writeback.h 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _BCACHE_WRITEBACK_H
  3. #define _BCACHE_WRITEBACK_H
  4. #define CUTOFF_WRITEBACK 40
  5. #define CUTOFF_WRITEBACK_SYNC 70
  6. static inline uint64_t bcache_dev_sectors_dirty(struct bcache_device *d)
  7. {
  8. uint64_t i, ret = 0;
  9. for (i = 0; i < d->nr_stripes; i++)
  10. ret += atomic_read(d->stripe_sectors_dirty + i);
  11. return ret;
  12. }
  13. static inline uint64_t bcache_flash_devs_sectors_dirty(struct cache_set *c)
  14. {
  15. uint64_t i, ret = 0;
  16. mutex_lock(&bch_register_lock);
  17. for (i = 0; i < c->nr_uuids; i++) {
  18. struct bcache_device *d = c->devices[i];
  19. if (!d || !UUID_FLASH_ONLY(&c->uuids[i]))
  20. continue;
  21. ret += bcache_dev_sectors_dirty(d);
  22. }
  23. mutex_unlock(&bch_register_lock);
  24. return ret;
  25. }
  26. static inline unsigned offset_to_stripe(struct bcache_device *d,
  27. uint64_t offset)
  28. {
  29. do_div(offset, d->stripe_size);
  30. return offset;
  31. }
  32. static inline bool bcache_dev_stripe_dirty(struct cached_dev *dc,
  33. uint64_t offset,
  34. unsigned nr_sectors)
  35. {
  36. unsigned stripe = offset_to_stripe(&dc->disk, offset);
  37. while (1) {
  38. if (atomic_read(dc->disk.stripe_sectors_dirty + stripe))
  39. return true;
  40. if (nr_sectors <= dc->disk.stripe_size)
  41. return false;
  42. nr_sectors -= dc->disk.stripe_size;
  43. stripe++;
  44. }
  45. }
  46. static inline bool should_writeback(struct cached_dev *dc, struct bio *bio,
  47. unsigned cache_mode, bool would_skip)
  48. {
  49. unsigned in_use = dc->disk.c->gc_stats.in_use;
  50. if (cache_mode != CACHE_MODE_WRITEBACK ||
  51. test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
  52. in_use > CUTOFF_WRITEBACK_SYNC)
  53. return false;
  54. if (bio_op(bio) == REQ_OP_DISCARD)
  55. return false;
  56. if (dc->partial_stripes_expensive &&
  57. bcache_dev_stripe_dirty(dc, bio->bi_iter.bi_sector,
  58. bio_sectors(bio)))
  59. return true;
  60. if (would_skip)
  61. return false;
  62. return op_is_sync(bio->bi_opf) || in_use <= CUTOFF_WRITEBACK;
  63. }
  64. static inline void bch_writeback_queue(struct cached_dev *dc)
  65. {
  66. if (!IS_ERR_OR_NULL(dc->writeback_thread))
  67. wake_up_process(dc->writeback_thread);
  68. }
  69. static inline void bch_writeback_add(struct cached_dev *dc)
  70. {
  71. if (!atomic_read(&dc->has_dirty) &&
  72. !atomic_xchg(&dc->has_dirty, 1)) {
  73. atomic_inc(&dc->count);
  74. if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
  75. SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
  76. /* XXX: should do this synchronously */
  77. bch_write_bdev_super(dc, NULL);
  78. }
  79. bch_writeback_queue(dc);
  80. }
  81. }
  82. void bcache_dev_sectors_dirty_add(struct cache_set *, unsigned, uint64_t, int);
  83. void bch_sectors_dirty_init(struct bcache_device *);
  84. void bch_cached_dev_writeback_init(struct cached_dev *);
  85. int bch_cached_dev_writeback_start(struct cached_dev *);
  86. #endif