req;
  344. struct crypto_skcipher *tfm;
  345. int ret;
  346. tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  347. if (IS_ERR(tfm)) {
  348. pr_err("encrypted_key: failed to load %s transform (%ld)\n",
  349. blkcipher_alg, PTR_ERR(tfm));
  350. return ERR_CAST(tfm);
  351. }
  352. ret = crypto_skcipher_setkey(tfm, key, key_len);
  353. if (ret < 0) {
  354. pr_err("encrypted_key: failed to setkey (%d)\n", ret);
  355. crypto_free_skcipher(tfm);
  356. return ERR_PTR(ret);
  357. }
  358. req = skcipher_request_alloc(tfm, GFP_KERNEL);
  359. if (!req) {
  360. pr_err("encrypted_key: failed to allocate request for %s\n",
  361. blkcipher_alg);
  362. crypto_free_skcipher(tfm);
  363. return ERR_PTR(-ENOMEM);
  364. }
  365. skcipher_request_set_callback(req, 0, NULL, NULL);
  366. return req;
  367. }
  368. static struct key *request_master_key(struct encrypted_key_payload *epayload,
  369. const u8 **master_key, size_t *master_keylen)
  370. {
  371. struct key *mkey = ERR_PTR(-EINVAL);
  372. if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
  373. KEY_TRUSTED_PREFIX_LEN)) {
  374. mkey = request_trusted_key(epayload->master_desc +
  375. KEY_TRUSTED_PREFIX_LEN,
  376. master_key, master_keylen);
  377. } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
  378. KEY_USER_PREFIX_LEN)) {
  379. mkey = request_user_key(epayload->master_desc +
  380. KEY_USER_PREFIX_LEN,
  381. master_key, master_keylen);
  382. } else
  383. goto out;
  384. if (IS_ERR(mkey)) {
  385. int ret = PTR_ERR(mkey);
  386. if (ret == -ENOTSUPP)
  387. pr_info("encrypted_key: key %s not supported",
  388. epayload->master_desc);
  389. else
  390. pr_info("encrypted_key: key %s not found",
  391. epayload->master_desc);
  392. goto out;
  393. }
  394. dump_master_key(*master_key, *master_keylen);
  395. out:
  396. return mkey;
  397. }
  398. /* Before returning data to userspace, encrypt decrypted data. */
  399. static int derived_key_encrypt(struct encrypted_key_payload *epayload,
  400. const u8 *derived_key,
  401. unsigned int derived_keylen)
  402. {
  403. struct scatterlist sg_in[2];
  404. struct scatterlist sg_out[1];
  405. struct crypto_skcipher *tfm;
  406. struct skcipher_request *req;
  407. unsigned int encrypted_datalen;
  408. u8 iv[AES_BLOCK_SIZE];
  409. int ret;
  410. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  411. req = init_skcipher_req(derived_key, derived_keylen);
  412. ret = PTR_ERR(req);
  413. if (IS_ERR(req))
  414. goto out;
  415. dump_decrypted_data(epayload);
  416. sg_init_table(sg_in, 2);
  417. sg_set_buf(&sg_in[0], epayload->decrypted_data,
  418. epayload->decrypted_datalen);
  419. sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
  420. sg_init_table(sg_out, 1);
  421. sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
  422. memcpy(iv, epayload->iv, sizeof(iv));
  423. skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
  424. ret = crypto_skcipher_encrypt(req);
  425. tfm = crypto_skcipher_reqtfm(req);
  426. skcipher_request_free(req);
  427. crypto_free_skcipher(tfm);
  428. if (ret < 0)
  429. pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
  430. else
  431. dump_encrypted_data(epayload, encrypted_datalen);
  432. out:
  433. return ret;
  434. }
  435. static int datablob_hmac_append(struct encrypted_key_payload *epayload,
  436. const u8 *master_key, size_t master_keylen)
  437. {
  438. u8 derived_key[HASH_SIZE];
  439. u8 *digest;
  440. int ret;
  441. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  442. if (ret < 0)
  443. goto out;
  444. digest = epayload->format + epayload->datablob_len;
  445. ret = calc_hmac(digest, derived_key, sizeof derived_key,
  446. epayload->format, epayload->datablob_len);
  447. if (!ret)
  448. dump_hmac(NULL, digest, HASH_SIZE);
  449. out:
  450. memzero_explicit(derived_key, sizeof(derived_key));
  451. return ret;
  452. }
  453. /* verify HMAC before decrypting encrypted key */
  454. static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
  455. const u8 *format, const u8 *master_key,
  456. size_t master_keylen)
  457. {
  458. u8 derived_key[HASH_SIZE];
  459. u8 digest[HASH_SIZE];
  460. int ret;
  461. char *p;
  462. unsigned short len;
  463. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  464. if (ret < 0)
  465. goto out;
  466. len = epayload->datablob_len;
  467. if (!format) {
  468. p = epayload->master_desc;
  469. len -= strlen(epayload->format) + 1;
  470. } else
  471. p = epayload->format;
  472. ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
  473. if (ret < 0)
  474. goto out;
  475. ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
  476. sizeof(digest));
  477. if (ret) {
  478. ret = -EINVAL;
  479. dump_hmac("datablob",
  480. epayload->format + epayload->datablob_len,
  481. HASH_SIZE);
  482. dump_hmac("calc", digest, HASH_SIZE);
  483. }
  484. out:
  485. memzero_explicit(derived_key, sizeof(derived_key));
  486. return ret;
  487. }
  488. static int derived_key_decrypt(struct encrypted_key_payload *epayload,
  489. const u8 *derived_key,
  490. unsigned int derived_keylen)
  491. {
  492. struct scatterlist sg_in[1];
  493. struct scatterlist sg_out[2];
  494. struct crypto_skcipher *tfm;
  495. struct skcipher_request *req;
  496. unsigned int encrypted_datalen;
  497. u8 iv[AES_BLOCK_SIZE];
  498. u8 *pad;
  499. int ret;
  500. /* Throwaway buffer to hold the unused zero padding at the end */
  501. pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
  502. if (!pad)
  503. return -ENOMEM;
  504. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  505. req = init_skcipher_req(derived_key, derived_keylen);
  506. ret = PTR_ERR(req);
  507. if (IS_ERR(req))
  508. goto out;
  509. dump_encrypted_data(epayload, encrypted_datalen);
  510. sg_init_table(sg_in, 1);
  511. sg_init_table(sg_out, 2);
  512. sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
  513. sg_set_buf(&sg_out[0], epayload->decrypted_data,
  514. epayload->decrypted_datalen);
  515. sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
  516. memcpy(iv, epayload->iv, sizeof(iv));
  517. skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
  518. ret = crypto_skcipher_decrypt(req);
  519. tfm = crypto_skcipher_reqtfm(req);
  520. skcipher_request_free(req);
  521. crypto_free_skcipher(tfm);
  522. if (ret < 0)
  523. goto out;
  524. dump_decrypted_data(epayload);
  525. out:
  526. kfree(pad);
  527. return ret;
  528. }
  529. /* Allocate memory for decrypted key and datablob. */
  530. static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
  531. const char *format,
  532. const char *master_desc,
  533. const char *datalen)
  534. {
  535. struct encrypted_key_payload *epayload = NULL;
  536. unsigned short datablob_len;
  537. unsigned short decrypted_datalen;
  538. unsigned short payload_datalen;
  539. unsigned int encrypted_datalen;
  540. unsigned int format_len;
  541. long dlen;
  542. int ret;
  543. ret = kstrtol(datalen, 10, &dlen);
  544. if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
  545. return ERR_PTR(-EINVAL);
  546. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  547. decrypted_datalen = dlen;
  548. payload_datalen = decrypted_datalen;
  549. if (format && !strcmp(format, key_format_ecryptfs)) {
  550. if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
  551. pr_err("encrypted_key: keylen for the ecryptfs format "
  552. "must be equal to %d bytes\n",
  553. ECRYPTFS_MAX_KEY_BYTES);
  554. return ERR_PTR(-EINVAL);
  555. }
  556. decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
  557. payload_datalen = sizeof(struct ecryptfs_auth_tok);
  558. }
  559. encrypted_datalen = roundup(decrypted_datalen, blksize);
  560. datablob_len = format_len + 1 + strlen(master_desc) + 1
  561. + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
  562. ret = key_payload_reserve(key, payload_datalen + datablob_len
  563. + HASH_SIZE + 1);
  564. if (ret < 0)
  565. return ERR_PTR(ret);
  566. epayload = kzalloc(sizeof(*epayload) + payload_datalen +
  567. datablob_len + HASH_SIZE + 1, GFP_KERNEL);
  568. if (!epayload)
  569. return ERR_PTR(-ENOMEM);
  570. epayload->payload_datalen = payload_datalen;
  571. epayload->decrypted_datalen = decrypted_datalen;
  572. epayload->datablob_len = datablob_len;
  573. return epayload;
  574. }
  575. static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
  576. const char *format, const char *hex_encoded_iv)
  577. {
  578. struct key *mkey;
  579. u8 derived_key[HASH_SIZE];
  580. const u8 *master_key;
  581. u8 *hmac;
  582. const char *hex_encoded_data;
  583. unsigned int encrypted_datalen;
  584. size_t master_keylen;
  585. size_t asciilen;
  586. int ret;
  587. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  588. asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
  589. if (strlen(hex_encoded_iv) != asciilen)
  590. return -EINVAL;
  591. hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
  592. ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
  593. if (ret < 0)
  594. return -EINVAL;
  595. ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
  596. encrypted_datalen);
  597. if (ret < 0)
  598. return -EINVAL;
  599. hmac = epayload->format + epayload->datablob_len;
  600. ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
  601. HASH_SIZE);
  602. if (ret < 0)
  603. return -EINVAL;
  604. mkey = request_master_key(epayload, &master_key, &master_keylen);
  605. if (IS_ERR(mkey))
  606. return PTR_ERR(mkey);
  607. ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
  608. if (ret < 0) {
  609. pr_err("encrypted_key: bad hmac (%d)\n", ret);
  610. goto out;
  611. }
  612. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  613. if (ret < 0)
  614. goto out;
  615. ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
  616. if (ret < 0)
  617. pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
  618. out:
  619. up_read(&mkey->sem);
  620. key_put(mkey);
  621. memzero_explicit(derived_key, sizeof(derived_key));
  622. return ret;
  623. }
  624. static void __ekey_init(struct encrypted_key_payload *epayload,
  625. const char *format, const char *master_desc,
  626. const char *datalen)
  627. {
  628. unsigned int format_len;
  629. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  630. epayload->format = epayload->payload_data + epayload->payload_datalen;
  631. epayload->master_desc = epayload->format + format_len + 1;
  632. epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
  633. epayload->iv = epayload->datalen + strlen(datalen) + 1;
  634. epayload->encrypted_data = epayload->iv + ivsize + 1;
  635. epayload->decrypted_data = epayload->payload_data;
  636. if (!format)
  637. memcpy(epayload->format, key_format_default, format_len);
  638. else {
  639. if (!strcmp(format, key_format_ecryptfs))
  640. epayload->decrypted_data =
  641. ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
  642. memcpy(epayload->format, format, format_len);
  643. }
  644. memcpy(epayload->master_desc, master_desc, strlen(master_desc));
  645. memcpy(epayload->datalen, datalen, strlen(datalen));
  646. }
  647. /*
  648. * encrypted_init - initialize an encrypted key
  649. *
  650. * For a new key, use a random number for both the iv and data
  651. * itself. For an old key, decrypt the hex encoded data.
  652. */
  653. static int encrypted_init(struct encrypted_key_payload *epayload,
  654. const char *key_desc, const char *format,
  655. const char *master_desc, const char *datalen,
  656. const char *hex_encoded_iv)
  657. {
  658. int ret = 0;
  659. if (format && !strcmp(format, key_format_ecryptfs)) {
  660. ret = valid_ecryptfs_desc(key_desc);
  661. if (ret < 0)
  662. return ret;
  663. ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
  664. key_desc);
  665. }
  666. __ekey_init(epayload, format, master_desc, datalen);
  667. if (!hex_encoded_iv) {
  668. get_random_bytes(epayload->iv, ivsize);
  669. get_random_bytes(epayload->decrypted_data,
  670. epayload->decrypted_datalen);
  671. } else
  672. ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
  673. return ret;
  674. }
  675. /*
  676. * encrypted_instantiate - instantiate an encrypted key
  677. *
  678. * Decrypt an existing encrypted datablob or create a new encrypted key
  679. * based on a kernel random number.
  680. *
  681. * On success, return 0. Otherwise return errno.
  682. */
  683. static int encrypted_instantiate(struct key *key,
  684. struct key_preparsed_payload *prep)
  685. {
  686. struct encrypted_key_payload *epayload = NULL;
  687. char *datablob = NULL;
  688. const char *format = NULL;
  689. char *master_desc = NULL;
  690. char *decrypted_datalen = NULL;
  691. char *hex_encoded_iv = NULL;
  692. size_t datalen = prep->datalen;
  693. int ret;
  694. if (datalen <= 0 || datalen > 32767 || !prep->data)
  695. return -EINVAL;
  696. datablob = kmalloc(datalen + 1, GFP_KERNEL);
  697. if (!datablob)
  698. return -ENOMEM;
  699. datablob[datalen] = 0;
  700. memcpy(datablob, prep->data, datalen);
  701. ret = datablob_parse(datablob, &format, &master_desc,
  702. &decrypted_datalen, &hex_encoded_iv);
  703. if (ret < 0)
  704. goto out;
  705. epayload = encrypted_key_alloc(key, format, master_desc,
  706. decrypted_datalen);
  707. if (IS_ERR(epayload)) {
  708. ret = PTR_ERR(epayload);
  709. goto out;
  710. }
  711. ret = encrypted_init(epayload, key->description, format, master_desc,
  712. decrypted_datalen, hex_encoded_iv);
  713. if (ret < 0) {
  714. kzfree(epayload);
  715. goto out;
  716. }
  717. rcu_assign_keypointer(key, epayload);
  718. out:
  719. kzfree(datablob);
  720. return ret;
  721. }
  722. static void encrypted_rcu_free(struct rcu_head *rcu)
  723. {
  724. struct encrypted_key_payload *epayload;
  725. epayload = container_of(rcu, struct encrypted_key_payload, rcu);
  726. kzfree(epayload);
  727. }
  728. /*
  729. * encrypted_update - update the master key description
  730. *
  731. * Change the master key description for an existing encrypted key.
  732. * The next read will return an encrypted datablob using the new
  733. * master key description.
  734. *
  735. * On success, return 0. Otherwise return errno.
  736. */
  737. static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
  738. {
  739. struct encrypted_key_payload *epayload = key->payload.data[0];
  740. struct encrypted_key_payload *new_epayload;
  741. char *buf;
  742. char *new_master_desc = NULL;
  743. const char *format = NULL;
  744. size_t datalen = prep->datalen;
  745. int ret = 0;
  746. if (key_is_negative(key))
  747. return -ENOKEY;
  748. if (datalen <= 0 || datalen > 32767 || !prep->data)
  749. return -EINVAL;
  750. buf = kmalloc(datalen + 1, GFP_KERNEL);
  751. if (!buf)
  752. return -ENOMEM;
  753. buf[datalen] = 0;
  754. memcpy(buf, prep->data, datalen);
  755. ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
  756. if (ret < 0)
  757. goto out;
  758. ret = valid_master_desc(new_master_desc, epayload->master_desc);
  759. if (ret < 0)
  760. goto out;
  761. new_epayload = encrypted_key_alloc(key, epayload->format,
  762. new_master_desc, epayload->datalen);
  763. if (IS_ERR(new_epayload)) {
  764. ret = PTR_ERR(new_epayload);
  765. goto out;
  766. }
  767. __ekey_init(new_epayload, epayload->format, new_master_desc,
  768. epayload->datalen);
  769. memcpy(new_epayload->iv, epayload->iv, ivsize);
  770. memcpy(new_epayload->payload_data, epayload->payload_data,
  771. epayload->payload_datalen);
  772. rcu_assign_keypointer(key, new_epayload);
  773. call_rcu(&epayload->rcu, encrypted_rcu_free);
  774. out:
  775. kzfree(buf);
  776. return ret;
  777. }
  778. /*
  779. * encrypted_read - format and copy out the encrypted data
  780. *
  781. * The resulting datablob format is:
  782. * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
  783. *
  784. * On success, return to userspace the encrypted key datablob size.
  785. */
  786. static long encrypted_read(const struct key *key, char *buffer,
  787. size_t buflen)
  788. {
  789. struct encrypted_key_payload *epayload;
  790. struct key *mkey;
  791. const u8 *master_key;
  792. size_t master_keylen;
  793. char derived_key[HASH_SIZE];
  794. char *ascii_buf;
  795. size_t asciiblob_len;
  796. int ret;
  797. epayload = dereference_key_locked(key);
  798. /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
  799. asciiblob_len = epayload->datablob_len + ivsize + 1
  800. + roundup(epayload->decrypted_datalen, blksize)
  801. + (HASH_SIZE * 2);
  802. if (!buffer || buflen < asciiblob_len)
  803. return asciiblob_len;
  804. mkey = request_master_key(epayload, &master_key, &master_keylen);
  805. if (IS_ERR(mkey))
  806. return PTR_ERR(mkey);
  807. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  808. if (ret < 0)
  809. goto out;
  810. ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
  811. if (ret < 0)
  812. goto out;
  813. ret = datablob_hmac_append(epayload, master_key, master_keylen);
  814. if (ret < 0)
  815. goto out;
  816. ascii_buf = datablob_format(epayload, asciiblob_len);
  817. if (!ascii_buf) {
  818. ret = -ENOMEM;
  819. goto out;
  820. }
  821. up_read(&mkey->sem);
  822. key_put(mkey);
  823. memzero_explicit(derived_key, sizeof(derived_key));
  824. memcpy(buffer, ascii_buf, asciiblob_len);
  825. kzfree(ascii_buf);
  826. return asciiblob_len;
  827. out:
  828. up_read(&mkey->sem);
  829. key_put(mkey);
  830. memzero_explicit(derived_key, sizeof(derived_key));
  831. return ret;
  832. }
  833. /*
  834. * encrypted_destroy - clear and free the key's payload
  835. */
  836. static void encrypted_destroy(struct key *key)
  837. {
  838. kzfree(key->payload.data[0]);
  839. }
  840. struct key_type key_type_encrypted = {
  841. .name = "encrypted",
  842. .instantiate = encrypted_instantiate,
  843. .update = encrypted_update,
  844. .destroy = encrypted_destroy,
  845. .describe = user_describe,
  846. .read = encrypted_read,
  847. };
  848. EXPORT_SYMBOL_GPL(key_type_encrypted);
  849. static int __init init_encrypted(void)
  850. {
  851. int ret;
  852. hash_tfm = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
  853. if (IS_ERR(hash_tfm)) {
  854. pr_err("encrypted_key: can't allocate %s transform: %ld\n",
  855. hash_alg, PTR_ERR(hash_tfm));
  856. return PTR_ERR(hash_tfm);
  857. }
  858. ret = aes_get_sizes();
  859. if (ret < 0)
  860. goto out;
  861. ret = register_key_type(&key_type_encrypted);
  862. if (ret < 0)
  863. goto out;
  864. return 0;
  865. out:
  866. crypto_free_shash(hash_tfm);
  867. return ret;
  868. }
  869. static void __exit cleanup_encrypted(void)
  870. {
  871. crypto_free_shash(hash_tfm);
  872. unregister_key_type(&key_type_encrypted);
  873. }
  874. late_initcall(init_encrypted);
  875. module_exit(cleanup_encrypted);
  876. MODULE_LICENSE("GPL");