spi-sh-msiof.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405
  1. /*
  2. * SuperH MSIOF SPI Master Interface
  3. *
  4. * Copyright (c) 2009 Magnus Damm
  5. * Copyright (C) 2014 Renesas Electronics Corporation
  6. * Copyright (C) 2014-2017 Glider bvba
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. */
  13. #include <linux/bitmap.h>
  14. #include <linux/clk.h>
  15. #include <linux/completion.h>
  16. #include <linux/delay.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/dmaengine.h>
  19. #include <linux/err.h>
  20. #include <linux/gpio.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/sh_dma.h>
  30. #include <linux/spi/sh_msiof.h>
  31. #include <linux/spi/spi.h>
  32. #include <asm/unaligned.h>
  33. struct sh_msiof_chipdata {
  34. u16 tx_fifo_size;
  35. u16 rx_fifo_size;
  36. u16 master_flags;
  37. u16 min_div;
  38. };
  39. struct sh_msiof_spi_priv {
  40. struct spi_master *master;
  41. void __iomem *mapbase;
  42. struct clk *clk;
  43. struct platform_device *pdev;
  44. struct sh_msiof_spi_info *info;
  45. struct completion done;
  46. unsigned int tx_fifo_size;
  47. unsigned int rx_fifo_size;
  48. unsigned int min_div;
  49. void *tx_dma_page;
  50. void *rx_dma_page;
  51. dma_addr_t tx_dma_addr;
  52. dma_addr_t rx_dma_addr;
  53. bool native_cs_inited;
  54. bool native_cs_high;
  55. bool slave_aborted;
  56. };
  57. #define TMDR1 0x00 /* Transmit Mode Register 1 */
  58. #define TMDR2 0x04 /* Transmit Mode Register 2 */
  59. #define TMDR3 0x08 /* Transmit Mode Register 3 */
  60. #define RMDR1 0x10 /* Receive Mode Register 1 */
  61. #define RMDR2 0x14 /* Receive Mode Register 2 */
  62. #define RMDR3 0x18 /* Receive Mode Register 3 */
  63. #define TSCR 0x20 /* Transmit Clock Select Register */
  64. #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
  65. #define CTR 0x28 /* Control Register */
  66. #define FCTR 0x30 /* FIFO Control Register */
  67. #define STR 0x40 /* Status Register */
  68. #define IER 0x44 /* Interrupt Enable Register */
  69. #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
  70. #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
  71. #define TFDR 0x50 /* Transmit FIFO Data Register */
  72. #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
  73. #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
  74. #define RFDR 0x60 /* Receive FIFO Data Register */
  75. /* TMDR1 and RMDR1 */
  76. #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
  77. #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
  78. #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
  79. #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
  80. #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
  81. #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
  82. #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
  83. #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
  84. #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
  85. #define MDR1_FLD_SHIFT 2
  86. #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
  87. /* TMDR1 */
  88. #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
  89. /* TMDR2 and RMDR2 */
  90. #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
  91. #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
  92. #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
  93. /* TSCR and RSCR */
  94. #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
  95. #define SCR_BRPS(i) (((i) - 1) << 8)
  96. #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
  97. #define SCR_BRDV_DIV_2 0x0000
  98. #define SCR_BRDV_DIV_4 0x0001
  99. #define SCR_BRDV_DIV_8 0x0002
  100. #define SCR_BRDV_DIV_16 0x0003
  101. #define SCR_BRDV_DIV_32 0x0004
  102. #define SCR_BRDV_DIV_1 0x0007
  103. /* CTR */
  104. #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
  105. #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
  106. #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
  107. #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
  108. #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
  109. #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
  110. #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
  111. #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
  112. #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
  113. #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
  114. #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
  115. #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
  116. #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
  117. #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
  118. #define CTR_TXE 0x00000200 /* Transmit Enable */
  119. #define CTR_RXE 0x00000100 /* Receive Enable */
  120. /* FCTR */
  121. #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
  122. #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
  123. #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
  124. #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
  125. #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
  126. #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
  127. #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
  128. #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
  129. #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
  130. #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
  131. #define FCTR_TFUA_SHIFT 20
  132. #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
  133. #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
  134. #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
  135. #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
  136. #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
  137. #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
  138. #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
  139. #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
  140. #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
  141. #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
  142. #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
  143. #define FCTR_RFUA_SHIFT 4
  144. #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
  145. /* STR */
  146. #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
  147. #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
  148. #define STR_TEOF 0x00800000 /* Frame Transmission End */
  149. #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
  150. #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
  151. #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
  152. #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
  153. #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
  154. #define STR_REOF 0x00000080 /* Frame Reception End */
  155. #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
  156. #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
  157. #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
  158. /* IER */
  159. #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
  160. #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
  161. #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
  162. #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
  163. #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
  164. #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
  165. #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
  166. #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
  167. #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
  168. #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
  169. #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
  170. #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
  171. #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
  172. #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
  173. static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
  174. {
  175. switch (reg_offs) {
  176. case TSCR:
  177. case RSCR:
  178. return ioread16(p->mapbase + reg_offs);
  179. default:
  180. return ioread32(p->mapbase + reg_offs);
  181. }
  182. }
  183. static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
  184. u32 value)
  185. {
  186. switch (reg_offs) {
  187. case TSCR:
  188. case RSCR:
  189. iowrite16(value, p->mapbase + reg_offs);
  190. break;
  191. default:
  192. iowrite32(value, p->mapbase + reg_offs);
  193. break;
  194. }
  195. }
  196. static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
  197. u32 clr, u32 set)
  198. {
  199. u32 mask = clr | set;
  200. u32 data;
  201. int k;
  202. data = sh_msiof_read(p, CTR);
  203. data &= ~clr;
  204. data |= set;
  205. sh_msiof_write(p, CTR, data);
  206. for (k = 100; k > 0; k--) {
  207. if ((sh_msiof_read(p, CTR) & mask) == set)
  208. break;
  209. udelay(10);
  210. }
  211. return k > 0 ? 0 : -ETIMEDOUT;
  212. }
  213. static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
  214. {
  215. struct sh_msiof_spi_priv *p = data;
  216. /* just disable the interrupt and wake up */
  217. sh_msiof_write(p, IER, 0);
  218. complete(&p->done);
  219. return IRQ_HANDLED;
  220. }
  221. static struct {
  222. unsigned short div;
  223. unsigned short brdv;
  224. } const sh_msiof_spi_div_table[] = {
  225. { 1, SCR_BRDV_DIV_1 },
  226. { 2, SCR_BRDV_DIV_2 },
  227. { 4, SCR_BRDV_DIV_4 },
  228. { 8, SCR_BRDV_DIV_8 },
  229. { 16, SCR_BRDV_DIV_16 },
  230. { 32, SCR_BRDV_DIV_32 },
  231. };
  232. static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
  233. unsigned long parent_rate, u32 spi_hz)
  234. {
  235. unsigned long div = 1024;
  236. u32 brps, scr;
  237. size_t k;
  238. if (!WARN_ON(!spi_hz || !parent_rate))
  239. div = DIV_ROUND_UP(parent_rate, spi_hz);
  240. div = max_t(unsigned long, div, p->min_div);
  241. for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
  242. brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
  243. /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
  244. if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
  245. continue;
  246. if (brps <= 32) /* max of brdv is 32 */
  247. break;
  248. }
  249. k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
  250. brps = min_t(int, brps, 32);
  251. scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
  252. sh_msiof_write(p, TSCR, scr);
  253. if (!(p->master->flags & SPI_MASTER_MUST_TX))
  254. sh_msiof_write(p, RSCR, scr);
  255. }
  256. static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
  257. {
  258. /*
  259. * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
  260. * b'000 : 0
  261. * b'001 : 100
  262. * b'010 : 200
  263. * b'011 (SYNCDL only) : 300
  264. * b'101 : 50
  265. * b'110 : 150
  266. */
  267. if (dtdl_or_syncdl % 100)
  268. return dtdl_or_syncdl / 100 + 5;
  269. else
  270. return dtdl_or_syncdl / 100;
  271. }
  272. static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
  273. {
  274. u32 val;
  275. if (!p->info)
  276. return 0;
  277. /* check if DTDL and SYNCDL is allowed value */
  278. if (p->info->dtdl > 200 || p->info->syncdl > 300) {
  279. dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
  280. return 0;
  281. }
  282. /* check if the sum of DTDL and SYNCDL becomes an integer value */
  283. if ((p->info->dtdl + p->info->syncdl) % 100) {
  284. dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
  285. return 0;
  286. }
  287. val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
  288. val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
  289. return val;
  290. }
  291. static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
  292. u32 cpol, u32 cpha,
  293. u32 tx_hi_z, u32 lsb_first, u32 cs_high)
  294. {
  295. u32 tmp;
  296. int edge;
  297. /*
  298. * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
  299. * 0 0 10 10 1 1
  300. * 0 1 10 10 0 0
  301. * 1 0 11 11 0 0
  302. * 1 1 11 11 1 1
  303. */
  304. tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
  305. tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
  306. tmp |= lsb_first << MDR1_BITLSB_SHIFT;
  307. tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
  308. if (spi_controller_is_slave(p->master))
  309. sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
  310. else
  311. sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
  312. if (p->master->flags & SPI_MASTER_MUST_TX) {
  313. /* These bits are reserved if RX needs TX */
  314. tmp &= ~0x0000ffff;
  315. }
  316. sh_msiof_write(p, RMDR1, tmp);
  317. tmp = 0;
  318. tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
  319. tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
  320. edge = cpol ^ !cpha;
  321. tmp |= edge << CTR_TEDG_SHIFT;
  322. tmp |= edge << CTR_REDG_SHIFT;
  323. tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
  324. sh_msiof_write(p, CTR, tmp);
  325. }
  326. static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
  327. const void *tx_buf, void *rx_buf,
  328. u32 bits, u32 words)
  329. {
  330. u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
  331. if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
  332. sh_msiof_write(p, TMDR2, dr2);
  333. else
  334. sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
  335. if (rx_buf)
  336. sh_msiof_write(p, RMDR2, dr2);
  337. }
  338. static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
  339. {
  340. sh_msiof_write(p, STR,
  341. sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ));
  342. }
  343. static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
  344. const void *tx_buf, int words, int fs)
  345. {
  346. const u8 *buf_8 = tx_buf;
  347. int k;
  348. for (k = 0; k < words; k++)
  349. sh_msiof_write(p, TFDR, buf_8[k] << fs);
  350. }
  351. static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
  352. const void *tx_buf, int words, int fs)
  353. {
  354. const u16 *buf_16 = tx_buf;
  355. int k;
  356. for (k = 0; k < words; k++)
  357. sh_msiof_write(p, TFDR, buf_16[k] << fs);
  358. }
  359. static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
  360. const void *tx_buf, int words, int fs)
  361. {
  362. const u16 *buf_16 = tx_buf;
  363. int k;
  364. for (k = 0; k < words; k++)
  365. sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
  366. }
  367. static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
  368. const void *tx_buf, int words, int fs)
  369. {
  370. const u32 *buf_32 = tx_buf;
  371. int k;
  372. for (k = 0; k < words; k++)
  373. sh_msiof_write(p, TFDR, buf_32[k] << fs);
  374. }
  375. static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
  376. const void *tx_buf, int words, int fs)
  377. {
  378. const u32 *buf_32 = tx_buf;
  379. int k;
  380. for (k = 0; k < words; k++)
  381. sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
  382. }
  383. static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
  384. const void *tx_buf, int words, int fs)
  385. {
  386. const u32 *buf_32 = tx_buf;
  387. int k;
  388. for (k = 0; k < words; k++)
  389. sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
  390. }
  391. static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
  392. const void *tx_buf, int words, int fs)
  393. {
  394. const u32 *buf_32 = tx_buf;
  395. int k;
  396. for (k = 0; k < words; k++)
  397. sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
  398. }
  399. static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
  400. void *rx_buf, int words, int fs)
  401. {
  402. u8 *buf_8 = rx_buf;
  403. int k;
  404. for (k = 0; k < words; k++)
  405. buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
  406. }
  407. static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
  408. void *rx_buf, int words, int fs)
  409. {
  410. u16 *buf_16 = rx_buf;
  411. int k;
  412. for (k = 0; k < words; k++)
  413. buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
  414. }
  415. static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
  416. void *rx_buf, int words, int fs)
  417. {
  418. u16 *buf_16 = rx_buf;
  419. int k;
  420. for (k = 0; k < words; k++)
  421. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
  422. }
  423. static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
  424. void *rx_buf, int words, int fs)
  425. {
  426. u32 *buf_32 = rx_buf;
  427. int k;
  428. for (k = 0; k < words; k++)
  429. buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
  430. }
  431. static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
  432. void *rx_buf, int words, int fs)
  433. {
  434. u32 *buf_32 = rx_buf;
  435. int k;
  436. for (k = 0; k < words; k++)
  437. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
  438. }
  439. static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
  440. void *rx_buf, int words, int fs)
  441. {
  442. u32 *buf_32 = rx_buf;
  443. int k;
  444. for (k = 0; k < words; k++)
  445. buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
  446. }
  447. static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
  448. void *rx_buf, int words, int fs)
  449. {
  450. u32 *buf_32 = rx_buf;
  451. int k;
  452. for (k = 0; k < words; k++)
  453. put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
  454. }
  455. static int sh_msiof_spi_setup(struct spi_device *spi)
  456. {
  457. struct device_node *np = spi->master->dev.of_node;
  458. struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
  459. u32 clr, set, tmp;
  460. if (!np) {
  461. /*
  462. * Use spi->controller_data for CS (same strategy as spi_gpio),
  463. * if any. otherwise let HW control CS
  464. */
  465. spi->cs_gpio = (uintptr_t)spi->controller_data;
  466. }
  467. if (spi->cs_gpio >= 0) {
  468. gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
  469. return 0;
  470. }
  471. if (spi_controller_is_slave(p->master))
  472. return 0;
  473. if (p->native_cs_inited &&
  474. (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
  475. return 0;
  476. /* Configure native chip select mode/polarity early */
  477. clr = MDR1_SYNCMD_MASK;
  478. set = MDR1_SYNCMD_SPI;
  479. if (spi->mode & SPI_CS_HIGH)
  480. clr |= BIT(MDR1_SYNCAC_SHIFT);
  481. else
  482. set |= BIT(MDR1_SYNCAC_SHIFT);
  483. pm_runtime_get_sync(&p->pdev->dev);
  484. tmp = sh_msiof_read(p, TMDR1) & ~clr;
  485. sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
  486. tmp = sh_msiof_read(p, RMDR1) & ~clr;
  487. sh_msiof_write(p, RMDR1, tmp | set);
  488. pm_runtime_put(&p->pdev->dev);
  489. p->native_cs_high = spi->mode & SPI_CS_HIGH;
  490. p->native_cs_inited = true;
  491. return 0;
  492. }
  493. static int sh_msiof_prepare_message(struct spi_master *master,
  494. struct spi_message *msg)
  495. {
  496. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  497. const struct spi_device *spi = msg->spi;
  498. /* Configure pins before asserting CS */
  499. sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
  500. !!(spi->mode & SPI_CPHA),
  501. !!(spi->mode & SPI_3WIRE),
  502. !!(spi->mode & SPI_LSB_FIRST),
  503. !!(spi->mode & SPI_CS_HIGH));
  504. return 0;
  505. }
  506. static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
  507. {
  508. bool slave = spi_controller_is_slave(p->master);
  509. int ret = 0;
  510. /* setup clock and rx/tx signals */
  511. if (!slave)
  512. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
  513. if (rx_buf && !ret)
  514. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
  515. if (!ret)
  516. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
  517. /* start by setting frame bit */
  518. if (!ret && !slave)
  519. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
  520. return ret;
  521. }
  522. static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
  523. {
  524. bool slave = spi_controller_is_slave(p->master);
  525. int ret = 0;
  526. /* shut down frame, rx/tx and clock signals */
  527. if (!slave)
  528. ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
  529. if (!ret)
  530. ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
  531. if (rx_buf && !ret)
  532. ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
  533. if (!ret && !slave)
  534. ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
  535. return ret;
  536. }
  537. static int sh_msiof_slave_abort(struct spi_master *master)
  538. {
  539. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  540. p->slave_aborted = true;
  541. complete(&p->done);
  542. return 0;
  543. }
  544. static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
  545. {
  546. if (spi_controller_is_slave(p->master)) {
  547. if (wait_for_completion_interruptible(&p->done) ||
  548. p->slave_aborted) {
  549. dev_dbg(&p->pdev->dev, "interrupted\n");
  550. return -EINTR;
  551. }
  552. } else {
  553. if (!wait_for_completion_timeout(&p->done, HZ)) {
  554. dev_err(&p->pdev->dev, "timeout\n");
  555. return -ETIMEDOUT;
  556. }
  557. }
  558. return 0;
  559. }
  560. static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
  561. void (*tx_fifo)(struct sh_msiof_spi_priv *,
  562. const void *, int, int),
  563. void (*rx_fifo)(struct sh_msiof_spi_priv *,
  564. void *, int, int),
  565. const void *tx_buf, void *rx_buf,
  566. int words, int bits)
  567. {
  568. int fifo_shift;
  569. int ret;
  570. /* limit maximum word transfer to rx/tx fifo size */
  571. if (tx_buf)
  572. words = min_t(int, words, p->tx_fifo_size);
  573. if (rx_buf)
  574. words = min_t(int, words, p->rx_fifo_size);
  575. /* the fifo contents need shifting */
  576. fifo_shift = 32 - bits;
  577. /* default FIFO watermarks for PIO */
  578. sh_msiof_write(p, FCTR, 0);
  579. /* setup msiof transfer mode registers */
  580. sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
  581. sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
  582. /* write tx fifo */
  583. if (tx_buf)
  584. tx_fifo(p, tx_buf, words, fifo_shift);
  585. reinit_completion(&p->done);
  586. p->slave_aborted = false;
  587. ret = sh_msiof_spi_start(p, rx_buf);
  588. if (ret) {
  589. dev_err(&p->pdev->dev, "failed to start hardware\n");
  590. goto stop_ier;
  591. }
  592. /* wait for tx fifo to be emptied / rx fifo to be filled */
  593. ret = sh_msiof_wait_for_completion(p);
  594. if (ret)
  595. goto stop_reset;
  596. /* read rx fifo */
  597. if (rx_buf)
  598. rx_fifo(p, rx_buf, words, fifo_shift);
  599. /* clear status bits */
  600. sh_msiof_reset_str(p);
  601. ret = sh_msiof_spi_stop(p, rx_buf);
  602. if (ret) {
  603. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  604. return ret;
  605. }
  606. return words;
  607. stop_reset:
  608. sh_msiof_reset_str(p);
  609. sh_msiof_spi_stop(p, rx_buf);
  610. stop_ier:
  611. sh_msiof_write(p, IER, 0);
  612. return ret;
  613. }
  614. static void sh_msiof_dma_complete(void *arg)
  615. {
  616. struct sh_msiof_spi_priv *p = arg;
  617. sh_msiof_write(p, IER, 0);
  618. complete(&p->done);
  619. }
  620. static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
  621. void *rx, unsigned int len)
  622. {
  623. u32 ier_bits = 0;
  624. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  625. dma_cookie_t cookie;
  626. int ret;
  627. /* First prepare and submit the DMA request(s), as this may fail */
  628. if (rx) {
  629. ier_bits |= IER_RDREQE | IER_RDMAE;
  630. desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
  631. p->rx_dma_addr, len, DMA_FROM_DEVICE,
  632. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  633. if (!desc_rx)
  634. return -EAGAIN;
  635. desc_rx->callback = sh_msiof_dma_complete;
  636. desc_rx->callback_param = p;
  637. cookie = dmaengine_submit(desc_rx);
  638. if (dma_submit_error(cookie))
  639. return cookie;
  640. }
  641. if (tx) {
  642. ier_bits |= IER_TDREQE | IER_TDMAE;
  643. dma_sync_single_for_device(p->master->dma_tx->device->dev,
  644. p->tx_dma_addr, len, DMA_TO_DEVICE);
  645. desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
  646. p->tx_dma_addr, len, DMA_TO_DEVICE,
  647. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  648. if (!desc_tx) {
  649. ret = -EAGAIN;
  650. goto no_dma_tx;
  651. }
  652. if (rx) {
  653. /* No callback */
  654. desc_tx->callback = NULL;
  655. } else {
  656. desc_tx->callback = sh_msiof_dma_complete;
  657. desc_tx->callback_param = p;
  658. }
  659. cookie = dmaengine_submit(desc_tx);
  660. if (dma_submit_error(cookie)) {
  661. ret = cookie;
  662. goto no_dma_tx;
  663. }
  664. }
  665. /* 1 stage FIFO watermarks for DMA */
  666. sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
  667. /* setup msiof transfer mode registers (32-bit words) */
  668. sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
  669. sh_msiof_write(p, IER, ier_bits);
  670. reinit_completion(&p->done);
  671. p->slave_aborted = false;
  672. /* Now start DMA */
  673. if (rx)
  674. dma_async_issue_pending(p->master->dma_rx);
  675. if (tx)
  676. dma_async_issue_pending(p->master->dma_tx);
  677. ret = sh_msiof_spi_start(p, rx);
  678. if (ret) {
  679. dev_err(&p->pdev->dev, "failed to start hardware\n");
  680. goto stop_dma;
  681. }
  682. /* wait for tx/rx DMA completion */
  683. ret = sh_msiof_wait_for_completion(p);
  684. if (ret)
  685. goto stop_reset;
  686. if (!rx) {
  687. reinit_completion(&p->done);
  688. sh_msiof_write(p, IER, IER_TEOFE);
  689. /* wait for tx fifo to be emptied */
  690. ret = sh_msiof_wait_for_completion(p);
  691. if (ret)
  692. goto stop_reset;
  693. }
  694. /* clear status bits */
  695. sh_msiof_reset_str(p);
  696. ret = sh_msiof_spi_stop(p, rx);
  697. if (ret) {
  698. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  699. return ret;
  700. }
  701. if (rx)
  702. dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
  703. p->rx_dma_addr, len,
  704. DMA_FROM_DEVICE);
  705. return 0;
  706. stop_reset:
  707. sh_msiof_reset_str(p);
  708. sh_msiof_spi_stop(p, rx);
  709. stop_dma:
  710. if (tx)
  711. dmaengine_terminate_all(p->master->dma_tx);
  712. no_dma_tx:
  713. if (rx)
  714. dmaengine_terminate_all(p->master->dma_rx);
  715. sh_msiof_write(p, IER, 0);
  716. return ret;
  717. }
  718. static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
  719. {
  720. /* src or dst can be unaligned, but not both */
  721. if ((unsigned long)src & 3) {
  722. while (words--) {
  723. *dst++ = swab32(get_unaligned(src));
  724. src++;
  725. }
  726. } else if ((unsigned long)dst & 3) {
  727. while (words--) {
  728. put_unaligned(swab32(*src++), dst);
  729. dst++;
  730. }
  731. } else {
  732. while (words--)
  733. *dst++ = swab32(*src++);
  734. }
  735. }
  736. static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
  737. {
  738. /* src or dst can be unaligned, but not both */
  739. if ((unsigned long)src & 3) {
  740. while (words--) {
  741. *dst++ = swahw32(get_unaligned(src));
  742. src++;
  743. }
  744. } else if ((unsigned long)dst & 3) {
  745. while (words--) {
  746. put_unaligned(swahw32(*src++), dst);
  747. dst++;
  748. }
  749. } else {
  750. while (words--)
  751. *dst++ = swahw32(*src++);
  752. }
  753. }
  754. static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
  755. {
  756. memcpy(dst, src, words * 4);
  757. }
  758. static int sh_msiof_transfer_one(struct spi_master *master,
  759. struct spi_device *spi,
  760. struct spi_transfer *t)
  761. {
  762. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  763. void (*copy32)(u32 *, const u32 *, unsigned int);
  764. void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
  765. void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
  766. const void *tx_buf = t->tx_buf;
  767. void *rx_buf = t->rx_buf;
  768. unsigned int len = t->len;
  769. unsigned int bits = t->bits_per_word;
  770. unsigned int bytes_per_word;
  771. unsigned int words;
  772. int n;
  773. bool swab;
  774. int ret;
  775. /* setup clocks (clock already enabled in chipselect()) */
  776. if (!spi_controller_is_slave(p->master))
  777. sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
  778. while (master->dma_tx && len > 15) {
  779. /*
  780. * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
  781. * words, with byte resp. word swapping.
  782. */
  783. unsigned int l = 0;
  784. if (tx_buf)
  785. l = min(len, p->tx_fifo_size * 4);
  786. if (rx_buf)
  787. l = min(len, p->rx_fifo_size * 4);
  788. if (bits <= 8) {
  789. if (l & 3)
  790. break;
  791. copy32 = copy_bswap32;
  792. } else if (bits <= 16) {
  793. if (l & 3)
  794. break;
  795. copy32 = copy_wswap32;
  796. } else {
  797. copy32 = copy_plain32;
  798. }
  799. if (tx_buf)
  800. copy32(p->tx_dma_page, tx_buf, l / 4);
  801. ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
  802. if (ret == -EAGAIN) {
  803. pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
  804. dev_driver_string(&p->pdev->dev),
  805. dev_name(&p->pdev->dev));
  806. break;
  807. }
  808. if (ret)
  809. return ret;
  810. if (rx_buf) {
  811. copy32(rx_buf, p->rx_dma_page, l / 4);
  812. rx_buf += l;
  813. }
  814. if (tx_buf)
  815. tx_buf += l;
  816. len -= l;
  817. if (!len)
  818. return 0;
  819. }
  820. if (bits <= 8 && len > 15 && !(len & 3)) {
  821. bits = 32;
  822. swab = true;
  823. } else {
  824. swab = false;
  825. }
  826. /* setup bytes per word and fifo read/write functions */
  827. if (bits <= 8) {
  828. bytes_per_word = 1;
  829. tx_fifo = sh_msiof_spi_write_fifo_8;
  830. rx_fifo = sh_msiof_spi_read_fifo_8;
  831. } else if (bits <= 16) {
  832. bytes_per_word = 2;
  833. if ((unsigned long)tx_buf & 0x01)
  834. tx_fifo = sh_msiof_spi_write_fifo_16u;
  835. else
  836. tx_fifo = sh_msiof_spi_write_fifo_16;
  837. if ((unsigned long)rx_buf & 0x01)
  838. rx_fifo = sh_msiof_spi_read_fifo_16u;
  839. else
  840. rx_fifo = sh_msiof_spi_read_fifo_16;
  841. } else if (swab) {
  842. bytes_per_word = 4;
  843. if ((unsigned long)tx_buf & 0x03)
  844. tx_fifo = sh_msiof_spi_write_fifo_s32u;
  845. else
  846. tx_fifo = sh_msiof_spi_write_fifo_s32;
  847. if ((unsigned long)rx_buf & 0x03)
  848. rx_fifo = sh_msiof_spi_read_fifo_s32u;
  849. else
  850. rx_fifo = sh_msiof_spi_read_fifo_s32;
  851. } else {
  852. bytes_per_word = 4;
  853. if ((unsigned long)tx_buf & 0x03)
  854. tx_fifo = sh_msiof_spi_write_fifo_32u;
  855. else
  856. tx_fifo = sh_msiof_spi_write_fifo_32;
  857. if ((unsigned long)rx_buf & 0x03)
  858. rx_fifo = sh_msiof_spi_read_fifo_32u;
  859. else
  860. rx_fifo = sh_msiof_spi_read_fifo_32;
  861. }
  862. /* transfer in fifo sized chunks */
  863. words = len / bytes_per_word;
  864. while (words > 0) {
  865. n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
  866. words, bits);
  867. if (n < 0)
  868. return n;
  869. if (tx_buf)
  870. tx_buf += n * bytes_per_word;
  871. if (rx_buf)
  872. rx_buf += n * bytes_per_word;
  873. words -= n;
  874. }
  875. return 0;
  876. }
  877. static const struct sh_msiof_chipdata sh_data = {
  878. .tx_fifo_size = 64,
  879. .rx_fifo_size = 64,
  880. .master_flags = 0,
  881. .min_div = 1,
  882. };
  883. static const struct sh_msiof_chipdata rcar_gen2_data = {
  884. .tx_fifo_size = 64,
  885. .rx_fifo_size = 64,
  886. .master_flags = SPI_MASTER_MUST_TX,
  887. .min_div = 1,
  888. };
  889. static const struct sh_msiof_chipdata rcar_gen3_data = {
  890. .tx_fifo_size = 64,
  891. .rx_fifo_size = 64,
  892. .master_flags = SPI_MASTER_MUST_TX,
  893. .min_div = 2,
  894. };
  895. static const struct of_device_id sh_msiof_match[] = {
  896. { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
  897. { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
  898. { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
  899. { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
  900. { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
  901. { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
  902. { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
  903. { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
  904. { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
  905. { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
  906. {},
  907. };
  908. MODULE_DEVICE_TABLE(of, sh_msiof_match);
  909. #ifdef CONFIG_OF
  910. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  911. {
  912. struct sh_msiof_spi_info *info;
  913. struct device_node *np = dev->of_node;
  914. u32 num_cs = 1;
  915. info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
  916. if (!info)
  917. return NULL;
  918. info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
  919. : MSIOF_SPI_MASTER;
  920. /* Parse the MSIOF properties */
  921. if (info->mode == MSIOF_SPI_MASTER)
  922. of_property_read_u32(np, "num-cs", &num_cs);
  923. of_property_read_u32(np, "renesas,tx-fifo-size",
  924. &info->tx_fifo_override);
  925. of_property_read_u32(np, "renesas,rx-fifo-size",
  926. &info->rx_fifo_override);
  927. of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
  928. of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
  929. info->num_chipselect = num_cs;
  930. return info;
  931. }
  932. #else
  933. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  934. {
  935. return NULL;
  936. }
  937. #endif
  938. static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
  939. enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
  940. {
  941. dma_cap_mask_t mask;
  942. struct dma_chan *chan;
  943. struct dma_slave_config cfg;
  944. int ret;
  945. dma_cap_zero(mask);
  946. dma_cap_set(DMA_SLAVE, mask);
  947. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  948. (void *)(unsigned long)id, dev,
  949. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  950. if (!chan) {
  951. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  952. return NULL;
  953. }
  954. memset(&cfg, 0, sizeof(cfg));
  955. cfg.direction = dir;
  956. if (dir == DMA_MEM_TO_DEV) {
  957. cfg.dst_addr = port_addr;
  958. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  959. } else {
  960. cfg.src_addr = port_addr;
  961. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  962. }
  963. ret = dmaengine_slave_config(chan, &cfg);
  964. if (ret) {
  965. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  966. dma_release_channel(chan);
  967. return NULL;
  968. }
  969. return chan;
  970. }
  971. static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
  972. {
  973. struct platform_device *pdev = p->pdev;
  974. struct device *dev = &pdev->dev;
  975. const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
  976. unsigned int dma_tx_id, dma_rx_id;
  977. const struct resource *res;
  978. struct spi_master *master;
  979. struct device *tx_dev, *rx_dev;
  980. if (dev->of_node) {
  981. /* In the OF case we will get the slave IDs from the DT */
  982. dma_tx_id = 0;
  983. dma_rx_id = 0;
  984. } else if (info && info->dma_tx_id && info->dma_rx_id) {
  985. dma_tx_id = info->dma_tx_id;
  986. dma_rx_id = info->dma_rx_id;
  987. } else {
  988. /* The driver assumes no error */
  989. return 0;
  990. }
  991. /* The DMA engine uses the second register set, if present */
  992. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  993. if (!res)
  994. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  995. master = p->master;
  996. master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
  997. dma_tx_id,
  998. res->start + TFDR);
  999. if (!master->dma_tx)
  1000. return -ENODEV;
  1001. master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
  1002. dma_rx_id,
  1003. res->start + RFDR);
  1004. if (!master->dma_rx)
  1005. goto free_tx_chan;
  1006. p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  1007. if (!p->tx_dma_page)
  1008. goto free_rx_chan;
  1009. p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  1010. if (!p->rx_dma_page)
  1011. goto free_tx_page;
  1012. tx_dev = master->dma_tx->device->dev;
  1013. p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
  1014. DMA_TO_DEVICE);
  1015. if (dma_mapping_error(tx_dev, p->tx_dma_addr))
  1016. goto free_rx_page;
  1017. rx_dev = master->dma_rx->device->dev;
  1018. p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
  1019. DMA_FROM_DEVICE);
  1020. if (dma_mapping_error(rx_dev, p->rx_dma_addr))
  1021. goto unmap_tx_page;
  1022. dev_info(dev, "DMA available");
  1023. return 0;
  1024. unmap_tx_page:
  1025. dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
  1026. free_rx_page:
  1027. free_page((unsigned long)p->rx_dma_page);
  1028. free_tx_page:
  1029. free_page((unsigned long)p->tx_dma_page);
  1030. free_rx_chan:
  1031. dma_release_channel(master->dma_rx);
  1032. free_tx_chan:
  1033. dma_release_channel(master->dma_tx);
  1034. master->dma_tx = NULL;
  1035. return -ENODEV;
  1036. }
  1037. static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
  1038. {
  1039. struct spi_master *master = p->master;
  1040. struct device *dev;
  1041. if (!master->dma_tx)
  1042. return;
  1043. dev = &p->pdev->dev;
  1044. dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
  1045. PAGE_SIZE, DMA_FROM_DEVICE);
  1046. dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
  1047. PAGE_SIZE, DMA_TO_DEVICE);
  1048. free_page((unsigned long)p->rx_dma_page);
  1049. free_page((unsigned long)p->tx_dma_page);
  1050. dma_release_channel(master->dma_rx);
  1051. dma_release_channel(master->dma_tx);
  1052. }
  1053. static int sh_msiof_spi_probe(struct platform_device *pdev)
  1054. {
  1055. struct resource *r;
  1056. struct spi_master *master;
  1057. const struct sh_msiof_chipdata *chipdata;
  1058. const struct of_device_id *of_id;
  1059. struct sh_msiof_spi_info *info;
  1060. struct sh_msiof_spi_priv *p;
  1061. int i;
  1062. int ret;
  1063. of_id = of_match_device(sh_msiof_match, &pdev->dev);
  1064. if (of_id) {
  1065. chipdata = of_id->data;
  1066. info = sh_msiof_spi_parse_dt(&pdev->dev);
  1067. } else {
  1068. chipdata = (const void *)pdev->id_entry->driver_data;
  1069. info = dev_get_platdata(&pdev->dev);
  1070. }
  1071. if (!info) {
  1072. dev_err(&pdev->dev, "failed to obtain device info\n");
  1073. return -ENXIO;
  1074. }
  1075. if (info->mode == MSIOF_SPI_SLAVE)
  1076. master = spi_alloc_slave(&pdev->dev,
  1077. sizeof(struct sh_msiof_spi_priv));
  1078. else
  1079. master = spi_alloc_master(&pdev->dev,
  1080. sizeof(struct sh_msiof_spi_priv));
  1081. if (master == NULL)
  1082. return -ENOMEM;
  1083. p = spi_master_get_devdata(master);
  1084. platform_set_drvdata(pdev, p);
  1085. p->master = master;
  1086. p->info = info;
  1087. p->min_div = chipdata->min_div;
  1088. init_completion(&p->done);
  1089. p->clk = devm_clk_get(&pdev->dev, NULL);
  1090. if (IS_ERR(p->clk)) {
  1091. dev_err(&pdev->dev, "cannot get clock\n");
  1092. ret = PTR_ERR(p->clk);
  1093. goto err1;
  1094. }
  1095. i = platform_get_irq(pdev, 0);
  1096. if (i < 0) {
  1097. dev_err(&pdev->dev, "cannot get IRQ\n");
  1098. ret = i;
  1099. goto err1;
  1100. }
  1101. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1102. p->mapbase = devm_ioremap_resource(&pdev->dev, r);
  1103. if (IS_ERR(p->mapbase)) {
  1104. ret = PTR_ERR(p->mapbase);
  1105. goto err1;
  1106. }
  1107. ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
  1108. dev_name(&pdev->dev), p);
  1109. if (ret) {
  1110. dev_err(&pdev->dev, "unable to request irq\n");
  1111. goto err1;
  1112. }
  1113. p->pdev = pdev;
  1114. pm_runtime_enable(&pdev->dev);
  1115. /* Platform data may override FIFO sizes */
  1116. p->tx_fifo_size = chipdata->tx_fifo_size;
  1117. p->rx_fifo_size = chipdata->rx_fifo_size;
  1118. if (p->info->tx_fifo_override)
  1119. p->tx_fifo_size = p->info->tx_fifo_override;
  1120. if (p->info->rx_fifo_override)
  1121. p->rx_fifo_size = p->info->rx_fifo_override;
  1122. /* init master code */
  1123. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1124. master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
  1125. master->flags = chipdata->master_flags;
  1126. master->bus_num = pdev->id;
  1127. master->dev.of_node = pdev->dev.of_node;
  1128. master->num_chipselect = p->info->num_chipselect;
  1129. master->setup = sh_msiof_spi_setup;
  1130. master->prepare_message = sh_msiof_prepare_message;
  1131. master->slave_abort = sh_msiof_slave_abort;
  1132. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
  1133. master->auto_runtime_pm = true;
  1134. master->transfer_one = sh_msiof_transfer_one;
  1135. ret = sh_msiof_request_dma(p);
  1136. if (ret < 0)
  1137. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  1138. ret = devm_spi_register_master(&pdev->dev, master);
  1139. if (ret < 0) {
  1140. dev_err(&pdev->dev, "spi_register_master error.\n");
  1141. goto err2;
  1142. }
  1143. return 0;
  1144. err2:
  1145. sh_msiof_release_dma(p);
  1146. pm_runtime_disable(&pdev->dev);
  1147. err1:
  1148. spi_master_put(master);
  1149. return ret;
  1150. }
  1151. static int sh_msiof_spi_remove(struct platform_device *pdev)
  1152. {
  1153. struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
  1154. sh_msiof_release_dma(p);
  1155. pm_runtime_disable(&pdev->dev);
  1156. return 0;
  1157. }
  1158. static const struct platform_device_id spi_driver_ids[] = {
  1159. { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
  1160. {},
  1161. };
  1162. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1163. #ifdef CONFIG_PM_SLEEP
  1164. static int sh_msiof_spi_suspend(struct device *dev)
  1165. {
  1166. struct platform_device *pdev = to_platform_device(dev);
  1167. struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
  1168. return spi_master_suspend(p->master);
  1169. }
  1170. static int sh_msiof_spi_resume(struct device *dev)
  1171. {
  1172. struct platform_device *pdev = to_platform_device(dev);
  1173. struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
  1174. return spi_master_resume(p->master);
  1175. }
  1176. static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
  1177. sh_msiof_spi_resume);
  1178. #define DEV_PM_OPS &sh_msiof_spi_pm_ops
  1179. #else
  1180. #define DEV_PM_OPS NULL
  1181. #endif /* CONFIG_PM_SLEEP */
  1182. static struct platform_driver sh_msiof_spi_drv = {
  1183. .probe = sh_msiof_spi_probe,
  1184. .remove = sh_msiof_spi_remove,
  1185. .id_table = spi_driver_ids,
  1186. .driver = {
  1187. .name = "spi_sh_msiof",
  1188. .pm = DEV_PM_OPS,
  1189. .of_match_table = of_match_ptr(sh_msiof_match),
  1190. },
  1191. };
  1192. module_platform_driver(sh_msiof_spi_drv);
  1193. MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
  1194. MODULE_AUTHOR("Magnus Damm");
  1195. MODULE_LICENSE("GPL v2");
  1196. MODULE_ALIAS("platform:spi_sh_msiof");