spi-ti-qspi.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853
  1. /*
  2. * TI QSPI driver
  3. *
  4. * Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com
  5. * Author: Sourav Poddar <sourav.poddar@ti.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GPLv2.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR /PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/init.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/module.h>
  19. #include <linux/device.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/omap-dma.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/err.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/slab.h>
  29. #include <linux/pm_runtime.h>
  30. #include <linux/of.h>
  31. #include <linux/of_device.h>
  32. #include <linux/pinctrl/consumer.h>
  33. #include <linux/mfd/syscon.h>
  34. #include <linux/regmap.h>
  35. #include <linux/sizes.h>
  36. #include <linux/spi/spi.h>
  37. struct ti_qspi_regs {
  38. u32 clkctrl;
  39. };
  40. struct ti_qspi {
  41. struct completion transfer_complete;
  42. /* list synchronization */
  43. struct mutex list_lock;
  44. struct spi_master *master;
  45. void __iomem *base;
  46. void __iomem *mmap_base;
  47. struct regmap *ctrl_base;
  48. unsigned int ctrl_reg;
  49. struct clk *fclk;
  50. struct device *dev;
  51. struct ti_qspi_regs ctx_reg;
  52. dma_addr_t mmap_phys_base;
  53. dma_addr_t rx_bb_dma_addr;
  54. void *rx_bb_addr;
  55. struct dma_chan *rx_chan;
  56. u32 spi_max_frequency;
  57. u32 cmd;
  58. u32 dc;
  59. bool mmap_enabled;
  60. };
  61. #define QSPI_PID (0x0)
  62. #define QSPI_SYSCONFIG (0x10)
  63. #define QSPI_SPI_CLOCK_CNTRL_REG (0x40)
  64. #define QSPI_SPI_DC_REG (0x44)
  65. #define QSPI_SPI_CMD_REG (0x48)
  66. #define QSPI_SPI_STATUS_REG (0x4c)
  67. #define QSPI_SPI_DATA_REG (0x50)
  68. #define QSPI_SPI_SETUP_REG(n) ((0x54 + 4 * n))
  69. #define QSPI_SPI_SWITCH_REG (0x64)
  70. #define QSPI_SPI_DATA_REG_1 (0x68)
  71. #define QSPI_SPI_DATA_REG_2 (0x6c)
  72. #define QSPI_SPI_DATA_REG_3 (0x70)
  73. #define QSPI_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
  74. #define QSPI_FCLK 192000000
  75. /* Clock Control */
  76. #define QSPI_CLK_EN (1 << 31)
  77. #define QSPI_CLK_DIV_MAX 0xffff
  78. /* Command */
  79. #define QSPI_EN_CS(n) (n << 28)
  80. #define QSPI_WLEN(n) ((n - 1) << 19)
  81. #define QSPI_3_PIN (1 << 18)
  82. #define QSPI_RD_SNGL (1 << 16)
  83. #define QSPI_WR_SNGL (2 << 16)
  84. #define QSPI_RD_DUAL (3 << 16)
  85. #define QSPI_RD_QUAD (7 << 16)
  86. #define QSPI_INVAL (4 << 16)
  87. #define QSPI_FLEN(n) ((n - 1) << 0)
  88. #define QSPI_WLEN_MAX_BITS 128
  89. #define QSPI_WLEN_MAX_BYTES 16
  90. #define QSPI_WLEN_MASK QSPI_WLEN(QSPI_WLEN_MAX_BITS)
  91. /* STATUS REGISTER */
  92. #define BUSY 0x01
  93. #define WC 0x02
  94. /* Device Control */
  95. #define QSPI_DD(m, n) (m << (3 + n * 8))
  96. #define QSPI_CKPHA(n) (1 << (2 + n * 8))
  97. #define QSPI_CSPOL(n) (1 << (1 + n * 8))
  98. #define QSPI_CKPOL(n) (1 << (n * 8))
  99. #define QSPI_FRAME 4096
  100. #define QSPI_AUTOSUSPEND_TIMEOUT 2000
  101. #define MEM_CS_EN(n) ((n + 1) << 8)
  102. #define MEM_CS_MASK (7 << 8)
  103. #define MM_SWITCH 0x1
  104. #define QSPI_SETUP_RD_NORMAL (0x0 << 12)
  105. #define QSPI_SETUP_RD_DUAL (0x1 << 12)
  106. #define QSPI_SETUP_RD_QUAD (0x3 << 12)
  107. #define QSPI_SETUP_ADDR_SHIFT 8
  108. #define QSPI_SETUP_DUMMY_SHIFT 10
  109. #define QSPI_DMA_BUFFER_SIZE SZ_64K
  110. static inline unsigned long ti_qspi_read(struct ti_qspi *qspi,
  111. unsigned long reg)
  112. {
  113. return readl(qspi->base + reg);
  114. }
  115. static inline void ti_qspi_write(struct ti_qspi *qspi,
  116. unsigned long val, unsigned long reg)
  117. {
  118. writel(val, qspi->base + reg);
  119. }
  120. static int ti_qspi_setup(struct spi_device *spi)
  121. {
  122. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  123. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  124. int clk_div = 0, ret;
  125. u32 clk_ctrl_reg, clk_rate, clk_mask;
  126. if (spi->master->busy) {
  127. dev_dbg(qspi->dev, "master busy doing other transfers\n");
  128. return -EBUSY;
  129. }
  130. if (!qspi->spi_max_frequency) {
  131. dev_err(qspi->dev, "spi max frequency not defined\n");
  132. return -EINVAL;
  133. }
  134. clk_rate = clk_get_rate(qspi->fclk);
  135. clk_div = DIV_ROUND_UP(clk_rate, qspi->spi_max_frequency) - 1;
  136. if (clk_div < 0) {
  137. dev_dbg(qspi->dev, "clock divider < 0, using /1 divider\n");
  138. return -EINVAL;
  139. }
  140. if (clk_div > QSPI_CLK_DIV_MAX) {
  141. dev_dbg(qspi->dev, "clock divider >%d , using /%d divider\n",
  142. QSPI_CLK_DIV_MAX, QSPI_CLK_DIV_MAX + 1);
  143. return -EINVAL;
  144. }
  145. dev_dbg(qspi->dev, "hz: %d, clock divider %d\n",
  146. qspi->spi_max_frequency, clk_div);
  147. ret = pm_runtime_get_sync(qspi->dev);
  148. if (ret < 0) {
  149. pm_runtime_put_noidle(qspi->dev);
  150. dev_err(qspi->dev, "pm_runtime_get_sync() failed\n");
  151. return ret;
  152. }
  153. clk_ctrl_reg = ti_qspi_read(qspi, QSPI_SPI_CLOCK_CNTRL_REG);
  154. clk_ctrl_reg &= ~QSPI_CLK_EN;
  155. /* disable SCLK */
  156. ti_qspi_write(qspi, clk_ctrl_reg, QSPI_SPI_CLOCK_CNTRL_REG);
  157. /* enable SCLK */
  158. clk_mask = QSPI_CLK_EN | clk_div;
  159. ti_qspi_write(qspi, clk_mask, QSPI_SPI_CLOCK_CNTRL_REG);
  160. ctx_reg->clkctrl = clk_mask;
  161. pm_runtime_mark_last_busy(qspi->dev);
  162. ret = pm_runtime_put_autosuspend(qspi->dev);
  163. if (ret < 0) {
  164. dev_err(qspi->dev, "pm_runtime_put_autosuspend() failed\n");
  165. return ret;
  166. }
  167. return 0;
  168. }
  169. static void ti_qspi_restore_ctx(struct ti_qspi *qspi)
  170. {
  171. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  172. ti_qspi_write(qspi, ctx_reg->clkctrl, QSPI_SPI_CLOCK_CNTRL_REG);
  173. }
  174. static inline u32 qspi_is_busy(struct ti_qspi *qspi)
  175. {
  176. u32 stat;
  177. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  178. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  179. while ((stat & BUSY) && time_after(timeout, jiffies)) {
  180. cpu_relax();
  181. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  182. }
  183. WARN(stat & BUSY, "qspi busy\n");
  184. return stat & BUSY;
  185. }
  186. static inline int ti_qspi_poll_wc(struct ti_qspi *qspi)
  187. {
  188. u32 stat;
  189. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  190. do {
  191. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  192. if (stat & WC)
  193. return 0;
  194. cpu_relax();
  195. } while (time_after(timeout, jiffies));
  196. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  197. if (stat & WC)
  198. return 0;
  199. return -ETIMEDOUT;
  200. }
  201. static int qspi_write_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  202. int count)
  203. {
  204. int wlen, xfer_len;
  205. unsigned int cmd;
  206. const u8 *txbuf;
  207. u32 data;
  208. txbuf = t->tx_buf;
  209. cmd = qspi->cmd | QSPI_WR_SNGL;
  210. wlen = t->bits_per_word >> 3; /* in bytes */
  211. xfer_len = wlen;
  212. while (count) {
  213. if (qspi_is_busy(qspi))
  214. return -EBUSY;
  215. switch (wlen) {
  216. case 1:
  217. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %02x\n",
  218. cmd, qspi->dc, *txbuf);
  219. if (count >= QSPI_WLEN_MAX_BYTES) {
  220. u32 *txp = (u32 *)txbuf;
  221. data = cpu_to_be32(*txp++);
  222. writel(data, qspi->base +
  223. QSPI_SPI_DATA_REG_3);
  224. data = cpu_to_be32(*txp++);
  225. writel(data, qspi->base +
  226. QSPI_SPI_DATA_REG_2);
  227. data = cpu_to_be32(*txp++);
  228. writel(data, qspi->base +
  229. QSPI_SPI_DATA_REG_1);
  230. data = cpu_to_be32(*txp++);
  231. writel(data, qspi->base +
  232. QSPI_SPI_DATA_REG);
  233. xfer_len = QSPI_WLEN_MAX_BYTES;
  234. cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS);
  235. } else {
  236. writeb(*txbuf, qspi->base + QSPI_SPI_DATA_REG);
  237. cmd = qspi->cmd | QSPI_WR_SNGL;
  238. xfer_len = wlen;
  239. cmd |= QSPI_WLEN(wlen);
  240. }
  241. break;
  242. case 2:
  243. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %04x\n",
  244. cmd, qspi->dc, *txbuf);
  245. writew(*((u16 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  246. break;
  247. case 4:
  248. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %08x\n",
  249. cmd, qspi->dc, *txbuf);
  250. writel(*((u32 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  251. break;
  252. }
  253. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  254. if (ti_qspi_poll_wc(qspi)) {
  255. dev_err(qspi->dev, "write timed out\n");
  256. return -ETIMEDOUT;
  257. }
  258. txbuf += xfer_len;
  259. count -= xfer_len;
  260. }
  261. return 0;
  262. }
  263. static int qspi_read_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  264. int count)
  265. {
  266. int wlen;
  267. unsigned int cmd;
  268. u8 *rxbuf;
  269. rxbuf = t->rx_buf;
  270. cmd = qspi->cmd;
  271. switch (t->rx_nbits) {
  272. case SPI_NBITS_DUAL:
  273. cmd |= QSPI_RD_DUAL;
  274. break;
  275. case SPI_NBITS_QUAD:
  276. cmd |= QSPI_RD_QUAD;
  277. break;
  278. default:
  279. cmd |= QSPI_RD_SNGL;
  280. break;
  281. }
  282. wlen = t->bits_per_word >> 3; /* in bytes */
  283. while (count) {
  284. dev_dbg(qspi->dev, "rx cmd %08x dc %08x\n", cmd, qspi->dc);
  285. if (qspi_is_busy(qspi))
  286. return -EBUSY;
  287. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  288. if (ti_qspi_poll_wc(qspi)) {
  289. dev_err(qspi->dev, "read timed out\n");
  290. return -ETIMEDOUT;
  291. }
  292. switch (wlen) {
  293. case 1:
  294. *rxbuf = readb(qspi->base + QSPI_SPI_DATA_REG);
  295. break;
  296. case 2:
  297. *((u16 *)rxbuf) = readw(qspi->base + QSPI_SPI_DATA_REG);
  298. break;
  299. case 4:
  300. *((u32 *)rxbuf) = readl(qspi->base + QSPI_SPI_DATA_REG);
  301. break;
  302. }
  303. rxbuf += wlen;
  304. count -= wlen;
  305. }
  306. return 0;
  307. }
  308. static int qspi_transfer_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  309. int count)
  310. {
  311. int ret;
  312. if (t->tx_buf) {
  313. ret = qspi_write_msg(qspi, t, count);
  314. if (ret) {
  315. dev_dbg(qspi->dev, "Error while writing\n");
  316. return ret;
  317. }
  318. }
  319. if (t->rx_buf) {
  320. ret = qspi_read_msg(qspi, t, count);
  321. if (ret) {
  322. dev_dbg(qspi->dev, "Error while reading\n");
  323. return ret;
  324. }
  325. }
  326. return 0;
  327. }
  328. static void ti_qspi_dma_callback(void *param)
  329. {
  330. struct ti_qspi *qspi = param;
  331. complete(&qspi->transfer_complete);
  332. }
  333. static int ti_qspi_dma_xfer(struct ti_qspi *qspi, dma_addr_t dma_dst,
  334. dma_addr_t dma_src, size_t len)
  335. {
  336. struct dma_chan *chan = qspi->rx_chan;
  337. dma_cookie_t cookie;
  338. enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
  339. struct dma_async_tx_descriptor *tx;
  340. int ret;
  341. tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags);
  342. if (!tx) {
  343. dev_err(qspi->dev, "device_prep_dma_memcpy error\n");
  344. return -EIO;
  345. }
  346. tx->callback = ti_qspi_dma_callback;
  347. tx->callback_param = qspi;
  348. cookie = tx->tx_submit(tx);
  349. reinit_completion(&qspi->transfer_complete);
  350. ret = dma_submit_error(cookie);
  351. if (ret) {
  352. dev_err(qspi->dev, "dma_submit_error %d\n", cookie);
  353. return -EIO;
  354. }
  355. dma_async_issue_pending(chan);
  356. ret = wait_for_completion_timeout(&qspi->transfer_complete,
  357. msecs_to_jiffies(len));
  358. if (ret <= 0) {
  359. dmaengine_terminate_sync(chan);
  360. dev_err(qspi->dev, "DMA wait_for_completion_timeout\n");
  361. return -ETIMEDOUT;
  362. }
  363. return 0;
  364. }
  365. static int ti_qspi_dma_bounce_buffer(struct ti_qspi *qspi,
  366. struct spi_flash_read_message *msg)
  367. {
  368. size_t readsize = msg->len;
  369. void *to = msg->buf;
  370. dma_addr_t dma_src = qspi->mmap_phys_base + msg->from;
  371. int ret = 0;
  372. /*
  373. * Use bounce buffer as FS like jffs2, ubifs may pass
  374. * buffers that does not belong to kernel lowmem region.
  375. */
  376. while (readsize != 0) {
  377. size_t xfer_len = min_t(size_t, QSPI_DMA_BUFFER_SIZE,
  378. readsize);
  379. ret = ti_qspi_dma_xfer(qspi, qspi->rx_bb_dma_addr,
  380. dma_src, xfer_len);
  381. if (ret != 0)
  382. return ret;
  383. memcpy(to, qspi->rx_bb_addr, xfer_len);
  384. readsize -= xfer_len;
  385. dma_src += xfer_len;
  386. to += xfer_len;
  387. }
  388. return ret;
  389. }
  390. static int ti_qspi_dma_xfer_sg(struct ti_qspi *qspi, struct sg_table rx_sg,
  391. loff_t from)
  392. {
  393. struct scatterlist *sg;
  394. dma_addr_t dma_src = qspi->mmap_phys_base + from;
  395. dma_addr_t dma_dst;
  396. int i, len, ret;
  397. for_each_sg(rx_sg.sgl, sg, rx_sg.nents, i) {
  398. dma_dst = sg_dma_address(sg);
  399. len = sg_dma_len(sg);
  400. ret = ti_qspi_dma_xfer(qspi, dma_dst, dma_src, len);
  401. if (ret)
  402. return ret;
  403. dma_src += len;
  404. }
  405. return 0;
  406. }
  407. static void ti_qspi_enable_memory_map(struct spi_device *spi)
  408. {
  409. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  410. ti_qspi_write(qspi, MM_SWITCH, QSPI_SPI_SWITCH_REG);
  411. if (qspi->ctrl_base) {
  412. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  413. MEM_CS_MASK,
  414. MEM_CS_EN(spi->chip_select));
  415. }
  416. qspi->mmap_enabled = true;
  417. }
  418. static void ti_qspi_disable_memory_map(struct spi_device *spi)
  419. {
  420. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  421. ti_qspi_write(qspi, 0, QSPI_SPI_SWITCH_REG);
  422. if (qspi->ctrl_base)
  423. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  424. MEM_CS_MASK, 0);
  425. qspi->mmap_enabled = false;
  426. }
  427. static void ti_qspi_setup_mmap_read(struct spi_device *spi,
  428. struct spi_flash_read_message *msg)
  429. {
  430. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  431. u32 memval = msg->read_opcode;
  432. switch (msg->data_nbits) {
  433. case SPI_NBITS_QUAD:
  434. memval |= QSPI_SETUP_RD_QUAD;
  435. break;
  436. case SPI_NBITS_DUAL:
  437. memval |= QSPI_SETUP_RD_DUAL;
  438. break;
  439. default:
  440. memval |= QSPI_SETUP_RD_NORMAL;
  441. break;
  442. }
  443. memval |= ((msg->addr_width - 1) << QSPI_SETUP_ADDR_SHIFT |
  444. msg->dummy_bytes << QSPI_SETUP_DUMMY_SHIFT);
  445. ti_qspi_write(qspi, memval,
  446. QSPI_SPI_SETUP_REG(spi->chip_select));
  447. }
  448. static bool ti_qspi_spi_flash_can_dma(struct spi_device *spi,
  449. struct spi_flash_read_message *msg)
  450. {
  451. return virt_addr_valid(msg->buf);
  452. }
  453. static int ti_qspi_spi_flash_read(struct spi_device *spi,
  454. struct spi_flash_read_message *msg)
  455. {
  456. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  457. int ret = 0;
  458. mutex_lock(&qspi->list_lock);
  459. if (!qspi->mmap_enabled)
  460. ti_qspi_enable_memory_map(spi);
  461. ti_qspi_setup_mmap_read(spi, msg);
  462. if (qspi->rx_chan) {
  463. if (msg->cur_msg_mapped)
  464. ret = ti_qspi_dma_xfer_sg(qspi, msg->rx_sg, msg->from);
  465. else
  466. ret = ti_qspi_dma_bounce_buffer(qspi, msg);
  467. if (ret)
  468. goto err_unlock;
  469. } else {
  470. memcpy_fromio(msg->buf, qspi->mmap_base + msg->from, msg->len);
  471. }
  472. msg->retlen = msg->len;
  473. err_unlock:
  474. mutex_unlock(&qspi->list_lock);
  475. return ret;
  476. }
  477. static int ti_qspi_start_transfer_one(struct spi_master *master,
  478. struct spi_message *m)
  479. {
  480. struct ti_qspi *qspi = spi_master_get_devdata(master);
  481. struct spi_device *spi = m->spi;
  482. struct spi_transfer *t;
  483. int status = 0, ret;
  484. unsigned int frame_len_words, transfer_len_words;
  485. int wlen;
  486. /* setup device control reg */
  487. qspi->dc = 0;
  488. if (spi->mode & SPI_CPHA)
  489. qspi->dc |= QSPI_CKPHA(spi->chip_select);
  490. if (spi->mode & SPI_CPOL)
  491. qspi->dc |= QSPI_CKPOL(spi->chip_select);
  492. if (spi->mode & SPI_CS_HIGH)
  493. qspi->dc |= QSPI_CSPOL(spi->chip_select);
  494. frame_len_words = 0;
  495. list_for_each_entry(t, &m->transfers, transfer_list)
  496. frame_len_words += t->len / (t->bits_per_word >> 3);
  497. frame_len_words = min_t(unsigned int, frame_len_words, QSPI_FRAME);
  498. /* setup command reg */
  499. qspi->cmd = 0;
  500. qspi->cmd |= QSPI_EN_CS(spi->chip_select);
  501. qspi->cmd |= QSPI_FLEN(frame_len_words);
  502. ti_qspi_write(qspi, qspi->dc, QSPI_SPI_DC_REG);
  503. mutex_lock(&qspi->list_lock);
  504. if (qspi->mmap_enabled)
  505. ti_qspi_disable_memory_map(spi);
  506. list_for_each_entry(t, &m->transfers, transfer_list) {
  507. qspi->cmd = ((qspi->cmd & ~QSPI_WLEN_MASK) |
  508. QSPI_WLEN(t->bits_per_word));
  509. wlen = t->bits_per_word >> 3;
  510. transfer_len_words = min(t->len / wlen, frame_len_words);
  511. ret = qspi_transfer_msg(qspi, t, transfer_len_words * wlen);
  512. if (ret) {
  513. dev_dbg(qspi->dev, "transfer message failed\n");
  514. mutex_unlock(&qspi->list_lock);
  515. return -EINVAL;
  516. }
  517. m->actual_length += transfer_len_words * wlen;
  518. frame_len_words -= transfer_len_words;
  519. if (frame_len_words == 0)
  520. break;
  521. }
  522. mutex_unlock(&qspi->list_lock);
  523. ti_qspi_write(qspi, qspi->cmd | QSPI_INVAL, QSPI_SPI_CMD_REG);
  524. m->status = status;
  525. spi_finalize_current_message(master);
  526. return status;
  527. }
  528. static int ti_qspi_runtime_resume(struct device *dev)
  529. {
  530. struct ti_qspi *qspi;
  531. qspi = dev_get_drvdata(dev);
  532. ti_qspi_restore_ctx(qspi);
  533. return 0;
  534. }
  535. static void ti_qspi_dma_cleanup(struct ti_qspi *qspi)
  536. {
  537. if (qspi->rx_bb_addr)
  538. dma_free_coherent(qspi->dev, QSPI_DMA_BUFFER_SIZE,
  539. qspi->rx_bb_addr,
  540. qspi->rx_bb_dma_addr);
  541. if (qspi->rx_chan)
  542. dma_release_channel(qspi->rx_chan);
  543. }
  544. static const struct of_device_id ti_qspi_match[] = {
  545. {.compatible = "ti,dra7xxx-qspi" },
  546. {.compatible = "ti,am4372-qspi" },
  547. {},
  548. };
  549. MODULE_DEVICE_TABLE(of, ti_qspi_match);
  550. static int ti_qspi_probe(struct platform_device *pdev)
  551. {
  552. struct ti_qspi *qspi;
  553. struct spi_master *master;
  554. struct resource *r, *res_mmap;
  555. struct device_node *np = pdev->dev.of_node;
  556. u32 max_freq;
  557. int ret = 0, num_cs, irq;
  558. dma_cap_mask_t mask;
  559. master = spi_alloc_master(&pdev->dev, sizeof(*qspi));
  560. if (!master)
  561. return -ENOMEM;
  562. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD;
  563. master->flags = SPI_MASTER_HALF_DUPLEX;
  564. master->setup = ti_qspi_setup;
  565. master->auto_runtime_pm = true;
  566. master->transfer_one_message = ti_qspi_start_transfer_one;
  567. master->dev.of_node = pdev->dev.of_node;
  568. master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
  569. SPI_BPW_MASK(8);
  570. master->spi_flash_read = ti_qspi_spi_flash_read;
  571. if (!of_property_read_u32(np, "num-cs", &num_cs))
  572. master->num_chipselect = num_cs;
  573. qspi = spi_master_get_devdata(master);
  574. qspi->master = master;
  575. qspi->dev = &pdev->dev;
  576. platform_set_drvdata(pdev, qspi);
  577. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
  578. if (r == NULL) {
  579. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  580. if (r == NULL) {
  581. dev_err(&pdev->dev, "missing platform data\n");
  582. ret = -ENODEV;
  583. goto free_master;
  584. }
  585. }
  586. res_mmap = platform_get_resource_byname(pdev,
  587. IORESOURCE_MEM, "qspi_mmap");
  588. if (res_mmap == NULL) {
  589. res_mmap = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  590. if (res_mmap == NULL) {
  591. dev_err(&pdev->dev,
  592. "memory mapped resource not required\n");
  593. }
  594. }
  595. irq = platform_get_irq(pdev, 0);
  596. if (irq < 0) {
  597. dev_err(&pdev->dev, "no irq resource?\n");
  598. ret = irq;
  599. goto free_master;
  600. }
  601. mutex_init(&qspi->list_lock);
  602. qspi->base = devm_ioremap_resource(&pdev->dev, r);
  603. if (IS_ERR(qspi->base)) {
  604. ret = PTR_ERR(qspi->base);
  605. goto free_master;
  606. }
  607. if (of_property_read_bool(np, "syscon-chipselects")) {
  608. qspi->ctrl_base =
  609. syscon_regmap_lookup_by_phandle(np,
  610. "syscon-chipselects");
  611. if (IS_ERR(qspi->ctrl_base)) {
  612. ret = PTR_ERR(qspi->ctrl_base);
  613. goto free_master;
  614. }
  615. ret = of_property_read_u32_index(np,
  616. "syscon-chipselects",
  617. 1, &qspi->ctrl_reg);
  618. if (ret) {
  619. dev_err(&pdev->dev,
  620. "couldn't get ctrl_mod reg index\n");
  621. goto free_master;
  622. }
  623. }
  624. qspi->fclk = devm_clk_get(&pdev->dev, "fck");
  625. if (IS_ERR(qspi->fclk)) {
  626. ret = PTR_ERR(qspi->fclk);
  627. dev_err(&pdev->dev, "could not get clk: %d\n", ret);
  628. }
  629. pm_runtime_use_autosuspend(&pdev->dev);
  630. pm_runtime_set_autosuspend_delay(&pdev->dev, QSPI_AUTOSUSPEND_TIMEOUT);
  631. pm_runtime_enable(&pdev->dev);
  632. if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
  633. qspi->spi_max_frequency = max_freq;
  634. dma_cap_zero(mask);
  635. dma_cap_set(DMA_MEMCPY, mask);
  636. qspi->rx_chan = dma_request_chan_by_mask(&mask);
  637. if (IS_ERR(qspi->rx_chan)) {
  638. dev_err(qspi->dev,
  639. "No Rx DMA available, trying mmap mode\n");
  640. qspi->rx_chan = NULL;
  641. ret = 0;
  642. goto no_dma;
  643. }
  644. qspi->rx_bb_addr = dma_alloc_coherent(qspi->dev,
  645. QSPI_DMA_BUFFER_SIZE,
  646. &qspi->rx_bb_dma_addr,
  647. GFP_KERNEL | GFP_DMA);
  648. if (!qspi->rx_bb_addr) {
  649. dev_err(qspi->dev,
  650. "dma_alloc_coherent failed, using PIO mode\n");
  651. dma_release_channel(qspi->rx_chan);
  652. goto no_dma;
  653. }
  654. master->spi_flash_can_dma = ti_qspi_spi_flash_can_dma;
  655. master->dma_rx = qspi->rx_chan;
  656. init_completion(&qspi->transfer_complete);
  657. if (res_mmap)
  658. qspi->mmap_phys_base = (dma_addr_t)res_mmap->start;
  659. no_dma:
  660. if (!qspi->rx_chan && res_mmap) {
  661. qspi->mmap_base = devm_ioremap_resource(&pdev->dev, res_mmap);
  662. if (IS_ERR(qspi->mmap_base)) {
  663. dev_info(&pdev->dev,
  664. "mmap failed with error %ld using PIO mode\n",
  665. PTR_ERR(qspi->mmap_base));
  666. qspi->mmap_base = NULL;
  667. master->spi_flash_read = NULL;
  668. }
  669. }
  670. qspi->mmap_enabled = false;
  671. ret = devm_spi_register_master(&pdev->dev, master);
  672. if (!ret)
  673. return 0;
  674. ti_qspi_dma_cleanup(qspi);
  675. pm_runtime_disable(&pdev->dev);
  676. free_master:
  677. spi_master_put(master);
  678. return ret;
  679. }
  680. static int ti_qspi_remove(struct platform_device *pdev)
  681. {
  682. struct ti_qspi *qspi = platform_get_drvdata(pdev);
  683. int rc;
  684. rc = spi_master_suspend(qspi->master);
  685. if (rc)
  686. return rc;
  687. pm_runtime_put_sync(&pdev->dev);
  688. pm_runtime_disable(&pdev->dev);
  689. ti_qspi_dma_cleanup(qspi);
  690. return 0;
  691. }
  692. static const struct dev_pm_ops ti_qspi_pm_ops = {
  693. .runtime_resume = ti_qspi_runtime_resume,
  694. };
  695. static struct platform_driver ti_qspi_driver = {
  696. .probe = ti_qspi_probe,
  697. .remove = ti_qspi_remove,
  698. .driver = {
  699. .name = "ti-qspi",
  700. .pm = &ti_qspi_pm_ops,
  701. .of_match_table = ti_qspi_match,
  702. }
  703. };
  704. module_platform_driver(ti_qspi_driver);
  705. MODULE_AUTHOR("Sourav Poddar <sourav.poddar@ti.com>");
  706. MODULE_LICENSE("GPL v2");
  707. MODULE_DESCRIPTION("TI QSPI controller driver");
  708. MODULE_ALIAS("platform:ti-qspi");