spi-topcliff-pch.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742
  1. /*
  2. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  3. *
  4. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/delay.h>
  16. #include <linux/pci.h>
  17. #include <linux/wait.h>
  18. #include <linux/spi/spi.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/sched.h>
  21. #include <linux/spi/spidev.h>
  22. #include <linux/module.h>
  23. #include <linux/device.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dmaengine.h>
  26. #include <linux/pch_dma.h>
  27. /* Register offsets */
  28. #define PCH_SPCR 0x00 /* SPI control register */
  29. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  30. #define PCH_SPSR 0x08 /* SPI status register */
  31. #define PCH_SPDWR 0x0C /* SPI write data register */
  32. #define PCH_SPDRR 0x10 /* SPI read data register */
  33. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  34. #define PCH_SRST 0x1C /* SPI reset register */
  35. #define PCH_ADDRESS_SIZE 0x20
  36. #define PCH_SPSR_TFD 0x000007C0
  37. #define PCH_SPSR_RFD 0x0000F800
  38. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  39. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  40. #define PCH_RX_THOLD 7
  41. #define PCH_RX_THOLD_MAX 15
  42. #define PCH_TX_THOLD 2
  43. #define PCH_MAX_BAUDRATE 5000000
  44. #define PCH_MAX_FIFO_DEPTH 16
  45. #define STATUS_RUNNING 1
  46. #define STATUS_EXITING 2
  47. #define PCH_SLEEP_TIME 10
  48. #define SSN_LOW 0x02U
  49. #define SSN_HIGH 0x03U
  50. #define SSN_NO_CONTROL 0x00U
  51. #define PCH_MAX_CS 0xFF
  52. #define PCI_DEVICE_ID_GE_SPI 0x8816
  53. #define SPCR_SPE_BIT (1 << 0)
  54. #define SPCR_MSTR_BIT (1 << 1)
  55. #define SPCR_LSBF_BIT (1 << 4)
  56. #define SPCR_CPHA_BIT (1 << 5)
  57. #define SPCR_CPOL_BIT (1 << 6)
  58. #define SPCR_TFIE_BIT (1 << 8)
  59. #define SPCR_RFIE_BIT (1 << 9)
  60. #define SPCR_FIE_BIT (1 << 10)
  61. #define SPCR_ORIE_BIT (1 << 11)
  62. #define SPCR_MDFIE_BIT (1 << 12)
  63. #define SPCR_FICLR_BIT (1 << 24)
  64. #define SPSR_TFI_BIT (1 << 0)
  65. #define SPSR_RFI_BIT (1 << 1)
  66. #define SPSR_FI_BIT (1 << 2)
  67. #define SPSR_ORF_BIT (1 << 3)
  68. #define SPBRR_SIZE_BIT (1 << 10)
  69. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  70. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  71. #define SPCR_RFIC_FIELD 20
  72. #define SPCR_TFIC_FIELD 16
  73. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  74. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  75. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  76. #define PCH_CLOCK_HZ 50000000
  77. #define PCH_MAX_SPBR 1023
  78. /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  79. #define PCI_VENDOR_ID_ROHM 0x10DB
  80. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  81. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  82. #define PCI_DEVICE_ID_ML7831_SPI 0x8816
  83. /*
  84. * Set the number of SPI instance max
  85. * Intel EG20T PCH : 1ch
  86. * LAPIS Semiconductor ML7213 IOH : 2ch
  87. * LAPIS Semiconductor ML7223 IOH : 1ch
  88. * LAPIS Semiconductor ML7831 IOH : 1ch
  89. */
  90. #define PCH_SPI_MAX_DEV 2
  91. #define PCH_BUF_SIZE 4096
  92. #define PCH_DMA_TRANS_SIZE 12
  93. static int use_dma = 1;
  94. struct pch_spi_dma_ctrl {
  95. struct dma_async_tx_descriptor *desc_tx;
  96. struct dma_async_tx_descriptor *desc_rx;
  97. struct pch_dma_slave param_tx;
  98. struct pch_dma_slave param_rx;
  99. struct dma_chan *chan_tx;
  100. struct dma_chan *chan_rx;
  101. struct scatterlist *sg_tx_p;
  102. struct scatterlist *sg_rx_p;
  103. struct scatterlist sg_tx;
  104. struct scatterlist sg_rx;
  105. int nent;
  106. void *tx_buf_virt;
  107. void *rx_buf_virt;
  108. dma_addr_t tx_buf_dma;
  109. dma_addr_t rx_buf_dma;
  110. };
  111. /**
  112. * struct pch_spi_data - Holds the SPI channel specific details
  113. * @io_remap_addr: The remapped PCI base address
  114. * @master: Pointer to the SPI master structure
  115. * @work: Reference to work queue handler
  116. * @wait: Wait queue for waking up upon receiving an
  117. * interrupt.
  118. * @transfer_complete: Status of SPI Transfer
  119. * @bcurrent_msg_processing: Status flag for message processing
  120. * @lock: Lock for protecting this structure
  121. * @queue: SPI Message queue
  122. * @status: Status of the SPI driver
  123. * @bpw_len: Length of data to be transferred in bits per
  124. * word
  125. * @transfer_active: Flag showing active transfer
  126. * @tx_index: Transmit data count; for bookkeeping during
  127. * transfer
  128. * @rx_index: Receive data count; for bookkeeping during
  129. * transfer
  130. * @tx_buff: Buffer for data to be transmitted
  131. * @rx_index: Buffer for Received data
  132. * @n_curnt_chip: The chip number that this SPI driver currently
  133. * operates on
  134. * @current_chip: Reference to the current chip that this SPI
  135. * driver currently operates on
  136. * @current_msg: The current message that this SPI driver is
  137. * handling
  138. * @cur_trans: The current transfer that this SPI driver is
  139. * handling
  140. * @board_dat: Reference to the SPI device data structure
  141. * @plat_dev: platform_device structure
  142. * @ch: SPI channel number
  143. * @irq_reg_sts: Status of IRQ registration
  144. */
  145. struct pch_spi_data {
  146. void __iomem *io_remap_addr;
  147. unsigned long io_base_addr;
  148. struct spi_master *master;
  149. struct work_struct work;
  150. wait_queue_head_t wait;
  151. u8 transfer_complete;
  152. u8 bcurrent_msg_processing;
  153. spinlock_t lock;
  154. struct list_head queue;
  155. u8 status;
  156. u32 bpw_len;
  157. u8 transfer_active;
  158. u32 tx_index;
  159. u32 rx_index;
  160. u16 *pkt_tx_buff;
  161. u16 *pkt_rx_buff;
  162. u8 n_curnt_chip;
  163. struct spi_device *current_chip;
  164. struct spi_message *current_msg;
  165. struct spi_transfer *cur_trans;
  166. struct pch_spi_board_data *board_dat;
  167. struct platform_device *plat_dev;
  168. int ch;
  169. struct pch_spi_dma_ctrl dma;
  170. int use_dma;
  171. u8 irq_reg_sts;
  172. int save_total_len;
  173. };
  174. /**
  175. * struct pch_spi_board_data - Holds the SPI device specific details
  176. * @pdev: Pointer to the PCI device
  177. * @suspend_sts: Status of suspend
  178. * @num: The number of SPI device instance
  179. */
  180. struct pch_spi_board_data {
  181. struct pci_dev *pdev;
  182. u8 suspend_sts;
  183. int num;
  184. };
  185. struct pch_pd_dev_save {
  186. int num;
  187. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  188. struct pch_spi_board_data *board_dat;
  189. };
  190. static const struct pci_device_id pch_spi_pcidev_id[] = {
  191. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  192. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  193. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  194. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
  195. { }
  196. };
  197. /**
  198. * pch_spi_writereg() - Performs register writes
  199. * @master: Pointer to struct spi_master.
  200. * @idx: Register offset.
  201. * @val: Value to be written to register.
  202. */
  203. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  204. {
  205. struct pch_spi_data *data = spi_master_get_devdata(master);
  206. iowrite32(val, (data->io_remap_addr + idx));
  207. }
  208. /**
  209. * pch_spi_readreg() - Performs register reads
  210. * @master: Pointer to struct spi_master.
  211. * @idx: Register offset.
  212. */
  213. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  214. {
  215. struct pch_spi_data *data = spi_master_get_devdata(master);
  216. return ioread32(data->io_remap_addr + idx);
  217. }
  218. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  219. u32 set, u32 clr)
  220. {
  221. u32 tmp = pch_spi_readreg(master, idx);
  222. tmp = (tmp & ~clr) | set;
  223. pch_spi_writereg(master, idx, tmp);
  224. }
  225. static void pch_spi_set_master_mode(struct spi_master *master)
  226. {
  227. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  228. }
  229. /**
  230. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  231. * @master: Pointer to struct spi_master.
  232. */
  233. static void pch_spi_clear_fifo(struct spi_master *master)
  234. {
  235. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  236. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  237. }
  238. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  239. void __iomem *io_remap_addr)
  240. {
  241. u32 n_read, tx_index, rx_index, bpw_len;
  242. u16 *pkt_rx_buffer, *pkt_tx_buff;
  243. int read_cnt;
  244. u32 reg_spcr_val;
  245. void __iomem *spsr;
  246. void __iomem *spdrr;
  247. void __iomem *spdwr;
  248. spsr = io_remap_addr + PCH_SPSR;
  249. iowrite32(reg_spsr_val, spsr);
  250. if (data->transfer_active) {
  251. rx_index = data->rx_index;
  252. tx_index = data->tx_index;
  253. bpw_len = data->bpw_len;
  254. pkt_rx_buffer = data->pkt_rx_buff;
  255. pkt_tx_buff = data->pkt_tx_buff;
  256. spdrr = io_remap_addr + PCH_SPDRR;
  257. spdwr = io_remap_addr + PCH_SPDWR;
  258. n_read = PCH_READABLE(reg_spsr_val);
  259. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  260. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  261. if (tx_index < bpw_len)
  262. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  263. }
  264. /* disable RFI if not needed */
  265. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  266. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  267. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  268. /* reset rx threshold */
  269. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  270. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  271. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  272. }
  273. /* update counts */
  274. data->tx_index = tx_index;
  275. data->rx_index = rx_index;
  276. /* if transfer complete interrupt */
  277. if (reg_spsr_val & SPSR_FI_BIT) {
  278. if ((tx_index == bpw_len) && (rx_index == tx_index)) {
  279. /* disable interrupts */
  280. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  281. PCH_ALL);
  282. /* transfer is completed;
  283. inform pch_spi_process_messages */
  284. data->transfer_complete = true;
  285. data->transfer_active = false;
  286. wake_up(&data->wait);
  287. } else {
  288. dev_vdbg(&data->master->dev,
  289. "%s : Transfer is not completed",
  290. __func__);
  291. }
  292. }
  293. }
  294. }
  295. /**
  296. * pch_spi_handler() - Interrupt handler
  297. * @irq: The interrupt number.
  298. * @dev_id: Pointer to struct pch_spi_board_data.
  299. */
  300. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  301. {
  302. u32 reg_spsr_val;
  303. void __iomem *spsr;
  304. void __iomem *io_remap_addr;
  305. irqreturn_t ret = IRQ_NONE;
  306. struct pch_spi_data *data = dev_id;
  307. struct pch_spi_board_data *board_dat = data->board_dat;
  308. if (board_dat->suspend_sts) {
  309. dev_dbg(&board_dat->pdev->dev,
  310. "%s returning due to suspend\n", __func__);
  311. return IRQ_NONE;
  312. }
  313. io_remap_addr = data->io_remap_addr;
  314. spsr = io_remap_addr + PCH_SPSR;
  315. reg_spsr_val = ioread32(spsr);
  316. if (reg_spsr_val & SPSR_ORF_BIT) {
  317. dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
  318. if (data->current_msg->complete) {
  319. data->transfer_complete = true;
  320. data->current_msg->status = -EIO;
  321. data->current_msg->complete(data->current_msg->context);
  322. data->bcurrent_msg_processing = false;
  323. data->current_msg = NULL;
  324. data->cur_trans = NULL;
  325. }
  326. }
  327. if (data->use_dma)
  328. return IRQ_NONE;
  329. /* Check if the interrupt is for SPI device */
  330. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  331. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  332. ret = IRQ_HANDLED;
  333. }
  334. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  335. __func__, ret);
  336. return ret;
  337. }
  338. /**
  339. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  340. * @master: Pointer to struct spi_master.
  341. * @speed_hz: Baud rate.
  342. */
  343. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  344. {
  345. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  346. /* if baud rate is less than we can support limit it */
  347. if (n_spbr > PCH_MAX_SPBR)
  348. n_spbr = PCH_MAX_SPBR;
  349. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  350. }
  351. /**
  352. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  353. * @master: Pointer to struct spi_master.
  354. * @bits_per_word: Bits per word for SPI transfer.
  355. */
  356. static void pch_spi_set_bits_per_word(struct spi_master *master,
  357. u8 bits_per_word)
  358. {
  359. if (bits_per_word == 8)
  360. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  361. else
  362. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  363. }
  364. /**
  365. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  366. * @spi: Pointer to struct spi_device.
  367. */
  368. static void pch_spi_setup_transfer(struct spi_device *spi)
  369. {
  370. u32 flags = 0;
  371. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  372. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  373. spi->max_speed_hz);
  374. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  375. /* set bits per word */
  376. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  377. if (!(spi->mode & SPI_LSB_FIRST))
  378. flags |= SPCR_LSBF_BIT;
  379. if (spi->mode & SPI_CPOL)
  380. flags |= SPCR_CPOL_BIT;
  381. if (spi->mode & SPI_CPHA)
  382. flags |= SPCR_CPHA_BIT;
  383. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  384. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  385. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  386. pch_spi_clear_fifo(spi->master);
  387. }
  388. /**
  389. * pch_spi_reset() - Clears SPI registers
  390. * @master: Pointer to struct spi_master.
  391. */
  392. static void pch_spi_reset(struct spi_master *master)
  393. {
  394. /* write 1 to reset SPI */
  395. pch_spi_writereg(master, PCH_SRST, 0x1);
  396. /* clear reset */
  397. pch_spi_writereg(master, PCH_SRST, 0x0);
  398. }
  399. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  400. {
  401. struct spi_transfer *transfer;
  402. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  403. int retval;
  404. unsigned long flags;
  405. spin_lock_irqsave(&data->lock, flags);
  406. /* validate Tx/Rx buffers and Transfer length */
  407. list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
  408. if (!transfer->tx_buf && !transfer->rx_buf) {
  409. dev_err(&pspi->dev,
  410. "%s Tx and Rx buffer NULL\n", __func__);
  411. retval = -EINVAL;
  412. goto err_return_spinlock;
  413. }
  414. if (!transfer->len) {
  415. dev_err(&pspi->dev, "%s Transfer length invalid\n",
  416. __func__);
  417. retval = -EINVAL;
  418. goto err_return_spinlock;
  419. }
  420. dev_dbg(&pspi->dev,
  421. "%s Tx/Rx buffer valid. Transfer length valid\n",
  422. __func__);
  423. }
  424. spin_unlock_irqrestore(&data->lock, flags);
  425. /* We won't process any messages if we have been asked to terminate */
  426. if (data->status == STATUS_EXITING) {
  427. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  428. retval = -ESHUTDOWN;
  429. goto err_out;
  430. }
  431. /* If suspended ,return -EINVAL */
  432. if (data->board_dat->suspend_sts) {
  433. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  434. retval = -EINVAL;
  435. goto err_out;
  436. }
  437. /* set status of message */
  438. pmsg->actual_length = 0;
  439. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  440. pmsg->status = -EINPROGRESS;
  441. spin_lock_irqsave(&data->lock, flags);
  442. /* add message to queue */
  443. list_add_tail(&pmsg->queue, &data->queue);
  444. spin_unlock_irqrestore(&data->lock, flags);
  445. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  446. schedule_work(&data->work);
  447. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  448. retval = 0;
  449. err_out:
  450. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  451. return retval;
  452. err_return_spinlock:
  453. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  454. spin_unlock_irqrestore(&data->lock, flags);
  455. return retval;
  456. }
  457. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  458. struct spi_device *pspi)
  459. {
  460. if (data->current_chip != NULL) {
  461. if (pspi->chip_select != data->n_curnt_chip) {
  462. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  463. data->current_chip = NULL;
  464. }
  465. }
  466. data->current_chip = pspi;
  467. data->n_curnt_chip = data->current_chip->chip_select;
  468. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  469. pch_spi_setup_transfer(pspi);
  470. }
  471. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  472. {
  473. int size;
  474. u32 n_writes;
  475. int j;
  476. struct spi_message *pmsg, *tmp;
  477. const u8 *tx_buf;
  478. const u16 *tx_sbuf;
  479. /* set baud rate if needed */
  480. if (data->cur_trans->speed_hz) {
  481. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  482. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  483. }
  484. /* set bits per word if needed */
  485. if (data->cur_trans->bits_per_word &&
  486. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  487. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  488. pch_spi_set_bits_per_word(data->master,
  489. data->cur_trans->bits_per_word);
  490. *bpw = data->cur_trans->bits_per_word;
  491. } else {
  492. *bpw = data->current_msg->spi->bits_per_word;
  493. }
  494. /* reset Tx/Rx index */
  495. data->tx_index = 0;
  496. data->rx_index = 0;
  497. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  498. /* find alloc size */
  499. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  500. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  501. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  502. if (data->pkt_tx_buff != NULL) {
  503. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  504. if (!data->pkt_rx_buff) {
  505. kfree(data->pkt_tx_buff);
  506. data->pkt_tx_buff = NULL;
  507. }
  508. }
  509. if (!data->pkt_rx_buff) {
  510. /* flush queue and set status of all transfers to -ENOMEM */
  511. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  512. pmsg->status = -ENOMEM;
  513. if (pmsg->complete)
  514. pmsg->complete(pmsg->context);
  515. /* delete from queue */
  516. list_del_init(&pmsg->queue);
  517. }
  518. return;
  519. }
  520. /* copy Tx Data */
  521. if (data->cur_trans->tx_buf != NULL) {
  522. if (*bpw == 8) {
  523. tx_buf = data->cur_trans->tx_buf;
  524. for (j = 0; j < data->bpw_len; j++)
  525. data->pkt_tx_buff[j] = *tx_buf++;
  526. } else {
  527. tx_sbuf = data->cur_trans->tx_buf;
  528. for (j = 0; j < data->bpw_len; j++)
  529. data->pkt_tx_buff[j] = *tx_sbuf++;
  530. }
  531. }
  532. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  533. n_writes = data->bpw_len;
  534. if (n_writes > PCH_MAX_FIFO_DEPTH)
  535. n_writes = PCH_MAX_FIFO_DEPTH;
  536. dev_dbg(&data->master->dev,
  537. "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
  538. __func__);
  539. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  540. for (j = 0; j < n_writes; j++)
  541. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  542. /* update tx_index */
  543. data->tx_index = j;
  544. /* reset transfer complete flag */
  545. data->transfer_complete = false;
  546. data->transfer_active = true;
  547. }
  548. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  549. {
  550. struct spi_message *pmsg, *tmp;
  551. dev_dbg(&data->master->dev, "%s called\n", __func__);
  552. /* Invoke complete callback
  553. * [To the spi core..indicating end of transfer] */
  554. data->current_msg->status = 0;
  555. if (data->current_msg->complete) {
  556. dev_dbg(&data->master->dev,
  557. "%s:Invoking callback of SPI core\n", __func__);
  558. data->current_msg->complete(data->current_msg->context);
  559. }
  560. /* update status in global variable */
  561. data->bcurrent_msg_processing = false;
  562. dev_dbg(&data->master->dev,
  563. "%s:data->bcurrent_msg_processing = false\n", __func__);
  564. data->current_msg = NULL;
  565. data->cur_trans = NULL;
  566. /* check if we have items in list and not suspending
  567. * return 1 if list empty */
  568. if ((list_empty(&data->queue) == 0) &&
  569. (!data->board_dat->suspend_sts) &&
  570. (data->status != STATUS_EXITING)) {
  571. /* We have some more work to do (either there is more tranint
  572. * bpw;sfer requests in the current message or there are
  573. *more messages)
  574. */
  575. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  576. schedule_work(&data->work);
  577. } else if (data->board_dat->suspend_sts ||
  578. data->status == STATUS_EXITING) {
  579. dev_dbg(&data->master->dev,
  580. "%s suspend/remove initiated, flushing queue\n",
  581. __func__);
  582. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  583. pmsg->status = -EIO;
  584. if (pmsg->complete)
  585. pmsg->complete(pmsg->context);
  586. /* delete from queue */
  587. list_del_init(&pmsg->queue);
  588. }
  589. }
  590. }
  591. static void pch_spi_set_ir(struct pch_spi_data *data)
  592. {
  593. /* enable interrupts, set threshold, enable SPI */
  594. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  595. /* set receive threshold to PCH_RX_THOLD */
  596. pch_spi_setclr_reg(data->master, PCH_SPCR,
  597. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  598. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  599. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  600. MASK_RFIC_SPCR_BITS | PCH_ALL);
  601. else
  602. /* set receive threshold to maximum */
  603. pch_spi_setclr_reg(data->master, PCH_SPCR,
  604. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  605. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  606. SPCR_SPE_BIT,
  607. MASK_RFIC_SPCR_BITS | PCH_ALL);
  608. /* Wait until the transfer completes; go to sleep after
  609. initiating the transfer. */
  610. dev_dbg(&data->master->dev,
  611. "%s:waiting for transfer to get over\n", __func__);
  612. wait_event_interruptible(data->wait, data->transfer_complete);
  613. /* clear all interrupts */
  614. pch_spi_writereg(data->master, PCH_SPSR,
  615. pch_spi_readreg(data->master, PCH_SPSR));
  616. /* Disable interrupts and SPI transfer */
  617. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  618. /* clear FIFO */
  619. pch_spi_clear_fifo(data->master);
  620. }
  621. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  622. {
  623. int j;
  624. u8 *rx_buf;
  625. u16 *rx_sbuf;
  626. /* copy Rx Data */
  627. if (!data->cur_trans->rx_buf)
  628. return;
  629. if (bpw == 8) {
  630. rx_buf = data->cur_trans->rx_buf;
  631. for (j = 0; j < data->bpw_len; j++)
  632. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  633. } else {
  634. rx_sbuf = data->cur_trans->rx_buf;
  635. for (j = 0; j < data->bpw_len; j++)
  636. *rx_sbuf++ = data->pkt_rx_buff[j];
  637. }
  638. }
  639. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  640. {
  641. int j;
  642. u8 *rx_buf;
  643. u16 *rx_sbuf;
  644. const u8 *rx_dma_buf;
  645. const u16 *rx_dma_sbuf;
  646. /* copy Rx Data */
  647. if (!data->cur_trans->rx_buf)
  648. return;
  649. if (bpw == 8) {
  650. rx_buf = data->cur_trans->rx_buf;
  651. rx_dma_buf = data->dma.rx_buf_virt;
  652. for (j = 0; j < data->bpw_len; j++)
  653. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  654. data->cur_trans->rx_buf = rx_buf;
  655. } else {
  656. rx_sbuf = data->cur_trans->rx_buf;
  657. rx_dma_sbuf = data->dma.rx_buf_virt;
  658. for (j = 0; j < data->bpw_len; j++)
  659. *rx_sbuf++ = *rx_dma_sbuf++;
  660. data->cur_trans->rx_buf = rx_sbuf;
  661. }
  662. }
  663. static int pch_spi_start_transfer(struct pch_spi_data *data)
  664. {
  665. struct pch_spi_dma_ctrl *dma;
  666. unsigned long flags;
  667. int rtn;
  668. dma = &data->dma;
  669. spin_lock_irqsave(&data->lock, flags);
  670. /* disable interrupts, SPI set enable */
  671. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  672. spin_unlock_irqrestore(&data->lock, flags);
  673. /* Wait until the transfer completes; go to sleep after
  674. initiating the transfer. */
  675. dev_dbg(&data->master->dev,
  676. "%s:waiting for transfer to get over\n", __func__);
  677. rtn = wait_event_interruptible_timeout(data->wait,
  678. data->transfer_complete,
  679. msecs_to_jiffies(2 * HZ));
  680. if (!rtn)
  681. dev_err(&data->master->dev,
  682. "%s wait-event timeout\n", __func__);
  683. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  684. DMA_FROM_DEVICE);
  685. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
  686. DMA_FROM_DEVICE);
  687. memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
  688. async_tx_ack(dma->desc_rx);
  689. async_tx_ack(dma->desc_tx);
  690. kfree(dma->sg_tx_p);
  691. kfree(dma->sg_rx_p);
  692. spin_lock_irqsave(&data->lock, flags);
  693. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  694. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  695. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  696. SPCR_SPE_BIT);
  697. /* clear all interrupts */
  698. pch_spi_writereg(data->master, PCH_SPSR,
  699. pch_spi_readreg(data->master, PCH_SPSR));
  700. /* clear FIFO */
  701. pch_spi_clear_fifo(data->master);
  702. spin_unlock_irqrestore(&data->lock, flags);
  703. return rtn;
  704. }
  705. static void pch_dma_rx_complete(void *arg)
  706. {
  707. struct pch_spi_data *data = arg;
  708. /* transfer is completed;inform pch_spi_process_messages_dma */
  709. data->transfer_complete = true;
  710. wake_up_interruptible(&data->wait);
  711. }
  712. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  713. {
  714. struct pch_dma_slave *param = slave;
  715. if ((chan->chan_id == param->chan_id) &&
  716. (param->dma_dev == chan->device->dev)) {
  717. chan->private = param;
  718. return true;
  719. } else {
  720. return false;
  721. }
  722. }
  723. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  724. {
  725. dma_cap_mask_t mask;
  726. struct dma_chan *chan;
  727. struct pci_dev *dma_dev;
  728. struct pch_dma_slave *param;
  729. struct pch_spi_dma_ctrl *dma;
  730. unsigned int width;
  731. if (bpw == 8)
  732. width = PCH_DMA_WIDTH_1_BYTE;
  733. else
  734. width = PCH_DMA_WIDTH_2_BYTES;
  735. dma = &data->dma;
  736. dma_cap_zero(mask);
  737. dma_cap_set(DMA_SLAVE, mask);
  738. /* Get DMA's dev information */
  739. dma_dev = pci_get_slot(data->board_dat->pdev->bus,
  740. PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
  741. /* Set Tx DMA */
  742. param = &dma->param_tx;
  743. param->dma_dev = &dma_dev->dev;
  744. param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
  745. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  746. param->width = width;
  747. chan = dma_request_channel(mask, pch_spi_filter, param);
  748. if (!chan) {
  749. dev_err(&data->master->dev,
  750. "ERROR: dma_request_channel FAILS(Tx)\n");
  751. data->use_dma = 0;
  752. return;
  753. }
  754. dma->chan_tx = chan;
  755. /* Set Rx DMA */
  756. param = &dma->param_rx;
  757. param->dma_dev = &dma_dev->dev;
  758. param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
  759. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  760. param->width = width;
  761. chan = dma_request_channel(mask, pch_spi_filter, param);
  762. if (!chan) {
  763. dev_err(&data->master->dev,
  764. "ERROR: dma_request_channel FAILS(Rx)\n");
  765. dma_release_channel(dma->chan_tx);
  766. dma->chan_tx = NULL;
  767. data->use_dma = 0;
  768. return;
  769. }
  770. dma->chan_rx = chan;
  771. }
  772. static void pch_spi_release_dma(struct pch_spi_data *data)
  773. {
  774. struct pch_spi_dma_ctrl *dma;
  775. dma = &data->dma;
  776. if (dma->chan_tx) {
  777. dma_release_channel(dma->chan_tx);
  778. dma->chan_tx = NULL;
  779. }
  780. if (dma->chan_rx) {
  781. dma_release_channel(dma->chan_rx);
  782. dma->chan_rx = NULL;
  783. }
  784. }
  785. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  786. {
  787. const u8 *tx_buf;
  788. const u16 *tx_sbuf;
  789. u8 *tx_dma_buf;
  790. u16 *tx_dma_sbuf;
  791. struct scatterlist *sg;
  792. struct dma_async_tx_descriptor *desc_tx;
  793. struct dma_async_tx_descriptor *desc_rx;
  794. int num;
  795. int i;
  796. int size;
  797. int rem;
  798. int head;
  799. unsigned long flags;
  800. struct pch_spi_dma_ctrl *dma;
  801. dma = &data->dma;
  802. /* set baud rate if needed */
  803. if (data->cur_trans->speed_hz) {
  804. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  805. spin_lock_irqsave(&data->lock, flags);
  806. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  807. spin_unlock_irqrestore(&data->lock, flags);
  808. }
  809. /* set bits per word if needed */
  810. if (data->cur_trans->bits_per_word &&
  811. (data->current_msg->spi->bits_per_word !=
  812. data->cur_trans->bits_per_word)) {
  813. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  814. spin_lock_irqsave(&data->lock, flags);
  815. pch_spi_set_bits_per_word(data->master,
  816. data->cur_trans->bits_per_word);
  817. spin_unlock_irqrestore(&data->lock, flags);
  818. *bpw = data->cur_trans->bits_per_word;
  819. } else {
  820. *bpw = data->current_msg->spi->bits_per_word;
  821. }
  822. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  823. if (data->bpw_len > PCH_BUF_SIZE) {
  824. data->bpw_len = PCH_BUF_SIZE;
  825. data->cur_trans->len -= PCH_BUF_SIZE;
  826. }
  827. /* copy Tx Data */
  828. if (data->cur_trans->tx_buf != NULL) {
  829. if (*bpw == 8) {
  830. tx_buf = data->cur_trans->tx_buf;
  831. tx_dma_buf = dma->tx_buf_virt;
  832. for (i = 0; i < data->bpw_len; i++)
  833. *tx_dma_buf++ = *tx_buf++;
  834. } else {
  835. tx_sbuf = data->cur_trans->tx_buf;
  836. tx_dma_sbuf = dma->tx_buf_virt;
  837. for (i = 0; i < data->bpw_len; i++)
  838. *tx_dma_sbuf++ = *tx_sbuf++;
  839. }
  840. }
  841. /* Calculate Rx parameter for DMA transmitting */
  842. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  843. if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
  844. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  845. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  846. } else {
  847. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  848. rem = PCH_DMA_TRANS_SIZE;
  849. }
  850. size = PCH_DMA_TRANS_SIZE;
  851. } else {
  852. num = 1;
  853. size = data->bpw_len;
  854. rem = data->bpw_len;
  855. }
  856. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  857. __func__, num, size, rem);
  858. spin_lock_irqsave(&data->lock, flags);
  859. /* set receive fifo threshold and transmit fifo threshold */
  860. pch_spi_setclr_reg(data->master, PCH_SPCR,
  861. ((size - 1) << SPCR_RFIC_FIELD) |
  862. (PCH_TX_THOLD << SPCR_TFIC_FIELD),
  863. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  864. spin_unlock_irqrestore(&data->lock, flags);
  865. /* RX */
  866. dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
  867. if (!dma->sg_rx_p)
  868. return;
  869. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  870. /* offset, length setting */
  871. sg = dma->sg_rx_p;
  872. for (i = 0; i < num; i++, sg++) {
  873. if (i == (num - 2)) {
  874. sg->offset = size * i;
  875. sg->offset = sg->offset * (*bpw / 8);
  876. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  877. sg->offset);
  878. sg_dma_len(sg) = rem;
  879. } else if (i == (num - 1)) {
  880. sg->offset = size * (i - 1) + rem;
  881. sg->offset = sg->offset * (*bpw / 8);
  882. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  883. sg->offset);
  884. sg_dma_len(sg) = size;
  885. } else {
  886. sg->offset = size * i;
  887. sg->offset = sg->offset * (*bpw / 8);
  888. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  889. sg->offset);
  890. sg_dma_len(sg) = size;
  891. }
  892. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  893. }
  894. sg = dma->sg_rx_p;
  895. desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
  896. num, DMA_DEV_TO_MEM,
  897. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  898. if (!desc_rx) {
  899. dev_err(&data->master->dev,
  900. "%s:dmaengine_prep_slave_sg Failed\n", __func__);
  901. return;
  902. }
  903. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  904. desc_rx->callback = pch_dma_rx_complete;
  905. desc_rx->callback_param = data;
  906. dma->nent = num;
  907. dma->desc_rx = desc_rx;
  908. /* Calculate Tx parameter for DMA transmitting */
  909. if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
  910. head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
  911. if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
  912. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  913. rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
  914. } else {
  915. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  916. rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
  917. PCH_DMA_TRANS_SIZE - head;
  918. }
  919. size = PCH_DMA_TRANS_SIZE;
  920. } else {
  921. num = 1;
  922. size = data->bpw_len;
  923. rem = data->bpw_len;
  924. head = 0;
  925. }
  926. dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
  927. if (!dma->sg_tx_p)
  928. return;
  929. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  930. /* offset, length setting */
  931. sg = dma->sg_tx_p;
  932. for (i = 0; i < num; i++, sg++) {
  933. if (i == 0) {
  934. sg->offset = 0;
  935. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
  936. sg->offset);
  937. sg_dma_len(sg) = size + head;
  938. } else if (i == (num - 1)) {
  939. sg->offset = head + size * i;
  940. sg->offset = sg->offset * (*bpw / 8);
  941. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  942. sg->offset);
  943. sg_dma_len(sg) = rem;
  944. } else {
  945. sg->offset = head + size * i;
  946. sg->offset = sg->offset * (*bpw / 8);
  947. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  948. sg->offset);
  949. sg_dma_len(sg) = size;
  950. }
  951. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  952. }
  953. sg = dma->sg_tx_p;
  954. desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
  955. sg, num, DMA_MEM_TO_DEV,
  956. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  957. if (!desc_tx) {
  958. dev_err(&data->master->dev,
  959. "%s:dmaengine_prep_slave_sg Failed\n", __func__);
  960. return;
  961. }
  962. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  963. desc_tx->callback = NULL;
  964. desc_tx->callback_param = data;
  965. dma->nent = num;
  966. dma->desc_tx = desc_tx;
  967. dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
  968. spin_lock_irqsave(&data->lock, flags);
  969. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  970. desc_rx->tx_submit(desc_rx);
  971. desc_tx->tx_submit(desc_tx);
  972. spin_unlock_irqrestore(&data->lock, flags);
  973. /* reset transfer complete flag */
  974. data->transfer_complete = false;
  975. }
  976. static void pch_spi_process_messages(struct work_struct *pwork)
  977. {
  978. struct spi_message *pmsg, *tmp;
  979. struct pch_spi_data *data;
  980. int bpw;
  981. data = container_of(pwork, struct pch_spi_data, work);
  982. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  983. spin_lock(&data->lock);
  984. /* check if suspend has been initiated;if yes flush queue */
  985. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  986. dev_dbg(&data->master->dev,
  987. "%s suspend/remove initiated, flushing queue\n", __func__);
  988. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  989. pmsg->status = -EIO;
  990. if (pmsg->complete) {
  991. spin_unlock(&data->lock);
  992. pmsg->complete(pmsg->context);
  993. spin_lock(&data->lock);
  994. }
  995. /* delete from queue */
  996. list_del_init(&pmsg->queue);
  997. }
  998. spin_unlock(&data->lock);
  999. return;
  1000. }
  1001. data->bcurrent_msg_processing = true;
  1002. dev_dbg(&data->master->dev,
  1003. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  1004. /* Get the message from the queue and delete it from there. */
  1005. data->current_msg = list_entry(data->queue.next, struct spi_message,
  1006. queue);
  1007. list_del_init(&data->current_msg->queue);
  1008. data->current_msg->status = 0;
  1009. pch_spi_select_chip(data, data->current_msg->spi);
  1010. spin_unlock(&data->lock);
  1011. if (data->use_dma)
  1012. pch_spi_request_dma(data,
  1013. data->current_msg->spi->bits_per_word);
  1014. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  1015. do {
  1016. int cnt;
  1017. /* If we are already processing a message get the next
  1018. transfer structure from the message otherwise retrieve
  1019. the 1st transfer request from the message. */
  1020. spin_lock(&data->lock);
  1021. if (data->cur_trans == NULL) {
  1022. data->cur_trans =
  1023. list_entry(data->current_msg->transfers.next,
  1024. struct spi_transfer, transfer_list);
  1025. dev_dbg(&data->master->dev,
  1026. "%s :Getting 1st transfer message\n",
  1027. __func__);
  1028. } else {
  1029. data->cur_trans =
  1030. list_entry(data->cur_trans->transfer_list.next,
  1031. struct spi_transfer, transfer_list);
  1032. dev_dbg(&data->master->dev,
  1033. "%s :Getting next transfer message\n",
  1034. __func__);
  1035. }
  1036. spin_unlock(&data->lock);
  1037. if (!data->cur_trans->len)
  1038. goto out;
  1039. cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
  1040. data->save_total_len = data->cur_trans->len;
  1041. if (data->use_dma) {
  1042. int i;
  1043. char *save_rx_buf = data->cur_trans->rx_buf;
  1044. for (i = 0; i < cnt; i ++) {
  1045. pch_spi_handle_dma(data, &bpw);
  1046. if (!pch_spi_start_transfer(data)) {
  1047. data->transfer_complete = true;
  1048. data->current_msg->status = -EIO;
  1049. data->current_msg->complete
  1050. (data->current_msg->context);
  1051. data->bcurrent_msg_processing = false;
  1052. data->current_msg = NULL;
  1053. data->cur_trans = NULL;
  1054. goto out;
  1055. }
  1056. pch_spi_copy_rx_data_for_dma(data, bpw);
  1057. }
  1058. data->cur_trans->rx_buf = save_rx_buf;
  1059. } else {
  1060. pch_spi_set_tx(data, &bpw);
  1061. pch_spi_set_ir(data);
  1062. pch_spi_copy_rx_data(data, bpw);
  1063. kfree(data->pkt_rx_buff);
  1064. data->pkt_rx_buff = NULL;
  1065. kfree(data->pkt_tx_buff);
  1066. data->pkt_tx_buff = NULL;
  1067. }
  1068. /* increment message count */
  1069. data->cur_trans->len = data->save_total_len;
  1070. data->current_msg->actual_length += data->cur_trans->len;
  1071. dev_dbg(&data->master->dev,
  1072. "%s:data->current_msg->actual_length=%d\n",
  1073. __func__, data->current_msg->actual_length);
  1074. /* check for delay */
  1075. if (data->cur_trans->delay_usecs) {
  1076. dev_dbg(&data->master->dev, "%s:delay in usec=%d\n",
  1077. __func__, data->cur_trans->delay_usecs);
  1078. udelay(data->cur_trans->delay_usecs);
  1079. }
  1080. spin_lock(&data->lock);
  1081. /* No more transfer in this message. */
  1082. if ((data->cur_trans->transfer_list.next) ==
  1083. &(data->current_msg->transfers)) {
  1084. pch_spi_nomore_transfer(data);
  1085. }
  1086. spin_unlock(&data->lock);
  1087. } while (data->cur_trans != NULL);
  1088. out:
  1089. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
  1090. if (data->use_dma)
  1091. pch_spi_release_dma(data);
  1092. }
  1093. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1094. struct pch_spi_data *data)
  1095. {
  1096. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1097. flush_work(&data->work);
  1098. }
  1099. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1100. struct pch_spi_data *data)
  1101. {
  1102. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1103. /* reset PCH SPI h/w */
  1104. pch_spi_reset(data->master);
  1105. dev_dbg(&board_dat->pdev->dev,
  1106. "%s pch_spi_reset invoked successfully\n", __func__);
  1107. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1108. return 0;
  1109. }
  1110. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1111. struct pch_spi_data *data)
  1112. {
  1113. struct pch_spi_dma_ctrl *dma;
  1114. dma = &data->dma;
  1115. if (dma->tx_buf_dma)
  1116. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1117. dma->tx_buf_virt, dma->tx_buf_dma);
  1118. if (dma->rx_buf_dma)
  1119. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1120. dma->rx_buf_virt, dma->rx_buf_dma);
  1121. }
  1122. static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1123. struct pch_spi_data *data)
  1124. {
  1125. struct pch_spi_dma_ctrl *dma;
  1126. int ret;
  1127. dma = &data->dma;
  1128. ret = 0;
  1129. /* Get Consistent memory for Tx DMA */
  1130. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1131. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1132. if (!dma->tx_buf_virt)
  1133. ret = -ENOMEM;
  1134. /* Get Consistent memory for Rx DMA */
  1135. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1136. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1137. if (!dma->rx_buf_virt)
  1138. ret = -ENOMEM;
  1139. return ret;
  1140. }
  1141. static int pch_spi_pd_probe(struct platform_device *plat_dev)
  1142. {
  1143. int ret;
  1144. struct spi_master *master;
  1145. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1146. struct pch_spi_data *data;
  1147. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1148. master = spi_alloc_master(&board_dat->pdev->dev,
  1149. sizeof(struct pch_spi_data));
  1150. if (!master) {
  1151. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1152. plat_dev->id);
  1153. return -ENOMEM;
  1154. }
  1155. data = spi_master_get_devdata(master);
  1156. data->master = master;
  1157. platform_set_drvdata(plat_dev, data);
  1158. /* baseaddress + address offset) */
  1159. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1160. PCH_ADDRESS_SIZE * plat_dev->id;
  1161. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
  1162. if (!data->io_remap_addr) {
  1163. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1164. ret = -ENOMEM;
  1165. goto err_pci_iomap;
  1166. }
  1167. data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
  1168. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1169. plat_dev->id, data->io_remap_addr);
  1170. /* initialize members of SPI master */
  1171. master->num_chipselect = PCH_MAX_CS;
  1172. master->transfer = pch_spi_transfer;
  1173. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1174. master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
  1175. master->max_speed_hz = PCH_MAX_BAUDRATE;
  1176. data->board_dat = board_dat;
  1177. data->plat_dev = plat_dev;
  1178. data->n_curnt_chip = 255;
  1179. data->status = STATUS_RUNNING;
  1180. data->ch = plat_dev->id;
  1181. data->use_dma = use_dma;
  1182. INIT_LIST_HEAD(&data->queue);
  1183. spin_lock_init(&data->lock);
  1184. INIT_WORK(&data->work, pch_spi_process_messages);
  1185. init_waitqueue_head(&data->wait);
  1186. ret = pch_spi_get_resources(board_dat, data);
  1187. if (ret) {
  1188. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1189. goto err_spi_get_resources;
  1190. }
  1191. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1192. IRQF_SHARED, KBUILD_MODNAME, data);
  1193. if (ret) {
  1194. dev_err(&plat_dev->dev,
  1195. "%s request_irq failed\n", __func__);
  1196. goto err_request_irq;
  1197. }
  1198. data->irq_reg_sts = true;
  1199. pch_spi_set_master_mode(master);
  1200. if (use_dma) {
  1201. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1202. ret = pch_alloc_dma_buf(board_dat, data);
  1203. if (ret)
  1204. goto err_spi_register_master;
  1205. }
  1206. ret = spi_register_master(master);
  1207. if (ret != 0) {
  1208. dev_err(&plat_dev->dev,
  1209. "%s spi_register_master FAILED\n", __func__);
  1210. goto err_spi_register_master;
  1211. }
  1212. return 0;
  1213. err_spi_register_master:
  1214. pch_free_dma_buf(board_dat, data);
  1215. free_irq(board_dat->pdev->irq, data);
  1216. err_request_irq:
  1217. pch_spi_free_resources(board_dat, data);
  1218. err_spi_get_resources:
  1219. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1220. err_pci_iomap:
  1221. spi_master_put(master);
  1222. return ret;
  1223. }
  1224. static int pch_spi_pd_remove(struct platform_device *plat_dev)
  1225. {
  1226. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1227. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1228. int count;
  1229. unsigned long flags;
  1230. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1231. __func__, plat_dev->id, board_dat->pdev->irq);
  1232. if (use_dma)
  1233. pch_free_dma_buf(board_dat, data);
  1234. /* check for any pending messages; no action is taken if the queue
  1235. * is still full; but at least we tried. Unload anyway */
  1236. count = 500;
  1237. spin_lock_irqsave(&data->lock, flags);
  1238. data->status = STATUS_EXITING;
  1239. while ((list_empty(&data->queue) == 0) && --count) {
  1240. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1241. __func__);
  1242. spin_unlock_irqrestore(&data->lock, flags);
  1243. msleep(PCH_SLEEP_TIME);
  1244. spin_lock_irqsave(&data->lock, flags);
  1245. }
  1246. spin_unlock_irqrestore(&data->lock, flags);
  1247. pch_spi_free_resources(board_dat, data);
  1248. /* disable interrupts & free IRQ */
  1249. if (data->irq_reg_sts) {
  1250. /* disable interrupts */
  1251. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1252. data->irq_reg_sts = false;
  1253. free_irq(board_dat->pdev->irq, data);
  1254. }
  1255. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1256. spi_unregister_master(data->master);
  1257. return 0;
  1258. }
  1259. #ifdef CONFIG_PM
  1260. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1261. pm_message_t state)
  1262. {
  1263. u8 count;
  1264. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1265. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1266. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1267. if (!board_dat) {
  1268. dev_err(&pd_dev->dev,
  1269. "%s pci_get_drvdata returned NULL\n", __func__);
  1270. return -EFAULT;
  1271. }
  1272. /* check if the current message is processed:
  1273. Only after thats done the transfer will be suspended */
  1274. count = 255;
  1275. while ((--count) > 0) {
  1276. if (!(data->bcurrent_msg_processing))
  1277. break;
  1278. msleep(PCH_SLEEP_TIME);
  1279. }
  1280. /* Free IRQ */
  1281. if (data->irq_reg_sts) {
  1282. /* disable all interrupts */
  1283. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1284. pch_spi_reset(data->master);
  1285. free_irq(board_dat->pdev->irq, data);
  1286. data->irq_reg_sts = false;
  1287. dev_dbg(&pd_dev->dev,
  1288. "%s free_irq invoked successfully.\n", __func__);
  1289. }
  1290. return 0;
  1291. }
  1292. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1293. {
  1294. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1295. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1296. int retval;
  1297. if (!board_dat) {
  1298. dev_err(&pd_dev->dev,
  1299. "%s pci_get_drvdata returned NULL\n", __func__);
  1300. return -EFAULT;
  1301. }
  1302. if (!data->irq_reg_sts) {
  1303. /* register IRQ */
  1304. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1305. IRQF_SHARED, KBUILD_MODNAME, data);
  1306. if (retval < 0) {
  1307. dev_err(&pd_dev->dev,
  1308. "%s request_irq failed\n", __func__);
  1309. return retval;
  1310. }
  1311. /* reset PCH SPI h/w */
  1312. pch_spi_reset(data->master);
  1313. pch_spi_set_master_mode(data->master);
  1314. data->irq_reg_sts = true;
  1315. }
  1316. return 0;
  1317. }
  1318. #else
  1319. #define pch_spi_pd_suspend NULL
  1320. #define pch_spi_pd_resume NULL
  1321. #endif
  1322. static struct platform_driver pch_spi_pd_driver = {
  1323. .driver = {
  1324. .name = "pch-spi",
  1325. },
  1326. .probe = pch_spi_pd_probe,
  1327. .remove = pch_spi_pd_remove,
  1328. .suspend = pch_spi_pd_suspend,
  1329. .resume = pch_spi_pd_resume
  1330. };
  1331. static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1332. {
  1333. struct pch_spi_board_data *board_dat;
  1334. struct platform_device *pd_dev = NULL;
  1335. int retval;
  1336. int i;
  1337. struct pch_pd_dev_save *pd_dev_save;
  1338. pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
  1339. if (!pd_dev_save)
  1340. return -ENOMEM;
  1341. board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
  1342. if (!board_dat) {
  1343. retval = -ENOMEM;
  1344. goto err_no_mem;
  1345. }
  1346. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1347. if (retval) {
  1348. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1349. goto pci_request_regions;
  1350. }
  1351. board_dat->pdev = pdev;
  1352. board_dat->num = id->driver_data;
  1353. pd_dev_save->num = id->driver_data;
  1354. pd_dev_save->board_dat = board_dat;
  1355. retval = pci_enable_device(pdev);
  1356. if (retval) {
  1357. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1358. goto pci_enable_device;
  1359. }
  1360. for (i = 0; i < board_dat->num; i++) {
  1361. pd_dev = platform_device_alloc("pch-spi", i);
  1362. if (!pd_dev) {
  1363. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1364. retval = -ENOMEM;
  1365. goto err_platform_device;
  1366. }
  1367. pd_dev_save->pd_save[i] = pd_dev;
  1368. pd_dev->dev.parent = &pdev->dev;
  1369. retval = platform_device_add_data(pd_dev, board_dat,
  1370. sizeof(*board_dat));
  1371. if (retval) {
  1372. dev_err(&pdev->dev,
  1373. "platform_device_add_data failed\n");
  1374. platform_device_put(pd_dev);
  1375. goto err_platform_device;
  1376. }
  1377. retval = platform_device_add(pd_dev);
  1378. if (retval) {
  1379. dev_err(&pdev->dev, "platform_device_add failed\n");
  1380. platform_device_put(pd_dev);
  1381. goto err_platform_device;
  1382. }
  1383. }
  1384. pci_set_drvdata(pdev, pd_dev_save);
  1385. return 0;
  1386. err_platform_device:
  1387. while (--i >= 0)
  1388. platform_device_unregister(pd_dev_save->pd_save[i]);
  1389. pci_disable_device(pdev);
  1390. pci_enable_device:
  1391. pci_release_regions(pdev);
  1392. pci_request_regions:
  1393. kfree(board_dat);
  1394. err_no_mem:
  1395. kfree(pd_dev_save);
  1396. return retval;
  1397. }
  1398. static void pch_spi_remove(struct pci_dev *pdev)
  1399. {
  1400. int i;
  1401. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1402. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1403. for (i = 0; i < pd_dev_save->num; i++)
  1404. platform_device_unregister(pd_dev_save->pd_save[i]);
  1405. pci_disable_device(pdev);
  1406. pci_release_regions(pdev);
  1407. kfree(pd_dev_save->board_dat);
  1408. kfree(pd_dev_save);
  1409. }
  1410. #ifdef CONFIG_PM
  1411. static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
  1412. {
  1413. int retval;
  1414. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1415. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1416. pd_dev_save->board_dat->suspend_sts = true;
  1417. /* save config space */
  1418. retval = pci_save_state(pdev);
  1419. if (retval == 0) {
  1420. pci_enable_wake(pdev, PCI_D3hot, 0);
  1421. pci_disable_device(pdev);
  1422. pci_set_power_state(pdev, PCI_D3hot);
  1423. } else {
  1424. dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
  1425. }
  1426. return retval;
  1427. }
  1428. static int pch_spi_resume(struct pci_dev *pdev)
  1429. {
  1430. int retval;
  1431. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1432. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1433. pci_set_power_state(pdev, PCI_D0);
  1434. pci_restore_state(pdev);
  1435. retval = pci_enable_device(pdev);
  1436. if (retval < 0) {
  1437. dev_err(&pdev->dev,
  1438. "%s pci_enable_device failed\n", __func__);
  1439. } else {
  1440. pci_enable_wake(pdev, PCI_D3hot, 0);
  1441. /* set suspend status to false */
  1442. pd_dev_save->board_dat->suspend_sts = false;
  1443. }
  1444. return retval;
  1445. }
  1446. #else
  1447. #define pch_spi_suspend NULL
  1448. #define pch_spi_resume NULL
  1449. #endif
  1450. static struct pci_driver pch_spi_pcidev_driver = {
  1451. .name = "pch_spi",
  1452. .id_table = pch_spi_pcidev_id,
  1453. .probe = pch_spi_probe,
  1454. .remove = pch_spi_remove,
  1455. .suspend = pch_spi_suspend,
  1456. .resume = pch_spi_resume,
  1457. };
  1458. static int __init pch_spi_init(void)
  1459. {
  1460. int ret;
  1461. ret = platform_driver_register(&pch_spi_pd_driver);
  1462. if (ret)
  1463. return ret;
  1464. ret = pci_register_driver(&pch_spi_pcidev_driver);
  1465. if (ret) {
  1466. platform_driver_unregister(&pch_spi_pd_driver);
  1467. return ret;
  1468. }
  1469. return 0;
  1470. }
  1471. module_init(pch_spi_init);
  1472. static void __exit pch_spi_exit(void)
  1473. {
  1474. pci_unregister_driver(&pch_spi_pcidev_driver);
  1475. platform_driver_unregister(&pch_spi_pd_driver);
  1476. }
  1477. module_exit(pch_spi_exit);
  1478. module_param(use_dma, int, 0644);
  1479. MODULE_PARM_DESC(use_dma,
  1480. "to use DMA for data transfers pass 1 else 0; default 1");
  1481. MODULE_LICENSE("GPL");
  1482. MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
  1483. MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);