vm86_32.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 1994 Linus Torvalds
  4. *
  5. * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  6. * stack - Manfred Spraul <manfred@colorfullife.com>
  7. *
  8. * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  9. * them correctly. Now the emulation will be in a
  10. * consistent state after stackfaults - Kasper Dupont
  11. * <kasperd@daimi.au.dk>
  12. *
  13. * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  14. * <kasperd@daimi.au.dk>
  15. *
  16. * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  17. * caused by Kasper Dupont's changes - Stas Sergeev
  18. *
  19. * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  20. * Kasper Dupont <kasperd@daimi.au.dk>
  21. *
  22. * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  23. * Kasper Dupont <kasperd@daimi.au.dk>
  24. *
  25. * 9 apr 2002 - Changed stack access macros to jump to a label
  26. * instead of returning to userspace. This simplifies
  27. * do_int, and is needed by handle_vm6_fault. Kasper
  28. * Dupont <kasperd@daimi.au.dk>
  29. *
  30. */
  31. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32. #include <linux/capability.h>
  33. #include <linux/errno.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/sched.h>
  37. #include <linux/sched/task_stack.h>
  38. #include <linux/kernel.h>
  39. #include <linux/signal.h>
  40. #include <linux/string.h>
  41. #include <linux/mm.h>
  42. #include <linux/smp.h>
  43. #include <linux/highmem.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/audit.h>
  46. #include <linux/stddef.h>
  47. #include <linux/slab.h>
  48. #include <linux/security.h>
  49. #include <linux/uaccess.h>
  50. #include <asm/io.h>
  51. #include <asm/tlbflush.h>
  52. #include <asm/irq.h>
  53. #include <asm/traps.h>
  54. #include <asm/vm86.h>
  55. #include <asm/switch_to.h>
  56. /*
  57. * Known problems:
  58. *
  59. * Interrupt handling is not guaranteed:
  60. * - a real x86 will disable all interrupts for one instruction
  61. * after a "mov ss,xx" to make stack handling atomic even without
  62. * the 'lss' instruction. We can't guarantee this in v86 mode,
  63. * as the next instruction might result in a page fault or similar.
  64. * - a real x86 will have interrupts disabled for one instruction
  65. * past the 'sti' that enables them. We don't bother with all the
  66. * details yet.
  67. *
  68. * Let's hope these problems do not actually matter for anything.
  69. */
  70. /*
  71. * 8- and 16-bit register defines..
  72. */
  73. #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
  74. #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
  75. #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
  76. #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
  77. /*
  78. * virtual flags (16 and 32-bit versions)
  79. */
  80. #define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
  81. #define VEFLAGS (current->thread.vm86->veflags)
  82. #define set_flags(X, new, mask) \
  83. ((X) = ((X) & ~(mask)) | ((new) & (mask)))
  84. #define SAFE_MASK (0xDD5)
  85. #define RETURN_MASK (0xDFF)
  86. void save_v86_state(struct kernel_vm86_regs *regs, int retval)
  87. {
  88. struct task_struct *tsk = current;
  89. struct vm86plus_struct __user *user;
  90. struct vm86 *vm86 = current->thread.vm86;
  91. long err = 0;
  92. /*
  93. * This gets called from entry.S with interrupts disabled, but
  94. * from process context. Enable interrupts here, before trying
  95. * to access user space.
  96. */
  97. local_irq_enable();
  98. if (!vm86 || !vm86->user_vm86) {
  99. pr_alert("no user_vm86: BAD\n");
  100. do_exit(SIGSEGV);
  101. }
  102. set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
  103. user = vm86->user_vm86;
  104. if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
  105. sizeof(struct vm86plus_struct) :
  106. sizeof(struct vm86_struct))) {
  107. pr_alert("could not access userspace vm86 info\n");
  108. do_exit(SIGSEGV);
  109. }
  110. put_user_try {
  111. put_user_ex(regs->pt.bx, &user->regs.ebx);
  112. put_user_ex(regs->pt.cx, &user->regs.ecx);
  113. put_user_ex(regs->pt.dx, &user->regs.edx);
  114. put_user_ex(regs->pt.si, &user->regs.esi);
  115. put_user_ex(regs->pt.di, &user->regs.edi);
  116. put_user_ex(regs->pt.bp, &user->regs.ebp);
  117. put_user_ex(regs->pt.ax, &user->regs.eax);
  118. put_user_ex(regs->pt.ip, &user->regs.eip);
  119. put_user_ex(regs->pt.cs, &user->regs.cs);
  120. put_user_ex(regs->pt.flags, &user->regs.eflags);
  121. put_user_ex(regs->pt.sp, &user->regs.esp);
  122. put_user_ex(regs->pt.ss, &user->regs.ss);
  123. put_user_ex(regs->es, &user->regs.es);
  124. put_user_ex(regs->ds, &user->regs.ds);
  125. put_user_ex(regs->fs, &user->regs.fs);
  126. put_user_ex(regs->gs, &user->regs.gs);
  127. put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
  128. } put_user_catch(err);
  129. if (err) {
  130. pr_alert("could not access userspace vm86 info\n");
  131. do_exit(SIGSEGV);
  132. }
  133. preempt_disable();
  134. tsk->thread.sp0 = vm86->saved_sp0;
  135. tsk->thread.sysenter_cs = __KERNEL_CS;
  136. update_sp0(tsk);
  137. refresh_sysenter_cs(&tsk->thread);
  138. vm86->saved_sp0 = 0;
  139. preempt_enable();
  140. memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
  141. lazy_load_gs(vm86->regs32.gs);
  142. regs->pt.ax = retval;
  143. }
  144. static void mark_screen_rdonly(struct mm_struct *mm)
  145. {
  146. struct vm_area_struct *vma;
  147. spinlock_t *ptl;
  148. pgd_t *pgd;
  149. p4d_t *p4d;
  150. pud_t *pud;
  151. pmd_t *pmd;
  152. pte_t *pte;
  153. int i;
  154. down_write(&mm->mmap_sem);
  155. pgd = pgd_offset(mm, 0xA0000);
  156. if (pgd_none_or_clear_bad(pgd))
  157. goto out;
  158. p4d = p4d_offset(pgd, 0xA0000);
  159. if (p4d_none_or_clear_bad(p4d))
  160. goto out;
  161. pud = pud_offset(p4d, 0xA0000);
  162. if (pud_none_or_clear_bad(pud))
  163. goto out;
  164. pmd = pmd_offset(pud, 0xA0000);
  165. if (pmd_trans_huge(*pmd)) {
  166. vma = find_vma(mm, 0xA0000);
  167. split_huge_pmd(vma, pmd, 0xA0000);
  168. }
  169. if (pmd_none_or_clear_bad(pmd))
  170. goto out;
  171. pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
  172. for (i = 0; i < 32; i++) {
  173. if (pte_present(*pte))
  174. set_pte(pte, pte_wrprotect(*pte));
  175. pte++;
  176. }
  177. pte_unmap_unlock(pte, ptl);
  178. out:
  179. up_write(&mm->mmap_sem);
  180. flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
  181. }
  182. static int do_vm86_irq_handling(int subfunction, int irqnumber);
  183. static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
  184. SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
  185. {
  186. return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
  187. }
  188. SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
  189. {
  190. switch (cmd) {
  191. case VM86_REQUEST_IRQ:
  192. case VM86_FREE_IRQ:
  193. case VM86_GET_IRQ_BITS:
  194. case VM86_GET_AND_RESET_IRQ:
  195. return do_vm86_irq_handling(cmd, (int)arg);
  196. case VM86_PLUS_INSTALL_CHECK:
  197. /*
  198. * NOTE: on old vm86 stuff this will return the error
  199. * from access_ok(), because the subfunction is
  200. * interpreted as (invalid) address to vm86_struct.
  201. * So the installation check works.
  202. */
  203. return 0;
  204. }
  205. /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
  206. return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
  207. }
  208. static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
  209. {
  210. struct task_struct *tsk = current;
  211. struct vm86 *vm86 = tsk->thread.vm86;
  212. struct kernel_vm86_regs vm86regs;
  213. struct pt_regs *regs = current_pt_regs();
  214. unsigned long err = 0;
  215. err = security_mmap_addr(0);
  216. if (err) {
  217. /*
  218. * vm86 cannot virtualize the address space, so vm86 users
  219. * need to manage the low 1MB themselves using mmap. Given
  220. * that BIOS places important data in the first page, vm86
  221. * is essentially useless if mmap_min_addr != 0. DOSEMU,
  222. * for example, won't even bother trying to use vm86 if it
  223. * can't map a page at virtual address 0.
  224. *
  225. * To reduce the available kernel attack surface, simply
  226. * disallow vm86(old) for users who cannot mmap at va 0.
  227. *
  228. * The implementation of security_mmap_addr will allow
  229. * suitably privileged users to map va 0 even if
  230. * vm.mmap_min_addr is set above 0, and we want this
  231. * behavior for vm86 as well, as it ensures that legacy
  232. * tools like vbetool will not fail just because of
  233. * vm.mmap_min_addr.
  234. */
  235. pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
  236. current->comm, task_pid_nr(current),
  237. from_kuid_munged(&init_user_ns, current_uid()));
  238. return -EPERM;
  239. }
  240. if (!vm86) {
  241. if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
  242. return -ENOMEM;
  243. tsk->thread.vm86 = vm86;
  244. }
  245. if (vm86->saved_sp0)
  246. return -EPERM;
  247. if (!access_ok(VERIFY_READ, user_vm86, plus ?
  248. sizeof(struct vm86_struct) :
  249. sizeof(struct vm86plus_struct)))
  250. return -EFAULT;
  251. memset(&vm86regs, 0, sizeof(vm86regs));
  252. get_user_try {
  253. unsigned short seg;
  254. get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
  255. get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
  256. get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
  257. get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
  258. get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
  259. get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
  260. get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
  261. get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
  262. get_user_ex(seg, &user_vm86->regs.cs);
  263. vm86regs.pt.cs = seg;
  264. get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
  265. get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
  266. get_user_ex(seg, &user_vm86->regs.ss);
  267. vm86regs.pt.ss = seg;
  268. get_user_ex(vm86regs.es, &user_vm86->regs.es);
  269. get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
  270. get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
  271. get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
  272. get_user_ex(vm86->flags, &user_vm86->flags);
  273. get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
  274. get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
  275. } get_user_catch(err);
  276. if (err)
  277. return err;
  278. if (copy_from_user(&vm86->int_revectored,
  279. &user_vm86->int_revectored,
  280. sizeof(struct revectored_struct)))
  281. return -EFAULT;
  282. if (copy_from_user(&vm86->int21_revectored,
  283. &user_vm86->int21_revectored,
  284. sizeof(struct revectored_struct)))
  285. return -EFAULT;
  286. if (plus) {
  287. if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
  288. sizeof(struct vm86plus_info_struct)))
  289. return -EFAULT;
  290. vm86->vm86plus.is_vm86pus = 1;
  291. } else
  292. memset(&vm86->vm86plus, 0,
  293. sizeof(struct vm86plus_info_struct));
  294. memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
  295. vm86->user_vm86 = user_vm86;
  296. /*
  297. * The flags register is also special: we cannot trust that the user
  298. * has set it up safely, so this makes sure interrupt etc flags are
  299. * inherited from protected mode.
  300. */
  301. VEFLAGS = vm86regs.pt.flags;
  302. vm86regs.pt.flags &= SAFE_MASK;
  303. vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
  304. vm86regs.pt.flags |= X86_VM_MASK;
  305. vm86regs.pt.orig_ax = regs->orig_ax;
  306. switch (vm86->cpu_type) {
  307. case CPU_286:
  308. vm86->veflags_mask = 0;
  309. break;
  310. case CPU_386:
  311. vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  312. break;
  313. case CPU_486:
  314. vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  315. break;
  316. default:
  317. vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  318. break;
  319. }
  320. /*
  321. * Save old state
  322. */
  323. vm86->saved_sp0 = tsk->thread.sp0;
  324. lazy_save_gs(vm86->regs32.gs);
  325. /* make room for real-mode segments */
  326. preempt_disable();
  327. tsk->thread.sp0 += 16;
  328. if (static_cpu_has(X86_FEATURE_SEP)) {
  329. tsk->thread.sysenter_cs = 0;
  330. refresh_sysenter_cs(&tsk->thread);
  331. }
  332. update_sp0(tsk);
  333. preempt_enable();
  334. if (vm86->flags & VM86_SCREEN_BITMAP)
  335. mark_screen_rdonly(tsk->mm);
  336. memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
  337. force_iret();
  338. return regs->ax;
  339. }
  340. static inline void set_IF(struct kernel_vm86_regs *regs)
  341. {
  342. VEFLAGS |= X86_EFLAGS_VIF;
  343. }
  344. static inline void clear_IF(struct kernel_vm86_regs *regs)
  345. {
  346. VEFLAGS &= ~X86_EFLAGS_VIF;
  347. }
  348. static inline void clear_TF(struct kernel_vm86_regs *regs)
  349. {
  350. regs->pt.flags &= ~X86_EFLAGS_TF;
  351. }
  352. static inline void clear_AC(struct kernel_vm86_regs *regs)
  353. {
  354. regs->pt.flags &= ~X86_EFLAGS_AC;
  355. }
  356. /*
  357. * It is correct to call set_IF(regs) from the set_vflags_*
  358. * functions. However someone forgot to call clear_IF(regs)
  359. * in the opposite case.
  360. * After the command sequence CLI PUSHF STI POPF you should
  361. * end up with interrupts disabled, but you ended up with
  362. * interrupts enabled.
  363. * ( I was testing my own changes, but the only bug I
  364. * could find was in a function I had not changed. )
  365. * [KD]
  366. */
  367. static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
  368. {
  369. set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
  370. set_flags(regs->pt.flags, flags, SAFE_MASK);
  371. if (flags & X86_EFLAGS_IF)
  372. set_IF(regs);
  373. else
  374. clear_IF(regs);
  375. }
  376. static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
  377. {
  378. set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
  379. set_flags(regs->pt.flags, flags, SAFE_MASK);
  380. if (flags & X86_EFLAGS_IF)
  381. set_IF(regs);
  382. else
  383. clear_IF(regs);
  384. }
  385. static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
  386. {
  387. unsigned long flags = regs->pt.flags & RETURN_MASK;
  388. if (VEFLAGS & X86_EFLAGS_VIF)
  389. flags |= X86_EFLAGS_IF;
  390. flags |= X86_EFLAGS_IOPL;
  391. return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
  392. }
  393. static inline int is_revectored(int nr, struct revectored_struct *bitmap)
  394. {
  395. return test_bit(nr, bitmap->__map);
  396. }
  397. #define val_byte(val, n) (((__u8 *)&val)[n])
  398. #define pushb(base, ptr, val, err_label) \
  399. do { \
  400. __u8 __val = val; \
  401. ptr--; \
  402. if (put_user(__val, base + ptr) < 0) \
  403. goto err_label; \
  404. } while (0)
  405. #define pushw(base, ptr, val, err_label) \
  406. do { \
  407. __u16 __val = val; \
  408. ptr--; \
  409. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  410. goto err_label; \
  411. ptr--; \
  412. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  413. goto err_label; \
  414. } while (0)
  415. #define pushl(base, ptr, val, err_label) \
  416. do { \
  417. __u32 __val = val; \
  418. ptr--; \
  419. if (put_user(val_byte(__val, 3), base + ptr) < 0) \
  420. goto err_label; \
  421. ptr--; \
  422. if (put_user(val_byte(__val, 2), base + ptr) < 0) \
  423. goto err_label; \
  424. ptr--; \
  425. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  426. goto err_label; \
  427. ptr--; \
  428. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  429. goto err_label; \
  430. } while (0)
  431. #define popb(base, ptr, err_label) \
  432. ({ \
  433. __u8 __res; \
  434. if (get_user(__res, base + ptr) < 0) \
  435. goto err_label; \
  436. ptr++; \
  437. __res; \
  438. })
  439. #define popw(base, ptr, err_label) \
  440. ({ \
  441. __u16 __res; \
  442. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  443. goto err_label; \
  444. ptr++; \
  445. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  446. goto err_label; \
  447. ptr++; \
  448. __res; \
  449. })
  450. #define popl(base, ptr, err_label) \
  451. ({ \
  452. __u32 __res; \
  453. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  454. goto err_label; \
  455. ptr++; \
  456. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  457. goto err_label; \
  458. ptr++; \
  459. if (get_user(val_byte(__res, 2), base + ptr) < 0) \
  460. goto err_label; \
  461. ptr++; \
  462. if (get_user(val_byte(__res, 3), base + ptr) < 0) \
  463. goto err_label; \
  464. ptr++; \
  465. __res; \
  466. })
  467. /* There are so many possible reasons for this function to return
  468. * VM86_INTx, so adding another doesn't bother me. We can expect
  469. * userspace programs to be able to handle it. (Getting a problem
  470. * in userspace is always better than an Oops anyway.) [KD]
  471. */
  472. static void do_int(struct kernel_vm86_regs *regs, int i,
  473. unsigned char __user *ssp, unsigned short sp)
  474. {
  475. unsigned long __user *intr_ptr;
  476. unsigned long segoffs;
  477. struct vm86 *vm86 = current->thread.vm86;
  478. if (regs->pt.cs == BIOSSEG)
  479. goto cannot_handle;
  480. if (is_revectored(i, &vm86->int_revectored))
  481. goto cannot_handle;
  482. if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
  483. goto cannot_handle;
  484. intr_ptr = (unsigned long __user *) (i << 2);
  485. if (get_user(segoffs, intr_ptr))
  486. goto cannot_handle;
  487. if ((segoffs >> 16) == BIOSSEG)
  488. goto cannot_handle;
  489. pushw(ssp, sp, get_vflags(regs), cannot_handle);
  490. pushw(ssp, sp, regs->pt.cs, cannot_handle);
  491. pushw(ssp, sp, IP(regs), cannot_handle);
  492. regs->pt.cs = segoffs >> 16;
  493. SP(regs) -= 6;
  494. IP(regs) = segoffs & 0xffff;
  495. clear_TF(regs);
  496. clear_IF(regs);
  497. clear_AC(regs);
  498. return;
  499. cannot_handle:
  500. save_v86_state(regs, VM86_INTx + (i << 8));
  501. }
  502. int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
  503. {
  504. struct vm86 *vm86 = current->thread.vm86;
  505. if (vm86->vm86plus.is_vm86pus) {
  506. if ((trapno == 3) || (trapno == 1)) {
  507. save_v86_state(regs, VM86_TRAP + (trapno << 8));
  508. return 0;
  509. }
  510. do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
  511. return 0;
  512. }
  513. if (trapno != 1)
  514. return 1; /* we let this handle by the calling routine */
  515. current->thread.trap_nr = trapno;
  516. current->thread.error_code = error_code;
  517. force_sig(SIGTRAP, current);
  518. return 0;
  519. }
  520. void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
  521. {
  522. unsigned char opcode;
  523. unsigned char __user *csp;
  524. unsigned char __user *ssp;
  525. unsigned short ip, sp, orig_flags;
  526. int data32, pref_done;
  527. struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
  528. #define CHECK_IF_IN_TRAP \
  529. if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
  530. newflags |= X86_EFLAGS_TF
  531. orig_flags = *(unsigned short *)&regs->pt.flags;
  532. csp = (unsigned char __user *) (regs->pt.cs << 4);
  533. ssp = (unsigned char __user *) (regs->pt.ss << 4);
  534. sp = SP(regs);
  535. ip = IP(regs);
  536. data32 = 0;
  537. pref_done = 0;
  538. do {
  539. switch (opcode = popb(csp, ip, simulate_sigsegv)) {
  540. case 0x66: /* 32-bit data */ data32 = 1; break;
  541. case 0x67: /* 32-bit address */ break;
  542. case 0x2e: /* CS */ break;
  543. case 0x3e: /* DS */ break;
  544. case 0x26: /* ES */ break;
  545. case 0x36: /* SS */ break;
  546. case 0x65: /* GS */ break;
  547. case 0x64: /* FS */ break;
  548. case 0xf2: /* repnz */ break;
  549. case 0xf3: /* rep */ break;
  550. default: pref_done = 1;
  551. }
  552. } while (!pref_done);
  553. switch (opcode) {
  554. /* pushf */
  555. case 0x9c:
  556. if (data32) {
  557. pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
  558. SP(regs) -= 4;
  559. } else {
  560. pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
  561. SP(regs) -= 2;
  562. }
  563. IP(regs) = ip;
  564. goto vm86_fault_return;
  565. /* popf */
  566. case 0x9d:
  567. {
  568. unsigned long newflags;
  569. if (data32) {
  570. newflags = popl(ssp, sp, simulate_sigsegv);
  571. SP(regs) += 4;
  572. } else {
  573. newflags = popw(ssp, sp, simulate_sigsegv);
  574. SP(regs) += 2;
  575. }
  576. IP(regs) = ip;
  577. CHECK_IF_IN_TRAP;
  578. if (data32)
  579. set_vflags_long(newflags, regs);
  580. else
  581. set_vflags_short(newflags, regs);
  582. goto check_vip;
  583. }
  584. /* int xx */
  585. case 0xcd: {
  586. int intno = popb(csp, ip, simulate_sigsegv);
  587. IP(regs) = ip;
  588. if (vmpi->vm86dbg_active) {
  589. if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
  590. save_v86_state(regs, VM86_INTx + (intno << 8));
  591. return;
  592. }
  593. }
  594. do_int(regs, intno, ssp, sp);
  595. return;
  596. }
  597. /* iret */
  598. case 0xcf:
  599. {
  600. unsigned long newip;
  601. unsigned long newcs;
  602. unsigned long newflags;
  603. if (data32) {
  604. newip = popl(ssp, sp, simulate_sigsegv);
  605. newcs = popl(ssp, sp, simulate_sigsegv);
  606. newflags = popl(ssp, sp, simulate_sigsegv);
  607. SP(regs) += 12;
  608. } else {
  609. newip = popw(ssp, sp, simulate_sigsegv);
  610. newcs = popw(ssp, sp, simulate_sigsegv);
  611. newflags = popw(ssp, sp, simulate_sigsegv);
  612. SP(regs) += 6;
  613. }
  614. IP(regs) = newip;
  615. regs->pt.cs = newcs;
  616. CHECK_IF_IN_TRAP;
  617. if (data32) {
  618. set_vflags_long(newflags, regs);
  619. } else {
  620. set_vflags_short(newflags, regs);
  621. }
  622. goto check_vip;
  623. }
  624. /* cli */
  625. case 0xfa:
  626. IP(regs) = ip;
  627. clear_IF(regs);
  628. goto vm86_fault_return;
  629. /* sti */
  630. /*
  631. * Damn. This is incorrect: the 'sti' instruction should actually
  632. * enable interrupts after the /next/ instruction. Not good.
  633. *
  634. * Probably needs some horsing around with the TF flag. Aiee..
  635. */
  636. case 0xfb:
  637. IP(regs) = ip;
  638. set_IF(regs);
  639. goto check_vip;
  640. default:
  641. save_v86_state(regs, VM86_UNKNOWN);
  642. }
  643. return;
  644. check_vip:
  645. if ((VEFLAGS & (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) ==
  646. (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) {
  647. save_v86_state(regs, VM86_STI);
  648. return;
  649. }
  650. vm86_fault_return:
  651. if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
  652. save_v86_state(regs, VM86_PICRETURN);
  653. return;
  654. }
  655. if (orig_flags & X86_EFLAGS_TF)
  656. handle_vm86_trap(regs, 0, X86_TRAP_DB);
  657. return;
  658. simulate_sigsegv:
  659. /* FIXME: After a long discussion with Stas we finally
  660. * agreed, that this is wrong. Here we should
  661. * really send a SIGSEGV to the user program.
  662. * But how do we create the correct context? We
  663. * are inside a general protection fault handler
  664. * and has just returned from a page fault handler.
  665. * The correct context for the signal handler
  666. * should be a mixture of the two, but how do we
  667. * get the information? [KD]
  668. */
  669. save_v86_state(regs, VM86_UNKNOWN);
  670. }
  671. /* ---------------- vm86 special IRQ passing stuff ----------------- */
  672. #define VM86_IRQNAME "vm86irq"
  673. static struct vm86_irqs {
  674. struct task_struct *tsk;
  675. int sig;
  676. } vm86_irqs[16];
  677. static DEFINE_SPINLOCK(irqbits_lock);
  678. static int irqbits;
  679. #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
  680. | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
  681. | (1 << SIGUNUSED))
  682. static irqreturn_t irq_handler(int intno, void *dev_id)
  683. {
  684. int irq_bit;
  685. unsigned long flags;
  686. spin_lock_irqsave(&irqbits_lock, flags);
  687. irq_bit = 1 << intno;
  688. if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
  689. goto out;
  690. irqbits |= irq_bit;
  691. if (vm86_irqs[intno].sig)
  692. send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
  693. /*
  694. * IRQ will be re-enabled when user asks for the irq (whether
  695. * polling or as a result of the signal)
  696. */
  697. disable_irq_nosync(intno);
  698. spin_unlock_irqrestore(&irqbits_lock, flags);
  699. return IRQ_HANDLED;
  700. out:
  701. spin_unlock_irqrestore(&irqbits_lock, flags);
  702. return IRQ_NONE;
  703. }
  704. static inline void free_vm86_irq(int irqnumber)
  705. {
  706. unsigned long flags;
  707. free_irq(irqnumber, NULL);
  708. vm86_irqs[irqnumber].tsk = NULL;
  709. spin_lock_irqsave(&irqbits_lock, flags);
  710. irqbits &= ~(1 << irqnumber);
  711. spin_unlock_irqrestore(&irqbits_lock, flags);
  712. }
  713. void release_vm86_irqs(struct task_struct *task)
  714. {
  715. int i;
  716. for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
  717. if (vm86_irqs[i].tsk == task)
  718. free_vm86_irq(i);
  719. }
  720. static inline int get_and_reset_irq(int irqnumber)
  721. {
  722. int bit;
  723. unsigned long flags;
  724. int ret = 0;
  725. if (invalid_vm86_irq(irqnumber)) return 0;
  726. if (vm86_irqs[irqnumber].tsk != current) return 0;
  727. spin_lock_irqsave(&irqbits_lock, flags);
  728. bit = irqbits & (1 << irqnumber);
  729. irqbits &= ~bit;
  730. if (bit) {
  731. enable_irq(irqnumber);
  732. ret = 1;
  733. }
  734. spin_unlock_irqrestore(&irqbits_lock, flags);
  735. return ret;
  736. }
  737. static int do_vm86_irq_handling(int subfunction, int irqnumber)
  738. {
  739. int ret;
  740. switch (subfunction) {
  741. case VM86_GET_AND_RESET_IRQ: {
  742. return get_and_reset_irq(irqnumber);
  743. }
  744. case VM86_GET_IRQ_BITS: {
  745. return irqbits;
  746. }
  747. case VM86_REQUEST_IRQ: {
  748. int sig = irqnumber >> 8;
  749. int irq = irqnumber & 255;
  750. if (!capable(CAP_SYS_ADMIN)) return -EPERM;
  751. if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
  752. if (invalid_vm86_irq(irq)) return -EPERM;
  753. if (vm86_irqs[irq].tsk) return -EPERM;
  754. ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
  755. if (ret) return ret;
  756. vm86_irqs[irq].sig = sig;
  757. vm86_irqs[irq].tsk = current;
  758. return irq;
  759. }
  760. case VM86_FREE_IRQ: {
  761. if (invalid_vm86_irq(irqnumber)) return -EPERM;
  762. if (!vm86_irqs[irqnumber].tsk) return 0;
  763. if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
  764. free_vm86_irq(irqnumber);
  765. return 0;
  766. }
  767. }
  768. return -EINVAL;
  769. }