mtk_ecc.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. /*
  2. * MTK ECC controller driver.
  3. * Copyright (C) 2016 MediaTek Inc.
  4. * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
  5. * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. */
  16. #include <linux/platform_device.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/clk.h>
  20. #include <linux/module.h>
  21. #include <linux/iopoll.h>
  22. #include <linux/of.h>
  23. #include <linux/of_platform.h>
  24. #include <linux/mutex.h>
  25. #include "mtk_ecc.h"
  26. #define ECC_IDLE_MASK BIT(0)
  27. #define ECC_IRQ_EN BIT(0)
  28. #define ECC_PG_IRQ_SEL BIT(1)
  29. #define ECC_OP_ENABLE (1)
  30. #define ECC_OP_DISABLE (0)
  31. #define ECC_ENCCON (0x00)
  32. #define ECC_ENCCNFG (0x04)
  33. #define ECC_MODE_SHIFT (5)
  34. #define ECC_MS_SHIFT (16)
  35. #define ECC_ENCDIADDR (0x08)
  36. #define ECC_ENCIDLE (0x0C)
  37. #define ECC_ENCIRQ_EN (0x80)
  38. #define ECC_ENCIRQ_STA (0x84)
  39. #define ECC_DECCON (0x100)
  40. #define ECC_DECCNFG (0x104)
  41. #define DEC_EMPTY_EN BIT(31)
  42. #define DEC_CNFG_CORRECT (0x3 << 12)
  43. #define ECC_DECIDLE (0x10C)
  44. #define ECC_DECENUM0 (0x114)
  45. #define ECC_DECDONE (0x124)
  46. #define ECC_DECIRQ_EN (0x200)
  47. #define ECC_DECIRQ_STA (0x204)
  48. #define ECC_TIMEOUT (500000)
  49. #define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
  50. #define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
  51. #define ECC_IRQ_REG(op) ((op) == ECC_ENCODE ? \
  52. ECC_ENCIRQ_EN : ECC_DECIRQ_EN)
  53. struct mtk_ecc_caps {
  54. u32 err_mask;
  55. const u8 *ecc_strength;
  56. u8 num_ecc_strength;
  57. u32 encode_parity_reg0;
  58. int pg_irq_sel;
  59. };
  60. struct mtk_ecc {
  61. struct device *dev;
  62. const struct mtk_ecc_caps *caps;
  63. void __iomem *regs;
  64. struct clk *clk;
  65. struct completion done;
  66. struct mutex lock;
  67. u32 sectors;
  68. u8 *eccdata;
  69. };
  70. /* ecc strength that each IP supports */
  71. static const u8 ecc_strength_mt2701[] = {
  72. 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
  73. 40, 44, 48, 52, 56, 60
  74. };
  75. static const u8 ecc_strength_mt2712[] = {
  76. 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
  77. 40, 44, 48, 52, 56, 60, 68, 72, 80
  78. };
  79. static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
  80. enum mtk_ecc_operation op)
  81. {
  82. struct device *dev = ecc->dev;
  83. u32 val;
  84. int ret;
  85. ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
  86. val & ECC_IDLE_MASK,
  87. 10, ECC_TIMEOUT);
  88. if (ret)
  89. dev_warn(dev, "%s NOT idle\n",
  90. op == ECC_ENCODE ? "encoder" : "decoder");
  91. }
  92. static irqreturn_t mtk_ecc_irq(int irq, void *id)
  93. {
  94. struct mtk_ecc *ecc = id;
  95. enum mtk_ecc_operation op;
  96. u32 dec, enc;
  97. dec = readw(ecc->regs + ECC_DECIRQ_STA) & ECC_IRQ_EN;
  98. if (dec) {
  99. op = ECC_DECODE;
  100. dec = readw(ecc->regs + ECC_DECDONE);
  101. if (dec & ecc->sectors) {
  102. /*
  103. * Clear decode IRQ status once again to ensure that
  104. * there will be no extra IRQ.
  105. */
  106. readw(ecc->regs + ECC_DECIRQ_STA);
  107. ecc->sectors = 0;
  108. complete(&ecc->done);
  109. } else {
  110. return IRQ_HANDLED;
  111. }
  112. } else {
  113. enc = readl(ecc->regs + ECC_ENCIRQ_STA) & ECC_IRQ_EN;
  114. if (enc) {
  115. op = ECC_ENCODE;
  116. complete(&ecc->done);
  117. } else {
  118. return IRQ_NONE;
  119. }
  120. }
  121. return IRQ_HANDLED;
  122. }
  123. static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
  124. {
  125. u32 ecc_bit, dec_sz, enc_sz;
  126. u32 reg, i;
  127. for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
  128. if (ecc->caps->ecc_strength[i] == config->strength)
  129. break;
  130. }
  131. if (i == ecc->caps->num_ecc_strength) {
  132. dev_err(ecc->dev, "invalid ecc strength %d\n",
  133. config->strength);
  134. return -EINVAL;
  135. }
  136. ecc_bit = i;
  137. if (config->op == ECC_ENCODE) {
  138. /* configure ECC encoder (in bits) */
  139. enc_sz = config->len << 3;
  140. reg = ecc_bit | (config->mode << ECC_MODE_SHIFT);
  141. reg |= (enc_sz << ECC_MS_SHIFT);
  142. writel(reg, ecc->regs + ECC_ENCCNFG);
  143. if (config->mode != ECC_NFI_MODE)
  144. writel(lower_32_bits(config->addr),
  145. ecc->regs + ECC_ENCDIADDR);
  146. } else {
  147. /* configure ECC decoder (in bits) */
  148. dec_sz = (config->len << 3) +
  149. config->strength * ECC_PARITY_BITS;
  150. reg = ecc_bit | (config->mode << ECC_MODE_SHIFT);
  151. reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
  152. reg |= DEC_EMPTY_EN;
  153. writel(reg, ecc->regs + ECC_DECCNFG);
  154. if (config->sectors)
  155. ecc->sectors = 1 << (config->sectors - 1);
  156. }
  157. return 0;
  158. }
  159. void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
  160. int sectors)
  161. {
  162. u32 offset, i, err;
  163. u32 bitflips = 0;
  164. stats->corrected = 0;
  165. stats->failed = 0;
  166. for (i = 0; i < sectors; i++) {
  167. offset = (i >> 2) << 2;
  168. err = readl(ecc->regs + ECC_DECENUM0 + offset);
  169. err = err >> ((i % 4) * 8);
  170. err &= ecc->caps->err_mask;
  171. if (err == ecc->caps->err_mask) {
  172. /* uncorrectable errors */
  173. stats->failed++;
  174. continue;
  175. }
  176. stats->corrected += err;
  177. bitflips = max_t(u32, bitflips, err);
  178. }
  179. stats->bitflips = bitflips;
  180. }
  181. EXPORT_SYMBOL(mtk_ecc_get_stats);
  182. void mtk_ecc_release(struct mtk_ecc *ecc)
  183. {
  184. clk_disable_unprepare(ecc->clk);
  185. put_device(ecc->dev);
  186. }
  187. EXPORT_SYMBOL(mtk_ecc_release);
  188. static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
  189. {
  190. mtk_ecc_wait_idle(ecc, ECC_ENCODE);
  191. writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
  192. mtk_ecc_wait_idle(ecc, ECC_DECODE);
  193. writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
  194. }
  195. static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
  196. {
  197. struct platform_device *pdev;
  198. struct mtk_ecc *ecc;
  199. pdev = of_find_device_by_node(np);
  200. if (!pdev || !platform_get_drvdata(pdev))
  201. return ERR_PTR(-EPROBE_DEFER);
  202. get_device(&pdev->dev);
  203. ecc = platform_get_drvdata(pdev);
  204. clk_prepare_enable(ecc->clk);
  205. mtk_ecc_hw_init(ecc);
  206. return ecc;
  207. }
  208. struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
  209. {
  210. struct mtk_ecc *ecc = NULL;
  211. struct device_node *np;
  212. np = of_parse_phandle(of_node, "ecc-engine", 0);
  213. if (np) {
  214. ecc = mtk_ecc_get(np);
  215. of_node_put(np);
  216. }
  217. return ecc;
  218. }
  219. EXPORT_SYMBOL(of_mtk_ecc_get);
  220. int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
  221. {
  222. enum mtk_ecc_operation op = config->op;
  223. u16 reg_val;
  224. int ret;
  225. ret = mutex_lock_interruptible(&ecc->lock);
  226. if (ret) {
  227. dev_err(ecc->dev, "interrupted when attempting to lock\n");
  228. return ret;
  229. }
  230. mtk_ecc_wait_idle(ecc, op);
  231. ret = mtk_ecc_config(ecc, config);
  232. if (ret) {
  233. mutex_unlock(&ecc->lock);
  234. return ret;
  235. }
  236. if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
  237. init_completion(&ecc->done);
  238. reg_val = ECC_IRQ_EN;
  239. /*
  240. * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
  241. * means this chip can only generate one ecc irq during page
  242. * read / write. If is 0, generate one ecc irq each ecc step.
  243. */
  244. if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
  245. reg_val |= ECC_PG_IRQ_SEL;
  246. writew(reg_val, ecc->regs + ECC_IRQ_REG(op));
  247. }
  248. writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
  249. return 0;
  250. }
  251. EXPORT_SYMBOL(mtk_ecc_enable);
  252. void mtk_ecc_disable(struct mtk_ecc *ecc)
  253. {
  254. enum mtk_ecc_operation op = ECC_ENCODE;
  255. /* find out the running operation */
  256. if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
  257. op = ECC_DECODE;
  258. /* disable it */
  259. mtk_ecc_wait_idle(ecc, op);
  260. if (op == ECC_DECODE)
  261. /*
  262. * Clear decode IRQ status in case there is a timeout to wait
  263. * decode IRQ.
  264. */
  265. readw(ecc->regs + ECC_DECIRQ_STA);
  266. writew(0, ecc->regs + ECC_IRQ_REG(op));
  267. writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
  268. mutex_unlock(&ecc->lock);
  269. }
  270. EXPORT_SYMBOL(mtk_ecc_disable);
  271. int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
  272. {
  273. int ret;
  274. ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
  275. if (!ret) {
  276. dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
  277. (op == ECC_ENCODE) ? "encoder" : "decoder");
  278. return -ETIMEDOUT;
  279. }
  280. return 0;
  281. }
  282. EXPORT_SYMBOL(mtk_ecc_wait_done);
  283. int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
  284. u8 *data, u32 bytes)
  285. {
  286. dma_addr_t addr;
  287. u32 len;
  288. int ret;
  289. addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
  290. ret = dma_mapping_error(ecc->dev, addr);
  291. if (ret) {
  292. dev_err(ecc->dev, "dma mapping error\n");
  293. return -EINVAL;
  294. }
  295. config->op = ECC_ENCODE;
  296. config->addr = addr;
  297. ret = mtk_ecc_enable(ecc, config);
  298. if (ret) {
  299. dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
  300. return ret;
  301. }
  302. ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
  303. if (ret)
  304. goto timeout;
  305. mtk_ecc_wait_idle(ecc, ECC_ENCODE);
  306. /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
  307. len = (config->strength * ECC_PARITY_BITS + 7) >> 3;
  308. /* write the parity bytes generated by the ECC back to temp buffer */
  309. __ioread32_copy(ecc->eccdata,
  310. ecc->regs + ecc->caps->encode_parity_reg0,
  311. round_up(len, 4));
  312. /* copy into possibly unaligned OOB region with actual length */
  313. memcpy(data + bytes, ecc->eccdata, len);
  314. timeout:
  315. dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
  316. mtk_ecc_disable(ecc);
  317. return ret;
  318. }
  319. EXPORT_SYMBOL(mtk_ecc_encode);
  320. void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
  321. {
  322. const u8 *ecc_strength = ecc->caps->ecc_strength;
  323. int i;
  324. for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
  325. if (*p <= ecc_strength[i]) {
  326. if (!i)
  327. *p = ecc_strength[i];
  328. else if (*p != ecc_strength[i])
  329. *p = ecc_strength[i - 1];
  330. return;
  331. }
  332. }
  333. *p = ecc_strength[ecc->caps->num_ecc_strength - 1];
  334. }
  335. EXPORT_SYMBOL(mtk_ecc_adjust_strength);
  336. static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
  337. .err_mask = 0x3f,
  338. .ecc_strength = ecc_strength_mt2701,
  339. .num_ecc_strength = 20,
  340. .encode_parity_reg0 = 0x10,
  341. .pg_irq_sel = 0,
  342. };
  343. static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
  344. .err_mask = 0x7f,
  345. .ecc_strength = ecc_strength_mt2712,
  346. .num_ecc_strength = 23,
  347. .encode_parity_reg0 = 0x300,
  348. .pg_irq_sel = 1,
  349. };
  350. static const struct of_device_id mtk_ecc_dt_match[] = {
  351. {
  352. .compatible = "mediatek,mt2701-ecc",
  353. .data = &mtk_ecc_caps_mt2701,
  354. }, {
  355. .compatible = "mediatek,mt2712-ecc",
  356. .data = &mtk_ecc_caps_mt2712,
  357. },
  358. {},
  359. };
  360. static int mtk_ecc_probe(struct platform_device *pdev)
  361. {
  362. struct device *dev = &pdev->dev;
  363. struct mtk_ecc *ecc;
  364. struct resource *res;
  365. const struct of_device_id *of_ecc_id = NULL;
  366. u32 max_eccdata_size;
  367. int irq, ret;
  368. ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
  369. if (!ecc)
  370. return -ENOMEM;
  371. of_ecc_id = of_match_device(mtk_ecc_dt_match, &pdev->dev);
  372. if (!of_ecc_id)
  373. return -ENODEV;
  374. ecc->caps = of_ecc_id->data;
  375. max_eccdata_size = ecc->caps->num_ecc_strength - 1;
  376. max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
  377. max_eccdata_size = (max_eccdata_size * ECC_PARITY_BITS + 7) >> 3;
  378. max_eccdata_size = round_up(max_eccdata_size, 4);
  379. ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
  380. if (!ecc->eccdata)
  381. return -ENOMEM;
  382. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  383. ecc->regs = devm_ioremap_resource(dev, res);
  384. if (IS_ERR(ecc->regs)) {
  385. dev_err(dev, "failed to map regs: %ld\n", PTR_ERR(ecc->regs));
  386. return PTR_ERR(ecc->regs);
  387. }
  388. ecc->clk = devm_clk_get(dev, NULL);
  389. if (IS_ERR(ecc->clk)) {
  390. dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
  391. return PTR_ERR(ecc->clk);
  392. }
  393. irq = platform_get_irq(pdev, 0);
  394. if (irq < 0) {
  395. dev_err(dev, "failed to get irq: %d\n", irq);
  396. return irq;
  397. }
  398. ret = dma_set_mask(dev, DMA_BIT_MASK(32));
  399. if (ret) {
  400. dev_err(dev, "failed to set DMA mask\n");
  401. return ret;
  402. }
  403. ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
  404. if (ret) {
  405. dev_err(dev, "failed to request irq\n");
  406. return -EINVAL;
  407. }
  408. ecc->dev = dev;
  409. mutex_init(&ecc->lock);
  410. platform_set_drvdata(pdev, ecc);
  411. dev_info(dev, "probed\n");
  412. return 0;
  413. }
  414. #ifdef CONFIG_PM_SLEEP
  415. static int mtk_ecc_suspend(struct device *dev)
  416. {
  417. struct mtk_ecc *ecc = dev_get_drvdata(dev);
  418. clk_disable_unprepare(ecc->clk);
  419. return 0;
  420. }
  421. static int mtk_ecc_resume(struct device *dev)
  422. {
  423. struct mtk_ecc *ecc = dev_get_drvdata(dev);
  424. int ret;
  425. ret = clk_prepare_enable(ecc->clk);
  426. if (ret) {
  427. dev_err(dev, "failed to enable clk\n");
  428. return ret;
  429. }
  430. return 0;
  431. }
  432. static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
  433. #endif
  434. MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
  435. static struct platform_driver mtk_ecc_driver = {
  436. .probe = mtk_ecc_probe,
  437. .driver = {
  438. .name = "mtk-ecc",
  439. .of_match_table = of_match_ptr(mtk_ecc_dt_match),
  440. #ifdef CONFIG_PM_SLEEP
  441. .pm = &mtk_ecc_pm_ops,
  442. #endif
  443. },
  444. };
  445. module_platform_driver(mtk_ecc_driver);
  446. MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
  447. MODULE_DESCRIPTION("MTK Nand ECC Driver");
  448. MODULE_LICENSE("GPL");