spi-bcm-qspi.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436
  1. /*
  2. * Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers
  3. *
  4. * Copyright 2016 Broadcom
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation (the "GPL").
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License version 2 (GPLv2) for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * version 2 (GPLv2) along with this source code.
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/delay.h>
  20. #include <linux/device.h>
  21. #include <linux/init.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/io.h>
  24. #include <linux/ioport.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/of.h>
  28. #include <linux/of_irq.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/slab.h>
  31. #include <linux/spi/spi.h>
  32. #include <linux/sysfs.h>
  33. #include <linux/types.h>
  34. #include "spi-bcm-qspi.h"
  35. #define DRIVER_NAME "bcm_qspi"
  36. /* BSPI register offsets */
  37. #define BSPI_REVISION_ID 0x000
  38. #define BSPI_SCRATCH 0x004
  39. #define BSPI_MAST_N_BOOT_CTRL 0x008
  40. #define BSPI_BUSY_STATUS 0x00c
  41. #define BSPI_INTR_STATUS 0x010
  42. #define BSPI_B0_STATUS 0x014
  43. #define BSPI_B0_CTRL 0x018
  44. #define BSPI_B1_STATUS 0x01c
  45. #define BSPI_B1_CTRL 0x020
  46. #define BSPI_STRAP_OVERRIDE_CTRL 0x024
  47. #define BSPI_FLEX_MODE_ENABLE 0x028
  48. #define BSPI_BITS_PER_CYCLE 0x02c
  49. #define BSPI_BITS_PER_PHASE 0x030
  50. #define BSPI_CMD_AND_MODE_BYTE 0x034
  51. #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
  52. #define BSPI_BSPI_XOR_VALUE 0x03c
  53. #define BSPI_BSPI_XOR_ENABLE 0x040
  54. #define BSPI_BSPI_PIO_MODE_ENABLE 0x044
  55. #define BSPI_BSPI_PIO_IODIR 0x048
  56. #define BSPI_BSPI_PIO_DATA 0x04c
  57. /* RAF register offsets */
  58. #define BSPI_RAF_START_ADDR 0x100
  59. #define BSPI_RAF_NUM_WORDS 0x104
  60. #define BSPI_RAF_CTRL 0x108
  61. #define BSPI_RAF_FULLNESS 0x10c
  62. #define BSPI_RAF_WATERMARK 0x110
  63. #define BSPI_RAF_STATUS 0x114
  64. #define BSPI_RAF_READ_DATA 0x118
  65. #define BSPI_RAF_WORD_CNT 0x11c
  66. #define BSPI_RAF_CURR_ADDR 0x120
  67. /* Override mode masks */
  68. #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0)
  69. #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1)
  70. #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2)
  71. #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3)
  72. #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4)
  73. #define BSPI_ADDRLEN_3BYTES 3
  74. #define BSPI_ADDRLEN_4BYTES 4
  75. #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
  76. #define BSPI_RAF_CTRL_START_MASK BIT(0)
  77. #define BSPI_RAF_CTRL_CLEAR_MASK BIT(1)
  78. #define BSPI_BPP_MODE_SELECT_MASK BIT(8)
  79. #define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
  80. #define BSPI_READ_LENGTH 256
  81. /* MSPI register offsets */
  82. #define MSPI_SPCR0_LSB 0x000
  83. #define MSPI_SPCR0_MSB 0x004
  84. #define MSPI_SPCR1_LSB 0x008
  85. #define MSPI_SPCR1_MSB 0x00c
  86. #define MSPI_NEWQP 0x010
  87. #define MSPI_ENDQP 0x014
  88. #define MSPI_SPCR2 0x018
  89. #define MSPI_MSPI_STATUS 0x020
  90. #define MSPI_CPTQP 0x024
  91. #define MSPI_SPCR3 0x028
  92. #define MSPI_TXRAM 0x040
  93. #define MSPI_RXRAM 0x0c0
  94. #define MSPI_CDRAM 0x140
  95. #define MSPI_WRITE_LOCK 0x180
  96. #define MSPI_MASTER_BIT BIT(7)
  97. #define MSPI_NUM_CDRAM 16
  98. #define MSPI_CDRAM_CONT_BIT BIT(7)
  99. #define MSPI_CDRAM_BITSE_BIT BIT(6)
  100. #define MSPI_CDRAM_PCS 0xf
  101. #define MSPI_SPCR2_SPE BIT(6)
  102. #define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
  103. #define MSPI_MSPI_STATUS_SPIF BIT(0)
  104. #define INTR_BASE_BIT_SHIFT 0x02
  105. #define INTR_COUNT 0x07
  106. #define NUM_CHIPSELECT 4
  107. #define QSPI_SPBR_MIN 8U
  108. #define QSPI_SPBR_MAX 255U
  109. #define OPCODE_DIOR 0xBB
  110. #define OPCODE_QIOR 0xEB
  111. #define OPCODE_DIOR_4B 0xBC
  112. #define OPCODE_QIOR_4B 0xEC
  113. #define MAX_CMD_SIZE 6
  114. #define ADDR_4MB_MASK GENMASK(22, 0)
  115. /* stop at end of transfer, no other reason */
  116. #define TRANS_STATUS_BREAK_NONE 0
  117. /* stop at end of spi_message */
  118. #define TRANS_STATUS_BREAK_EOM 1
  119. /* stop at end of spi_transfer if delay */
  120. #define TRANS_STATUS_BREAK_DELAY 2
  121. /* stop at end of spi_transfer if cs_change */
  122. #define TRANS_STATUS_BREAK_CS_CHANGE 4
  123. /* stop if we run out of bytes */
  124. #define TRANS_STATUS_BREAK_NO_BYTES 8
  125. /* events that make us stop filling TX slots */
  126. #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \
  127. TRANS_STATUS_BREAK_DELAY | \
  128. TRANS_STATUS_BREAK_CS_CHANGE)
  129. /* events that make us deassert CS */
  130. #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \
  131. TRANS_STATUS_BREAK_CS_CHANGE)
  132. struct bcm_qspi_parms {
  133. u32 speed_hz;
  134. u8 mode;
  135. u8 bits_per_word;
  136. };
  137. struct bcm_xfer_mode {
  138. bool flex_mode;
  139. unsigned int width;
  140. unsigned int addrlen;
  141. unsigned int hp;
  142. };
  143. enum base_type {
  144. MSPI,
  145. BSPI,
  146. CHIP_SELECT,
  147. BASEMAX,
  148. };
  149. enum irq_source {
  150. SINGLE_L2,
  151. MUXED_L1,
  152. };
  153. struct bcm_qspi_irq {
  154. const char *irq_name;
  155. const irq_handler_t irq_handler;
  156. int irq_source;
  157. u32 mask;
  158. };
  159. struct bcm_qspi_dev_id {
  160. const struct bcm_qspi_irq *irqp;
  161. void *dev;
  162. };
  163. struct qspi_trans {
  164. struct spi_transfer *trans;
  165. int byte;
  166. bool mspi_last_trans;
  167. };
  168. struct bcm_qspi {
  169. struct platform_device *pdev;
  170. struct spi_master *master;
  171. struct clk *clk;
  172. u32 base_clk;
  173. u32 max_speed_hz;
  174. void __iomem *base[BASEMAX];
  175. /* Some SoCs provide custom interrupt status register(s) */
  176. struct bcm_qspi_soc_intc *soc_intc;
  177. struct bcm_qspi_parms last_parms;
  178. struct qspi_trans trans_pos;
  179. int curr_cs;
  180. int bspi_maj_rev;
  181. int bspi_min_rev;
  182. int bspi_enabled;
  183. struct spi_flash_read_message *bspi_rf_msg;
  184. u32 bspi_rf_msg_idx;
  185. u32 bspi_rf_msg_len;
  186. u32 bspi_rf_msg_status;
  187. struct bcm_xfer_mode xfer_mode;
  188. u32 s3_strap_override_ctrl;
  189. bool bspi_mode;
  190. bool big_endian;
  191. int num_irqs;
  192. struct bcm_qspi_dev_id *dev_ids;
  193. struct completion mspi_done;
  194. struct completion bspi_done;
  195. };
  196. static inline bool has_bspi(struct bcm_qspi *qspi)
  197. {
  198. return qspi->bspi_mode;
  199. }
  200. /* Read qspi controller register*/
  201. static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
  202. unsigned int offset)
  203. {
  204. return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
  205. }
  206. /* Write qspi controller register*/
  207. static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
  208. unsigned int offset, unsigned int data)
  209. {
  210. bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
  211. }
  212. /* BSPI helpers */
  213. static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
  214. {
  215. int i;
  216. /* this should normally finish within 10us */
  217. for (i = 0; i < 1000; i++) {
  218. if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
  219. return 0;
  220. udelay(1);
  221. }
  222. dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
  223. return -EIO;
  224. }
  225. static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
  226. {
  227. if (qspi->bspi_maj_rev < 4)
  228. return true;
  229. return false;
  230. }
  231. static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
  232. {
  233. bcm_qspi_bspi_busy_poll(qspi);
  234. /* Force rising edge for the b0/b1 'flush' field */
  235. bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
  236. bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
  237. bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
  238. bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
  239. }
  240. static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
  241. {
  242. return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
  243. BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
  244. }
  245. static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
  246. {
  247. u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
  248. /* BSPI v3 LR is LE only, convert data to host endianness */
  249. if (bcm_qspi_bspi_ver_three(qspi))
  250. data = le32_to_cpu(data);
  251. return data;
  252. }
  253. static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
  254. {
  255. bcm_qspi_bspi_busy_poll(qspi);
  256. bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
  257. BSPI_RAF_CTRL_START_MASK);
  258. }
  259. static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
  260. {
  261. bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
  262. BSPI_RAF_CTRL_CLEAR_MASK);
  263. bcm_qspi_bspi_flush_prefetch_buffers(qspi);
  264. }
  265. static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
  266. {
  267. u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
  268. u32 data = 0;
  269. dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_msg,
  270. qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
  271. while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
  272. data = bcm_qspi_bspi_lr_read_fifo(qspi);
  273. if (likely(qspi->bspi_rf_msg_len >= 4) &&
  274. IS_ALIGNED((uintptr_t)buf, 4)) {
  275. buf[qspi->bspi_rf_msg_idx++] = data;
  276. qspi->bspi_rf_msg_len -= 4;
  277. } else {
  278. /* Read out remaining bytes, make sure*/
  279. u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
  280. data = cpu_to_le32(data);
  281. while (qspi->bspi_rf_msg_len) {
  282. *cbuf++ = (u8)data;
  283. data >>= 8;
  284. qspi->bspi_rf_msg_len--;
  285. }
  286. }
  287. }
  288. }
  289. static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
  290. int bpp, int bpc, int flex_mode)
  291. {
  292. bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
  293. bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
  294. bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
  295. bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
  296. bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
  297. }
  298. static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
  299. struct spi_flash_read_message *msg,
  300. int hp)
  301. {
  302. int bpc = 0, bpp = 0;
  303. u8 command = msg->read_opcode;
  304. int width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
  305. int addrlen = msg->addr_width;
  306. int addr_nbits = msg->addr_nbits ? msg->addr_nbits : SPI_NBITS_SINGLE;
  307. int flex_mode = 1;
  308. dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
  309. width, addrlen, hp);
  310. if (addrlen == BSPI_ADDRLEN_4BYTES)
  311. bpp = BSPI_BPP_ADDR_SELECT_MASK;
  312. bpp |= msg->dummy_bytes * (8/addr_nbits);
  313. switch (width) {
  314. case SPI_NBITS_SINGLE:
  315. if (addrlen == BSPI_ADDRLEN_3BYTES)
  316. /* default mode, does not need flex_cmd */
  317. flex_mode = 0;
  318. break;
  319. case SPI_NBITS_DUAL:
  320. bpc = 0x00000001;
  321. if (hp) {
  322. bpc |= 0x00010100; /* address and mode are 2-bit */
  323. bpp = BSPI_BPP_MODE_SELECT_MASK;
  324. }
  325. break;
  326. case SPI_NBITS_QUAD:
  327. bpc = 0x00000002;
  328. if (hp) {
  329. bpc |= 0x00020200; /* address and mode are 4-bit */
  330. bpp |= BSPI_BPP_MODE_SELECT_MASK;
  331. }
  332. break;
  333. default:
  334. return -EINVAL;
  335. }
  336. bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
  337. return 0;
  338. }
  339. static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
  340. struct spi_flash_read_message *msg,
  341. int hp)
  342. {
  343. int width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
  344. int addrlen = msg->addr_width;
  345. u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
  346. dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
  347. width, addrlen, hp);
  348. switch (width) {
  349. case SPI_NBITS_SINGLE:
  350. /* clear quad/dual mode */
  351. data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
  352. BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
  353. break;
  354. case SPI_NBITS_QUAD:
  355. /* clear dual mode and set quad mode */
  356. data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
  357. data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
  358. break;
  359. case SPI_NBITS_DUAL:
  360. /* clear quad mode set dual mode */
  361. data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
  362. data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
  363. break;
  364. default:
  365. return -EINVAL;
  366. }
  367. if (addrlen == BSPI_ADDRLEN_4BYTES)
  368. /* set 4byte mode*/
  369. data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
  370. else
  371. /* clear 4 byte mode */
  372. data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
  373. /* set the override mode */
  374. data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
  375. bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
  376. bcm_qspi_bspi_set_xfer_params(qspi, msg->read_opcode, 0, 0, 0);
  377. return 0;
  378. }
  379. static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
  380. struct spi_flash_read_message *msg, int hp)
  381. {
  382. int error = 0;
  383. int width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
  384. int addrlen = msg->addr_width;
  385. /* default mode */
  386. qspi->xfer_mode.flex_mode = true;
  387. if (!bcm_qspi_bspi_ver_three(qspi)) {
  388. u32 val, mask;
  389. val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
  390. mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
  391. if (val & mask || qspi->s3_strap_override_ctrl & mask) {
  392. qspi->xfer_mode.flex_mode = false;
  393. bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
  394. error = bcm_qspi_bspi_set_override(qspi, msg, hp);
  395. }
  396. }
  397. if (qspi->xfer_mode.flex_mode)
  398. error = bcm_qspi_bspi_set_flex_mode(qspi, msg, hp);
  399. if (error) {
  400. dev_warn(&qspi->pdev->dev,
  401. "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
  402. width, addrlen, hp);
  403. } else if (qspi->xfer_mode.width != width ||
  404. qspi->xfer_mode.addrlen != addrlen ||
  405. qspi->xfer_mode.hp != hp) {
  406. qspi->xfer_mode.width = width;
  407. qspi->xfer_mode.addrlen = addrlen;
  408. qspi->xfer_mode.hp = hp;
  409. dev_dbg(&qspi->pdev->dev,
  410. "cs:%d %d-lane output, %d-byte address%s\n",
  411. qspi->curr_cs,
  412. qspi->xfer_mode.width,
  413. qspi->xfer_mode.addrlen,
  414. qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
  415. }
  416. return error;
  417. }
  418. static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
  419. {
  420. if (!has_bspi(qspi))
  421. return;
  422. qspi->bspi_enabled = 1;
  423. if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
  424. return;
  425. bcm_qspi_bspi_flush_prefetch_buffers(qspi);
  426. udelay(1);
  427. bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
  428. udelay(1);
  429. }
  430. static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
  431. {
  432. if (!has_bspi(qspi))
  433. return;
  434. qspi->bspi_enabled = 0;
  435. if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
  436. return;
  437. bcm_qspi_bspi_busy_poll(qspi);
  438. bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
  439. udelay(1);
  440. }
  441. static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
  442. {
  443. u32 rd = 0;
  444. u32 wr = 0;
  445. if (qspi->base[CHIP_SELECT]) {
  446. rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
  447. wr = (rd & ~0xff) | (1 << cs);
  448. if (rd == wr)
  449. return;
  450. bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
  451. usleep_range(10, 20);
  452. }
  453. dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
  454. qspi->curr_cs = cs;
  455. }
  456. /* MSPI helpers */
  457. static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
  458. const struct bcm_qspi_parms *xp)
  459. {
  460. u32 spcr, spbr = 0;
  461. if (xp->speed_hz)
  462. spbr = qspi->base_clk / (2 * xp->speed_hz);
  463. spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
  464. bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
  465. spcr = MSPI_MASTER_BIT;
  466. /* for 16 bit the data should be zero */
  467. if (xp->bits_per_word != 16)
  468. spcr |= xp->bits_per_word << 2;
  469. spcr |= xp->mode & 3;
  470. bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
  471. qspi->last_parms = *xp;
  472. }
  473. static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
  474. struct spi_device *spi,
  475. struct spi_transfer *trans)
  476. {
  477. struct bcm_qspi_parms xp;
  478. xp.speed_hz = trans->speed_hz;
  479. xp.bits_per_word = trans->bits_per_word;
  480. xp.mode = spi->mode;
  481. bcm_qspi_hw_set_parms(qspi, &xp);
  482. }
  483. static int bcm_qspi_setup(struct spi_device *spi)
  484. {
  485. struct bcm_qspi_parms *xp;
  486. if (spi->bits_per_word > 16)
  487. return -EINVAL;
  488. xp = spi_get_ctldata(spi);
  489. if (!xp) {
  490. xp = kzalloc(sizeof(*xp), GFP_KERNEL);
  491. if (!xp)
  492. return -ENOMEM;
  493. spi_set_ctldata(spi, xp);
  494. }
  495. xp->speed_hz = spi->max_speed_hz;
  496. xp->mode = spi->mode;
  497. if (spi->bits_per_word)
  498. xp->bits_per_word = spi->bits_per_word;
  499. else
  500. xp->bits_per_word = 8;
  501. return 0;
  502. }
  503. static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
  504. struct qspi_trans *qt)
  505. {
  506. if (qt->mspi_last_trans &&
  507. spi_transfer_is_last(qspi->master, qt->trans))
  508. return true;
  509. else
  510. return false;
  511. }
  512. static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
  513. struct qspi_trans *qt, int flags)
  514. {
  515. int ret = TRANS_STATUS_BREAK_NONE;
  516. /* count the last transferred bytes */
  517. if (qt->trans->bits_per_word <= 8)
  518. qt->byte++;
  519. else
  520. qt->byte += 2;
  521. if (qt->byte >= qt->trans->len) {
  522. /* we're at the end of the spi_transfer */
  523. /* in TX mode, need to pause for a delay or CS change */
  524. if (qt->trans->delay_usecs &&
  525. (flags & TRANS_STATUS_BREAK_DELAY))
  526. ret |= TRANS_STATUS_BREAK_DELAY;
  527. if (qt->trans->cs_change &&
  528. (flags & TRANS_STATUS_BREAK_CS_CHANGE))
  529. ret |= TRANS_STATUS_BREAK_CS_CHANGE;
  530. if (ret)
  531. goto done;
  532. dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
  533. if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
  534. ret = TRANS_STATUS_BREAK_EOM;
  535. else
  536. ret = TRANS_STATUS_BREAK_NO_BYTES;
  537. qt->trans = NULL;
  538. }
  539. done:
  540. dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
  541. qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
  542. return ret;
  543. }
  544. static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
  545. {
  546. u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
  547. /* mask out reserved bits */
  548. return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
  549. }
  550. static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
  551. {
  552. u32 reg_offset = MSPI_RXRAM;
  553. u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
  554. u32 msb_offset = reg_offset + (slot << 3);
  555. return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
  556. ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
  557. }
  558. static void read_from_hw(struct bcm_qspi *qspi, int slots)
  559. {
  560. struct qspi_trans tp;
  561. int slot;
  562. bcm_qspi_disable_bspi(qspi);
  563. if (slots > MSPI_NUM_CDRAM) {
  564. /* should never happen */
  565. dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
  566. return;
  567. }
  568. tp = qspi->trans_pos;
  569. for (slot = 0; slot < slots; slot++) {
  570. if (tp.trans->bits_per_word <= 8) {
  571. u8 *buf = tp.trans->rx_buf;
  572. if (buf)
  573. buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
  574. dev_dbg(&qspi->pdev->dev, "RD %02x\n",
  575. buf ? buf[tp.byte] : 0x0);
  576. } else {
  577. u16 *buf = tp.trans->rx_buf;
  578. if (buf)
  579. buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
  580. slot);
  581. dev_dbg(&qspi->pdev->dev, "RD %04x\n",
  582. buf ? buf[tp.byte / 2] : 0x0);
  583. }
  584. update_qspi_trans_byte_count(qspi, &tp,
  585. TRANS_STATUS_BREAK_NONE);
  586. }
  587. qspi->trans_pos = tp;
  588. }
  589. static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
  590. u8 val)
  591. {
  592. u32 reg_offset = MSPI_TXRAM + (slot << 3);
  593. /* mask out reserved bits */
  594. bcm_qspi_write(qspi, MSPI, reg_offset, val);
  595. }
  596. static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
  597. u16 val)
  598. {
  599. u32 reg_offset = MSPI_TXRAM;
  600. u32 msb_offset = reg_offset + (slot << 3);
  601. u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
  602. bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
  603. bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
  604. }
  605. static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
  606. {
  607. return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
  608. }
  609. static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
  610. {
  611. bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
  612. }
  613. /* Return number of slots written */
  614. static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
  615. {
  616. struct qspi_trans tp;
  617. int slot = 0, tstatus = 0;
  618. u32 mspi_cdram = 0;
  619. bcm_qspi_disable_bspi(qspi);
  620. tp = qspi->trans_pos;
  621. bcm_qspi_update_parms(qspi, spi, tp.trans);
  622. /* Run until end of transfer or reached the max data */
  623. while (!tstatus && slot < MSPI_NUM_CDRAM) {
  624. if (tp.trans->bits_per_word <= 8) {
  625. const u8 *buf = tp.trans->tx_buf;
  626. u8 val = buf ? buf[tp.byte] : 0x00;
  627. write_txram_slot_u8(qspi, slot, val);
  628. dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
  629. } else {
  630. const u16 *buf = tp.trans->tx_buf;
  631. u16 val = buf ? buf[tp.byte / 2] : 0x0000;
  632. write_txram_slot_u16(qspi, slot, val);
  633. dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
  634. }
  635. mspi_cdram = MSPI_CDRAM_CONT_BIT;
  636. if (has_bspi(qspi))
  637. mspi_cdram &= ~1;
  638. else
  639. mspi_cdram |= (~(1 << spi->chip_select) &
  640. MSPI_CDRAM_PCS);
  641. mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
  642. MSPI_CDRAM_BITSE_BIT);
  643. write_cdram_slot(qspi, slot, mspi_cdram);
  644. tstatus = update_qspi_trans_byte_count(qspi, &tp,
  645. TRANS_STATUS_BREAK_TX);
  646. slot++;
  647. }
  648. if (!slot) {
  649. dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
  650. goto done;
  651. }
  652. dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
  653. bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
  654. bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
  655. if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
  656. mspi_cdram = read_cdram_slot(qspi, slot - 1) &
  657. ~MSPI_CDRAM_CONT_BIT;
  658. write_cdram_slot(qspi, slot - 1, mspi_cdram);
  659. }
  660. if (has_bspi(qspi))
  661. bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
  662. /* Must flush previous writes before starting MSPI operation */
  663. mb();
  664. /* Set cont | spe | spifie */
  665. bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
  666. done:
  667. return slot;
  668. }
  669. static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
  670. struct spi_flash_read_message *msg)
  671. {
  672. struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
  673. u32 addr = 0, len, rdlen, len_words;
  674. int ret = 0;
  675. unsigned long timeo = msecs_to_jiffies(100);
  676. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  677. if (bcm_qspi_bspi_ver_three(qspi))
  678. if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
  679. return -EIO;
  680. bcm_qspi_chip_select(qspi, spi->chip_select);
  681. bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
  682. /*
  683. * when using flex mode we need to send
  684. * the upper address byte to bspi
  685. */
  686. if (bcm_qspi_bspi_ver_three(qspi) == false) {
  687. addr = msg->from & 0xff000000;
  688. bcm_qspi_write(qspi, BSPI,
  689. BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
  690. }
  691. if (!qspi->xfer_mode.flex_mode)
  692. addr = msg->from;
  693. else
  694. addr = msg->from & 0x00ffffff;
  695. if (bcm_qspi_bspi_ver_three(qspi) == true)
  696. addr = (addr + 0xc00000) & 0xffffff;
  697. /*
  698. * read into the entire buffer by breaking the reads
  699. * into RAF buffer read lengths
  700. */
  701. len = msg->len;
  702. qspi->bspi_rf_msg_idx = 0;
  703. do {
  704. if (len > BSPI_READ_LENGTH)
  705. rdlen = BSPI_READ_LENGTH;
  706. else
  707. rdlen = len;
  708. reinit_completion(&qspi->bspi_done);
  709. bcm_qspi_enable_bspi(qspi);
  710. len_words = (rdlen + 3) >> 2;
  711. qspi->bspi_rf_msg = msg;
  712. qspi->bspi_rf_msg_status = 0;
  713. qspi->bspi_rf_msg_len = rdlen;
  714. dev_dbg(&qspi->pdev->dev,
  715. "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
  716. bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
  717. bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
  718. bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
  719. if (qspi->soc_intc) {
  720. /*
  721. * clear soc MSPI and BSPI interrupts and enable
  722. * BSPI interrupts.
  723. */
  724. soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
  725. soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
  726. }
  727. /* Must flush previous writes before starting BSPI operation */
  728. mb();
  729. bcm_qspi_bspi_lr_start(qspi);
  730. if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
  731. dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
  732. ret = -ETIMEDOUT;
  733. break;
  734. }
  735. /* set msg return length */
  736. msg->retlen += rdlen;
  737. addr += rdlen;
  738. len -= rdlen;
  739. } while (len);
  740. return ret;
  741. }
  742. static int bcm_qspi_transfer_one(struct spi_master *master,
  743. struct spi_device *spi,
  744. struct spi_transfer *trans)
  745. {
  746. struct bcm_qspi *qspi = spi_master_get_devdata(master);
  747. int slots;
  748. unsigned long timeo = msecs_to_jiffies(100);
  749. bcm_qspi_chip_select(qspi, spi->chip_select);
  750. qspi->trans_pos.trans = trans;
  751. qspi->trans_pos.byte = 0;
  752. while (qspi->trans_pos.byte < trans->len) {
  753. reinit_completion(&qspi->mspi_done);
  754. slots = write_to_hw(qspi, spi);
  755. if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
  756. dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
  757. return -ETIMEDOUT;
  758. }
  759. read_from_hw(qspi, slots);
  760. }
  761. return 0;
  762. }
  763. static int bcm_qspi_mspi_flash_read(struct spi_device *spi,
  764. struct spi_flash_read_message *msg)
  765. {
  766. struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
  767. struct spi_transfer t[2];
  768. u8 cmd[6];
  769. int ret;
  770. memset(cmd, 0, sizeof(cmd));
  771. memset(t, 0, sizeof(t));
  772. /* tx */
  773. /* opcode is in cmd[0] */
  774. cmd[0] = msg->read_opcode;
  775. cmd[1] = msg->from >> (msg->addr_width * 8 - 8);
  776. cmd[2] = msg->from >> (msg->addr_width * 8 - 16);
  777. cmd[3] = msg->from >> (msg->addr_width * 8 - 24);
  778. cmd[4] = msg->from >> (msg->addr_width * 8 - 32);
  779. t[0].tx_buf = cmd;
  780. t[0].len = msg->addr_width + msg->dummy_bytes + 1;
  781. t[0].bits_per_word = spi->bits_per_word;
  782. t[0].tx_nbits = msg->opcode_nbits;
  783. /* lets mspi know that this is not last transfer */
  784. qspi->trans_pos.mspi_last_trans = false;
  785. ret = bcm_qspi_transfer_one(spi->master, spi, &t[0]);
  786. /* rx */
  787. qspi->trans_pos.mspi_last_trans = true;
  788. if (!ret) {
  789. /* rx */
  790. t[1].rx_buf = msg->buf;
  791. t[1].len = msg->len;
  792. t[1].rx_nbits = msg->data_nbits;
  793. t[1].bits_per_word = spi->bits_per_word;
  794. ret = bcm_qspi_transfer_one(spi->master, spi, &t[1]);
  795. }
  796. if (!ret)
  797. msg->retlen = msg->len;
  798. return ret;
  799. }
  800. static int bcm_qspi_flash_read(struct spi_device *spi,
  801. struct spi_flash_read_message *msg)
  802. {
  803. struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
  804. int ret = 0;
  805. bool mspi_read = false;
  806. u32 addr, len;
  807. u_char *buf;
  808. buf = msg->buf;
  809. addr = msg->from;
  810. len = msg->len;
  811. if (bcm_qspi_bspi_ver_three(qspi) == true) {
  812. /*
  813. * The address coming into this function is a raw flash offset.
  814. * But for BSPI <= V3, we need to convert it to a remapped BSPI
  815. * address. If it crosses a 4MB boundary, just revert back to
  816. * using MSPI.
  817. */
  818. addr = (addr + 0xc00000) & 0xffffff;
  819. if ((~ADDR_4MB_MASK & addr) ^
  820. (~ADDR_4MB_MASK & (addr + len - 1)))
  821. mspi_read = true;
  822. }
  823. /* non-aligned and very short transfers are handled by MSPI */
  824. if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
  825. len < 4)
  826. mspi_read = true;
  827. if (mspi_read)
  828. return bcm_qspi_mspi_flash_read(spi, msg);
  829. ret = bcm_qspi_bspi_set_mode(qspi, msg, -1);
  830. if (!ret)
  831. ret = bcm_qspi_bspi_flash_read(spi, msg);
  832. return ret;
  833. }
  834. static void bcm_qspi_cleanup(struct spi_device *spi)
  835. {
  836. struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
  837. kfree(xp);
  838. }
  839. static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
  840. {
  841. struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
  842. struct bcm_qspi *qspi = qspi_dev_id->dev;
  843. u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
  844. if (status & MSPI_MSPI_STATUS_SPIF) {
  845. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  846. /* clear interrupt */
  847. status &= ~MSPI_MSPI_STATUS_SPIF;
  848. bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
  849. if (qspi->soc_intc)
  850. soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
  851. complete(&qspi->mspi_done);
  852. return IRQ_HANDLED;
  853. }
  854. return IRQ_NONE;
  855. }
  856. static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
  857. {
  858. struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
  859. struct bcm_qspi *qspi = qspi_dev_id->dev;
  860. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  861. u32 status = qspi_dev_id->irqp->mask;
  862. if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
  863. bcm_qspi_bspi_lr_data_read(qspi);
  864. if (qspi->bspi_rf_msg_len == 0) {
  865. qspi->bspi_rf_msg = NULL;
  866. if (qspi->soc_intc) {
  867. /* disable soc BSPI interrupt */
  868. soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
  869. false);
  870. /* indicate done */
  871. status = INTR_BSPI_LR_SESSION_DONE_MASK;
  872. }
  873. if (qspi->bspi_rf_msg_status)
  874. bcm_qspi_bspi_lr_clear(qspi);
  875. else
  876. bcm_qspi_bspi_flush_prefetch_buffers(qspi);
  877. }
  878. if (qspi->soc_intc)
  879. /* clear soc BSPI interrupt */
  880. soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
  881. }
  882. status &= INTR_BSPI_LR_SESSION_DONE_MASK;
  883. if (qspi->bspi_enabled && status && qspi->bspi_rf_msg_len == 0)
  884. complete(&qspi->bspi_done);
  885. return IRQ_HANDLED;
  886. }
  887. static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
  888. {
  889. struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
  890. struct bcm_qspi *qspi = qspi_dev_id->dev;
  891. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  892. dev_err(&qspi->pdev->dev, "BSPI INT error\n");
  893. qspi->bspi_rf_msg_status = -EIO;
  894. if (qspi->soc_intc)
  895. /* clear soc interrupt */
  896. soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
  897. complete(&qspi->bspi_done);
  898. return IRQ_HANDLED;
  899. }
  900. static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
  901. {
  902. struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
  903. struct bcm_qspi *qspi = qspi_dev_id->dev;
  904. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  905. irqreturn_t ret = IRQ_NONE;
  906. if (soc_intc) {
  907. u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
  908. if (status & MSPI_DONE)
  909. ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
  910. else if (status & BSPI_DONE)
  911. ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
  912. else if (status & BSPI_ERR)
  913. ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
  914. }
  915. return ret;
  916. }
  917. static const struct bcm_qspi_irq qspi_irq_tab[] = {
  918. {
  919. .irq_name = "spi_lr_fullness_reached",
  920. .irq_handler = bcm_qspi_bspi_lr_l2_isr,
  921. .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
  922. },
  923. {
  924. .irq_name = "spi_lr_session_aborted",
  925. .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
  926. .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
  927. },
  928. {
  929. .irq_name = "spi_lr_impatient",
  930. .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
  931. .mask = INTR_BSPI_LR_IMPATIENT_MASK,
  932. },
  933. {
  934. .irq_name = "spi_lr_session_done",
  935. .irq_handler = bcm_qspi_bspi_lr_l2_isr,
  936. .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
  937. },
  938. #ifdef QSPI_INT_DEBUG
  939. /* this interrupt is for debug purposes only, dont request irq */
  940. {
  941. .irq_name = "spi_lr_overread",
  942. .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
  943. .mask = INTR_BSPI_LR_OVERREAD_MASK,
  944. },
  945. #endif
  946. {
  947. .irq_name = "mspi_done",
  948. .irq_handler = bcm_qspi_mspi_l2_isr,
  949. .mask = INTR_MSPI_DONE_MASK,
  950. },
  951. {
  952. .irq_name = "mspi_halted",
  953. .irq_handler = bcm_qspi_mspi_l2_isr,
  954. .mask = INTR_MSPI_HALTED_MASK,
  955. },
  956. {
  957. /* single muxed L1 interrupt source */
  958. .irq_name = "spi_l1_intr",
  959. .irq_handler = bcm_qspi_l1_isr,
  960. .irq_source = MUXED_L1,
  961. .mask = QSPI_INTERRUPTS_ALL,
  962. },
  963. };
  964. static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
  965. {
  966. u32 val = 0;
  967. val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
  968. qspi->bspi_maj_rev = (val >> 8) & 0xff;
  969. qspi->bspi_min_rev = val & 0xff;
  970. if (!(bcm_qspi_bspi_ver_three(qspi))) {
  971. /* Force mapping of BSPI address -> flash offset */
  972. bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
  973. bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
  974. }
  975. qspi->bspi_enabled = 1;
  976. bcm_qspi_disable_bspi(qspi);
  977. bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
  978. bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
  979. }
  980. static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
  981. {
  982. struct bcm_qspi_parms parms;
  983. bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
  984. bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
  985. bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
  986. bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
  987. bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
  988. parms.mode = SPI_MODE_3;
  989. parms.bits_per_word = 8;
  990. parms.speed_hz = qspi->max_speed_hz;
  991. bcm_qspi_hw_set_parms(qspi, &parms);
  992. if (has_bspi(qspi))
  993. bcm_qspi_bspi_init(qspi);
  994. }
  995. static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
  996. {
  997. bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
  998. if (has_bspi(qspi))
  999. bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
  1000. }
  1001. static const struct of_device_id bcm_qspi_of_match[] = {
  1002. { .compatible = "brcm,spi-bcm-qspi" },
  1003. {},
  1004. };
  1005. MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
  1006. int bcm_qspi_probe(struct platform_device *pdev,
  1007. struct bcm_qspi_soc_intc *soc_intc)
  1008. {
  1009. struct device *dev = &pdev->dev;
  1010. struct bcm_qspi *qspi;
  1011. struct spi_master *master;
  1012. struct resource *res;
  1013. int irq, ret = 0, num_ints = 0;
  1014. u32 val;
  1015. const char *name = NULL;
  1016. int num_irqs = ARRAY_SIZE(qspi_irq_tab);
  1017. /* We only support device-tree instantiation */
  1018. if (!dev->of_node)
  1019. return -ENODEV;
  1020. if (!of_match_node(bcm_qspi_of_match, dev->of_node))
  1021. return -ENODEV;
  1022. master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi));
  1023. if (!master) {
  1024. dev_err(dev, "error allocating spi_master\n");
  1025. return -ENOMEM;
  1026. }
  1027. qspi = spi_master_get_devdata(master);
  1028. qspi->pdev = pdev;
  1029. qspi->trans_pos.trans = NULL;
  1030. qspi->trans_pos.byte = 0;
  1031. qspi->trans_pos.mspi_last_trans = true;
  1032. qspi->master = master;
  1033. master->bus_num = -1;
  1034. master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
  1035. master->setup = bcm_qspi_setup;
  1036. master->transfer_one = bcm_qspi_transfer_one;
  1037. master->spi_flash_read = bcm_qspi_flash_read;
  1038. master->cleanup = bcm_qspi_cleanup;
  1039. master->dev.of_node = dev->of_node;
  1040. master->num_chipselect = NUM_CHIPSELECT;
  1041. qspi->big_endian = of_device_is_big_endian(dev->of_node);
  1042. if (!of_property_read_u32(dev->of_node, "num-cs", &val))
  1043. master->num_chipselect = val;
  1044. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
  1045. if (!res)
  1046. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  1047. "mspi");
  1048. if (res) {
  1049. qspi->base[MSPI] = devm_ioremap_resource(dev, res);
  1050. if (IS_ERR(qspi->base[MSPI]))
  1051. return PTR_ERR(qspi->base[MSPI]);
  1052. } else {
  1053. return 0;
  1054. }
  1055. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
  1056. if (res) {
  1057. qspi->base[BSPI] = devm_ioremap_resource(dev, res);
  1058. if (IS_ERR(qspi->base[BSPI]))
  1059. return PTR_ERR(qspi->base[BSPI]);
  1060. qspi->bspi_mode = true;
  1061. } else {
  1062. qspi->bspi_mode = false;
  1063. }
  1064. dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
  1065. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
  1066. if (res) {
  1067. qspi->base[CHIP_SELECT] = devm_ioremap_resource(dev, res);
  1068. if (IS_ERR(qspi->base[CHIP_SELECT]))
  1069. return PTR_ERR(qspi->base[CHIP_SELECT]);
  1070. }
  1071. qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
  1072. GFP_KERNEL);
  1073. if (!qspi->dev_ids)
  1074. return -ENOMEM;
  1075. for (val = 0; val < num_irqs; val++) {
  1076. irq = -1;
  1077. name = qspi_irq_tab[val].irq_name;
  1078. if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
  1079. /* get the l2 interrupts */
  1080. irq = platform_get_irq_byname(pdev, name);
  1081. } else if (!num_ints && soc_intc) {
  1082. /* all mspi, bspi intrs muxed to one L1 intr */
  1083. irq = platform_get_irq(pdev, 0);
  1084. }
  1085. if (irq >= 0) {
  1086. ret = devm_request_irq(&pdev->dev, irq,
  1087. qspi_irq_tab[val].irq_handler, 0,
  1088. name,
  1089. &qspi->dev_ids[val]);
  1090. if (ret < 0) {
  1091. dev_err(&pdev->dev, "IRQ %s not found\n", name);
  1092. goto qspi_probe_err;
  1093. }
  1094. qspi->dev_ids[val].dev = qspi;
  1095. qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
  1096. num_ints++;
  1097. dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
  1098. qspi_irq_tab[val].irq_name,
  1099. irq);
  1100. }
  1101. }
  1102. if (!num_ints) {
  1103. dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
  1104. ret = -EINVAL;
  1105. goto qspi_probe_err;
  1106. }
  1107. /*
  1108. * Some SoCs integrate spi controller (e.g., its interrupt bits)
  1109. * in specific ways
  1110. */
  1111. if (soc_intc) {
  1112. qspi->soc_intc = soc_intc;
  1113. soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
  1114. } else {
  1115. qspi->soc_intc = NULL;
  1116. }
  1117. qspi->clk = devm_clk_get(&pdev->dev, NULL);
  1118. if (IS_ERR(qspi->clk)) {
  1119. dev_warn(dev, "unable to get clock\n");
  1120. ret = PTR_ERR(qspi->clk);
  1121. goto qspi_probe_err;
  1122. }
  1123. ret = clk_prepare_enable(qspi->clk);
  1124. if (ret) {
  1125. dev_err(dev, "failed to prepare clock\n");
  1126. goto qspi_probe_err;
  1127. }
  1128. qspi->base_clk = clk_get_rate(qspi->clk);
  1129. qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
  1130. bcm_qspi_hw_init(qspi);
  1131. init_completion(&qspi->mspi_done);
  1132. init_completion(&qspi->bspi_done);
  1133. qspi->curr_cs = -1;
  1134. platform_set_drvdata(pdev, qspi);
  1135. qspi->xfer_mode.width = -1;
  1136. qspi->xfer_mode.addrlen = -1;
  1137. qspi->xfer_mode.hp = -1;
  1138. ret = spi_register_master(master);
  1139. if (ret < 0) {
  1140. dev_err(dev, "can't register master\n");
  1141. goto qspi_reg_err;
  1142. }
  1143. return 0;
  1144. qspi_reg_err:
  1145. bcm_qspi_hw_uninit(qspi);
  1146. clk_disable_unprepare(qspi->clk);
  1147. qspi_probe_err:
  1148. kfree(qspi->dev_ids);
  1149. return ret;
  1150. }
  1151. /* probe function to be called by SoC specific platform driver probe */
  1152. EXPORT_SYMBOL_GPL(bcm_qspi_probe);
  1153. int bcm_qspi_remove(struct platform_device *pdev)
  1154. {
  1155. struct bcm_qspi *qspi = platform_get_drvdata(pdev);
  1156. spi_unregister_master(qspi->master);
  1157. bcm_qspi_hw_uninit(qspi);
  1158. clk_disable_unprepare(qspi->clk);
  1159. kfree(qspi->dev_ids);
  1160. return 0;
  1161. }
  1162. /* function to be called by SoC specific platform driver remove() */
  1163. EXPORT_SYMBOL_GPL(bcm_qspi_remove);
  1164. static int __maybe_unused bcm_qspi_suspend(struct device *dev)
  1165. {
  1166. struct bcm_qspi *qspi = dev_get_drvdata(dev);
  1167. /* store the override strap value */
  1168. if (!bcm_qspi_bspi_ver_three(qspi))
  1169. qspi->s3_strap_override_ctrl =
  1170. bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
  1171. spi_master_suspend(qspi->master);
  1172. clk_disable(qspi->clk);
  1173. bcm_qspi_hw_uninit(qspi);
  1174. return 0;
  1175. };
  1176. static int __maybe_unused bcm_qspi_resume(struct device *dev)
  1177. {
  1178. struct bcm_qspi *qspi = dev_get_drvdata(dev);
  1179. int ret = 0;
  1180. bcm_qspi_hw_init(qspi);
  1181. bcm_qspi_chip_select(qspi, qspi->curr_cs);
  1182. if (qspi->soc_intc)
  1183. /* enable MSPI interrupt */
  1184. qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
  1185. true);
  1186. ret = clk_enable(qspi->clk);
  1187. if (!ret)
  1188. spi_master_resume(qspi->master);
  1189. return ret;
  1190. }
  1191. SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
  1192. /* pm_ops to be called by SoC specific platform driver */
  1193. EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
  1194. MODULE_AUTHOR("Kamal Dasu");
  1195. MODULE_DESCRIPTION("Broadcom QSPI driver");
  1196. MODULE_LICENSE("GPL v2");
  1197. MODULE_ALIAS("platform:" DRIVER_NAME);