1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177 |
- /*
- * drivers/mtd/nand/fsmc_nand.c
- *
- * ST Microelectronics
- * Flexible Static Memory Controller (FSMC)
- * Driver for NAND portions
- *
- * Copyright © 2010 ST Microelectronics
- * Vipin Kumar <vipin.kumar@st.com>
- * Ashish Priyadarshi
- *
- * Based on drivers/mtd/nand/nomadik_nand.c
- *
- * This file is licensed under the terms of the GNU General Public
- * License version 2. This program is licensed "as is" without any
- * warranty of any kind, whether express or implied.
- */
- #include <linux/clk.h>
- #include <linux/completion.h>
- #include <linux/dmaengine.h>
- #include <linux/dma-direction.h>
- #include <linux/dma-mapping.h>
- #include <linux/err.h>
- #include <linux/init.h>
- #include <linux/module.h>
- #include <linux/resource.h>
- #include <linux/sched.h>
- #include <linux/types.h>
- #include <linux/mtd/mtd.h>
- #include <linux/mtd/rawnand.h>
- #include <linux/mtd/nand_ecc.h>
- #include <linux/platform_device.h>
- #include <linux/of.h>
- #include <linux/mtd/partitions.h>
- #include <linux/io.h>
- #include <linux/slab.h>
- #include <linux/amba/bus.h>
- #include <mtd/mtd-abi.h>
- /* fsmc controller registers for NOR flash */
- #define CTRL 0x0
- /* ctrl register definitions */
- #define BANK_ENABLE (1 << 0)
- #define MUXED (1 << 1)
- #define NOR_DEV (2 << 2)
- #define WIDTH_8 (0 << 4)
- #define WIDTH_16 (1 << 4)
- #define RSTPWRDWN (1 << 6)
- #define WPROT (1 << 7)
- #define WRT_ENABLE (1 << 12)
- #define WAIT_ENB (1 << 13)
- #define CTRL_TIM 0x4
- /* ctrl_tim register definitions */
- #define FSMC_NOR_BANK_SZ 0x8
- #define FSMC_NOR_REG_SIZE 0x40
- #define FSMC_NOR_REG(base, bank, reg) (base + \
- FSMC_NOR_BANK_SZ * (bank) + \
- reg)
- /* fsmc controller registers for NAND flash */
- #define PC 0x00
- /* pc register definitions */
- #define FSMC_RESET (1 << 0)
- #define FSMC_WAITON (1 << 1)
- #define FSMC_ENABLE (1 << 2)
- #define FSMC_DEVTYPE_NAND (1 << 3)
- #define FSMC_DEVWID_8 (0 << 4)
- #define FSMC_DEVWID_16 (1 << 4)
- #define FSMC_ECCEN (1 << 6)
- #define FSMC_ECCPLEN_512 (0 << 7)
- #define FSMC_ECCPLEN_256 (1 << 7)
- #define FSMC_TCLR_1 (1)
- #define FSMC_TCLR_SHIFT (9)
- #define FSMC_TCLR_MASK (0xF)
- #define FSMC_TAR_1 (1)
- #define FSMC_TAR_SHIFT (13)
- #define FSMC_TAR_MASK (0xF)
- #define STS 0x04
- /* sts register definitions */
- #define FSMC_CODE_RDY (1 << 15)
- #define COMM 0x08
- /* comm register definitions */
- #define FSMC_TSET_0 0
- #define FSMC_TSET_SHIFT 0
- #define FSMC_TSET_MASK 0xFF
- #define FSMC_TWAIT_6 6
- #define FSMC_TWAIT_SHIFT 8
- #define FSMC_TWAIT_MASK 0xFF
- #define FSMC_THOLD_4 4
- #define FSMC_THOLD_SHIFT 16
- #define FSMC_THOLD_MASK 0xFF
- #define FSMC_THIZ_1 1
- #define FSMC_THIZ_SHIFT 24
- #define FSMC_THIZ_MASK 0xFF
- #define ATTRIB 0x0C
- #define IOATA 0x10
- #define ECC1 0x14
- #define ECC2 0x18
- #define ECC3 0x1C
- #define FSMC_NAND_BANK_SZ 0x20
- #define FSMC_NAND_REG(base, bank, reg) (base + FSMC_NOR_REG_SIZE + \
- (FSMC_NAND_BANK_SZ * (bank)) + \
- reg)
- #define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
- struct fsmc_nand_timings {
- uint8_t tclr;
- uint8_t tar;
- uint8_t thiz;
- uint8_t thold;
- uint8_t twait;
- uint8_t tset;
- };
- enum access_mode {
- USE_DMA_ACCESS = 1,
- USE_WORD_ACCESS,
- };
- /**
- * struct fsmc_nand_data - structure for FSMC NAND device state
- *
- * @pid: Part ID on the AMBA PrimeCell format
- * @mtd: MTD info for a NAND flash.
- * @nand: Chip related info for a NAND flash.
- * @partitions: Partition info for a NAND Flash.
- * @nr_partitions: Total number of partition of a NAND flash.
- *
- * @bank: Bank number for probed device.
- * @clk: Clock structure for FSMC.
- *
- * @read_dma_chan: DMA channel for read access
- * @write_dma_chan: DMA channel for write access to NAND
- * @dma_access_complete: Completion structure
- *
- * @data_pa: NAND Physical port for Data.
- * @data_va: NAND port for Data.
- * @cmd_va: NAND port for Command.
- * @addr_va: NAND port for Address.
- * @regs_va: FSMC regs base address.
- */
- struct fsmc_nand_data {
- u32 pid;
- struct nand_chip nand;
- unsigned int bank;
- struct device *dev;
- enum access_mode mode;
- struct clk *clk;
- /* DMA related objects */
- struct dma_chan *read_dma_chan;
- struct dma_chan *write_dma_chan;
- struct completion dma_access_complete;
- struct fsmc_nand_timings *dev_timings;
- dma_addr_t data_pa;
- void __iomem *data_va;
- void __iomem *cmd_va;
- void __iomem *addr_va;
- void __iomem *regs_va;
- };
- static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- if (section >= chip->ecc.steps)
- return -ERANGE;
- oobregion->offset = (section * 16) + 2;
- oobregion->length = 3;
- return 0;
- }
- static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- if (section >= chip->ecc.steps)
- return -ERANGE;
- oobregion->offset = (section * 16) + 8;
- if (section < chip->ecc.steps - 1)
- oobregion->length = 8;
- else
- oobregion->length = mtd->oobsize - oobregion->offset;
- return 0;
- }
- static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
- .ecc = fsmc_ecc1_ooblayout_ecc,
- .free = fsmc_ecc1_ooblayout_free,
- };
- /*
- * ECC placement definitions in oobfree type format.
- * There are 13 bytes of ecc for every 512 byte block and it has to be read
- * consecutively and immediately after the 512 byte data block for hardware to
- * generate the error bit offsets in 512 byte data.
- */
- static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- if (section >= chip->ecc.steps)
- return -ERANGE;
- oobregion->length = chip->ecc.bytes;
- if (!section && mtd->writesize <= 512)
- oobregion->offset = 0;
- else
- oobregion->offset = (section * 16) + 2;
- return 0;
- }
- static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- if (section >= chip->ecc.steps)
- return -ERANGE;
- oobregion->offset = (section * 16) + 15;
- if (section < chip->ecc.steps - 1)
- oobregion->length = 3;
- else
- oobregion->length = mtd->oobsize - oobregion->offset;
- return 0;
- }
- static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
- .ecc = fsmc_ecc4_ooblayout_ecc,
- .free = fsmc_ecc4_ooblayout_free,
- };
- static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
- {
- return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
- }
- /*
- * fsmc_cmd_ctrl - For facilitaing Hardware access
- * This routine allows hardware specific access to control-lines(ALE,CLE)
- */
- static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
- {
- struct nand_chip *this = mtd_to_nand(mtd);
- struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- unsigned int bank = host->bank;
- if (ctrl & NAND_CTRL_CHANGE) {
- u32 pc;
- if (ctrl & NAND_CLE) {
- this->IO_ADDR_R = host->cmd_va;
- this->IO_ADDR_W = host->cmd_va;
- } else if (ctrl & NAND_ALE) {
- this->IO_ADDR_R = host->addr_va;
- this->IO_ADDR_W = host->addr_va;
- } else {
- this->IO_ADDR_R = host->data_va;
- this->IO_ADDR_W = host->data_va;
- }
- pc = readl(FSMC_NAND_REG(regs, bank, PC));
- if (ctrl & NAND_NCE)
- pc |= FSMC_ENABLE;
- else
- pc &= ~FSMC_ENABLE;
- writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
- }
- mb();
- if (cmd != NAND_CMD_NONE)
- writeb_relaxed(cmd, this->IO_ADDR_W);
- }
- /*
- * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
- *
- * This routine initializes timing parameters related to NAND memory access in
- * FSMC registers
- */
- static void fsmc_nand_setup(struct fsmc_nand_data *host,
- struct fsmc_nand_timings *tims)
- {
- uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
- uint32_t tclr, tar, thiz, thold, twait, tset;
- unsigned int bank = host->bank;
- void __iomem *regs = host->regs_va;
- tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
- tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
- thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
- thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
- twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
- tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
- if (host->nand.options & NAND_BUSWIDTH_16)
- writel_relaxed(value | FSMC_DEVWID_16,
- FSMC_NAND_REG(regs, bank, PC));
- else
- writel_relaxed(value | FSMC_DEVWID_8,
- FSMC_NAND_REG(regs, bank, PC));
- writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
- FSMC_NAND_REG(regs, bank, PC));
- writel_relaxed(thiz | thold | twait | tset,
- FSMC_NAND_REG(regs, bank, COMM));
- writel_relaxed(thiz | thold | twait | tset,
- FSMC_NAND_REG(regs, bank, ATTRIB));
- }
- static int fsmc_calc_timings(struct fsmc_nand_data *host,
- const struct nand_sdr_timings *sdrt,
- struct fsmc_nand_timings *tims)
- {
- unsigned long hclk = clk_get_rate(host->clk);
- unsigned long hclkn = NSEC_PER_SEC / hclk;
- uint32_t thiz, thold, twait, tset;
- if (sdrt->tRC_min < 30000)
- return -EOPNOTSUPP;
- tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
- if (tims->tar > FSMC_TAR_MASK)
- tims->tar = FSMC_TAR_MASK;
- tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
- if (tims->tclr > FSMC_TCLR_MASK)
- tims->tclr = FSMC_TCLR_MASK;
- thiz = sdrt->tCS_min - sdrt->tWP_min;
- tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
- thold = sdrt->tDH_min;
- if (thold < sdrt->tCH_min)
- thold = sdrt->tCH_min;
- if (thold < sdrt->tCLH_min)
- thold = sdrt->tCLH_min;
- if (thold < sdrt->tWH_min)
- thold = sdrt->tWH_min;
- if (thold < sdrt->tALH_min)
- thold = sdrt->tALH_min;
- if (thold < sdrt->tREH_min)
- thold = sdrt->tREH_min;
- tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
- if (tims->thold == 0)
- tims->thold = 1;
- else if (tims->thold > FSMC_THOLD_MASK)
- tims->thold = FSMC_THOLD_MASK;
- twait = max(sdrt->tRP_min, sdrt->tWP_min);
- tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
- if (tims->twait == 0)
- tims->twait = 1;
- else if (tims->twait > FSMC_TWAIT_MASK)
- tims->twait = FSMC_TWAIT_MASK;
- tset = max(sdrt->tCS_min - sdrt->tWP_min,
- sdrt->tCEA_max - sdrt->tREA_max);
- tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
- if (tims->tset == 0)
- tims->tset = 1;
- else if (tims->tset > FSMC_TSET_MASK)
- tims->tset = FSMC_TSET_MASK;
- return 0;
- }
- static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
- const struct nand_data_interface *conf)
- {
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct fsmc_nand_data *host = nand_get_controller_data(nand);
- struct fsmc_nand_timings tims;
- const struct nand_sdr_timings *sdrt;
- int ret;
- sdrt = nand_get_sdr_timings(conf);
- if (IS_ERR(sdrt))
- return PTR_ERR(sdrt);
- ret = fsmc_calc_timings(host, sdrt, &tims);
- if (ret)
- return ret;
- if (csline == NAND_DATA_IFACE_CHECK_ONLY)
- return 0;
- fsmc_nand_setup(host, &tims);
- return 0;
- }
- /*
- * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
- */
- static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
- {
- struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- uint32_t bank = host->bank;
- writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
- FSMC_NAND_REG(regs, bank, PC));
- writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
- FSMC_NAND_REG(regs, bank, PC));
- writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
- FSMC_NAND_REG(regs, bank, PC));
- }
- /*
- * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
- * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
- * max of 8-bits)
- */
- static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
- uint8_t *ecc)
- {
- struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- uint32_t bank = host->bank;
- uint32_t ecc_tmp;
- unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
- do {
- if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
- break;
- else
- cond_resched();
- } while (!time_after_eq(jiffies, deadline));
- if (time_after_eq(jiffies, deadline)) {
- dev_err(host->dev, "calculate ecc timed out\n");
- return -ETIMEDOUT;
- }
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
- ecc[0] = (uint8_t) (ecc_tmp >> 0);
- ecc[1] = (uint8_t) (ecc_tmp >> 8);
- ecc[2] = (uint8_t) (ecc_tmp >> 16);
- ecc[3] = (uint8_t) (ecc_tmp >> 24);
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
- ecc[4] = (uint8_t) (ecc_tmp >> 0);
- ecc[5] = (uint8_t) (ecc_tmp >> 8);
- ecc[6] = (uint8_t) (ecc_tmp >> 16);
- ecc[7] = (uint8_t) (ecc_tmp >> 24);
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
- ecc[8] = (uint8_t) (ecc_tmp >> 0);
- ecc[9] = (uint8_t) (ecc_tmp >> 8);
- ecc[10] = (uint8_t) (ecc_tmp >> 16);
- ecc[11] = (uint8_t) (ecc_tmp >> 24);
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
- ecc[12] = (uint8_t) (ecc_tmp >> 16);
- return 0;
- }
- /*
- * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
- * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
- * max of 1-bit)
- */
- static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
- uint8_t *ecc)
- {
- struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- uint32_t bank = host->bank;
- uint32_t ecc_tmp;
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
- ecc[0] = (uint8_t) (ecc_tmp >> 0);
- ecc[1] = (uint8_t) (ecc_tmp >> 8);
- ecc[2] = (uint8_t) (ecc_tmp >> 16);
- return 0;
- }
- /* Count the number of 0's in buff upto a max of max_bits */
- static int count_written_bits(uint8_t *buff, int size, int max_bits)
- {
- int k, written_bits = 0;
- for (k = 0; k < size; k++) {
- written_bits += hweight8(~buff[k]);
- if (written_bits > max_bits)
- break;
- }
- return written_bits;
- }
- static void dma_complete(void *param)
- {
- struct fsmc_nand_data *host = param;
- complete(&host->dma_access_complete);
- }
- static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
- enum dma_data_direction direction)
- {
- struct dma_chan *chan;
- struct dma_device *dma_dev;
- struct dma_async_tx_descriptor *tx;
- dma_addr_t dma_dst, dma_src, dma_addr;
- dma_cookie_t cookie;
- unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
- int ret;
- unsigned long time_left;
- if (direction == DMA_TO_DEVICE)
- chan = host->write_dma_chan;
- else if (direction == DMA_FROM_DEVICE)
- chan = host->read_dma_chan;
- else
- return -EINVAL;
- dma_dev = chan->device;
- dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
- if (direction == DMA_TO_DEVICE) {
- dma_src = dma_addr;
- dma_dst = host->data_pa;
- } else {
- dma_src = host->data_pa;
- dma_dst = dma_addr;
- }
- tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
- len, flags);
- if (!tx) {
- dev_err(host->dev, "device_prep_dma_memcpy error\n");
- ret = -EIO;
- goto unmap_dma;
- }
- tx->callback = dma_complete;
- tx->callback_param = host;
- cookie = tx->tx_submit(tx);
- ret = dma_submit_error(cookie);
- if (ret) {
- dev_err(host->dev, "dma_submit_error %d\n", cookie);
- goto unmap_dma;
- }
- dma_async_issue_pending(chan);
- time_left =
- wait_for_completion_timeout(&host->dma_access_complete,
- msecs_to_jiffies(3000));
- if (time_left == 0) {
- dmaengine_terminate_all(chan);
- dev_err(host->dev, "wait_for_completion_timeout\n");
- ret = -ETIMEDOUT;
- goto unmap_dma;
- }
- ret = 0;
- unmap_dma:
- dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
- return ret;
- }
- /*
- * fsmc_write_buf - write buffer to chip
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
- static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
- {
- int i;
- struct nand_chip *chip = mtd_to_nand(mtd);
- if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
- IS_ALIGNED(len, sizeof(uint32_t))) {
- uint32_t *p = (uint32_t *)buf;
- len = len >> 2;
- for (i = 0; i < len; i++)
- writel_relaxed(p[i], chip->IO_ADDR_W);
- } else {
- for (i = 0; i < len; i++)
- writeb_relaxed(buf[i], chip->IO_ADDR_W);
- }
- }
- /*
- * fsmc_read_buf - read chip data into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
- static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
- {
- int i;
- struct nand_chip *chip = mtd_to_nand(mtd);
- if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
- IS_ALIGNED(len, sizeof(uint32_t))) {
- uint32_t *p = (uint32_t *)buf;
- len = len >> 2;
- for (i = 0; i < len; i++)
- p[i] = readl_relaxed(chip->IO_ADDR_R);
- } else {
- for (i = 0; i < len; i++)
- buf[i] = readb_relaxed(chip->IO_ADDR_R);
- }
- }
- /*
- * fsmc_read_buf_dma - read chip data into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
- static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
- {
- struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- dma_xfer(host, buf, len, DMA_FROM_DEVICE);
- }
- /*
- * fsmc_write_buf_dma - write buffer to chip
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
- static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
- int len)
- {
- struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
- }
- /*
- * fsmc_read_page_hwecc
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller expects OOB data read to chip->oob_poi
- * @page: page number to read
- *
- * This routine is needed for fsmc version 8 as reading from NAND chip has to be
- * performed in a strict sequence as follows:
- * data(512 byte) -> ecc(13 byte)
- * After this read, fsmc hardware generates and reports error data bits(up to a
- * max of 8 bits)
- */
- static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
- {
- int i, j, s, stat, eccsize = chip->ecc.size;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- uint8_t *p = buf;
- uint8_t *ecc_calc = chip->buffers->ecccalc;
- uint8_t *ecc_code = chip->buffers->ecccode;
- int off, len, group = 0;
- /*
- * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
- * end up reading 14 bytes (7 words) from oob. The local array is
- * to maintain word alignment
- */
- uint16_t ecc_oob[7];
- uint8_t *oob = (uint8_t *)&ecc_oob[0];
- unsigned int max_bitflips = 0;
- for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
- chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
- chip->ecc.hwctl(mtd, NAND_ECC_READ);
- chip->read_buf(mtd, p, eccsize);
- for (j = 0; j < eccbytes;) {
- struct mtd_oob_region oobregion;
- int ret;
- ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
- if (ret)
- return ret;
- off = oobregion.offset;
- len = oobregion.length;
- /*
- * length is intentionally kept a higher multiple of 2
- * to read at least 13 bytes even in case of 16 bit NAND
- * devices
- */
- if (chip->options & NAND_BUSWIDTH_16)
- len = roundup(len, 2);
- chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
- chip->read_buf(mtd, oob + j, len);
- j += len;
- }
- memcpy(&ecc_code[i], oob, chip->ecc.bytes);
- chip->ecc.calculate(mtd, p, &ecc_calc[i]);
- stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- } else {
- mtd->ecc_stats.corrected += stat;
- max_bitflips = max_t(unsigned int, max_bitflips, stat);
- }
- }
- return max_bitflips;
- }
- /*
- * fsmc_bch8_correct_data
- * @mtd: mtd info structure
- * @dat: buffer of read data
- * @read_ecc: ecc read from device spare area
- * @calc_ecc: ecc calculated from read data
- *
- * calc_ecc is a 104 bit information containing maximum of 8 error
- * offset informations of 13 bits each in 512 bytes of read data.
- */
- static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
- uint8_t *read_ecc, uint8_t *calc_ecc)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- unsigned int bank = host->bank;
- uint32_t err_idx[8];
- uint32_t num_err, i;
- uint32_t ecc1, ecc2, ecc3, ecc4;
- num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
- /* no bit flipping */
- if (likely(num_err == 0))
- return 0;
- /* too many errors */
- if (unlikely(num_err > 8)) {
- /*
- * This is a temporary erase check. A newly erased page read
- * would result in an ecc error because the oob data is also
- * erased to FF and the calculated ecc for an FF data is not
- * FF..FF.
- * This is a workaround to skip performing correction in case
- * data is FF..FF
- *
- * Logic:
- * For every page, each bit written as 0 is counted until these
- * number of bits are greater than 8 (the maximum correction
- * capability of FSMC for each 512 + 13 bytes)
- */
- int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
- int bits_data = count_written_bits(dat, chip->ecc.size, 8);
- if ((bits_ecc + bits_data) <= 8) {
- if (bits_data)
- memset(dat, 0xff, chip->ecc.size);
- return bits_data;
- }
- return -EBADMSG;
- }
- /*
- * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
- * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
- *
- * calc_ecc is a 104 bit information containing maximum of 8 error
- * offset informations of 13 bits each. calc_ecc is copied into a
- * uint64_t array and error offset indexes are populated in err_idx
- * array
- */
- ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
- ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
- ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
- ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
- err_idx[0] = (ecc1 >> 0) & 0x1FFF;
- err_idx[1] = (ecc1 >> 13) & 0x1FFF;
- err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
- err_idx[3] = (ecc2 >> 7) & 0x1FFF;
- err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
- err_idx[5] = (ecc3 >> 1) & 0x1FFF;
- err_idx[6] = (ecc3 >> 14) & 0x1FFF;
- err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
- i = 0;
- while (num_err--) {
- change_bit(0, (unsigned long *)&err_idx[i]);
- change_bit(1, (unsigned long *)&err_idx[i]);
- if (err_idx[i] < chip->ecc.size * 8) {
- change_bit(err_idx[i], (unsigned long *)dat);
- i++;
- }
- }
- return i;
- }
- static bool filter(struct dma_chan *chan, void *slave)
- {
- chan->private = slave;
- return true;
- }
- static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
- struct fsmc_nand_data *host,
- struct nand_chip *nand)
- {
- struct device_node *np = pdev->dev.of_node;
- u32 val;
- int ret;
- nand->options = 0;
- if (!of_property_read_u32(np, "bank-width", &val)) {
- if (val == 2) {
- nand->options |= NAND_BUSWIDTH_16;
- } else if (val != 1) {
- dev_err(&pdev->dev, "invalid bank-width %u\n", val);
- return -EINVAL;
- }
- }
- if (of_get_property(np, "nand-skip-bbtscan", NULL))
- nand->options |= NAND_SKIP_BBTSCAN;
- host->dev_timings = devm_kzalloc(&pdev->dev,
- sizeof(*host->dev_timings), GFP_KERNEL);
- if (!host->dev_timings)
- return -ENOMEM;
- ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
- sizeof(*host->dev_timings));
- if (ret)
- host->dev_timings = NULL;
- /* Set default NAND bank to 0 */
- host->bank = 0;
- if (!of_property_read_u32(np, "bank", &val)) {
- if (val > 3) {
- dev_err(&pdev->dev, "invalid bank %u\n", val);
- return -EINVAL;
- }
- host->bank = val;
- }
- return 0;
- }
- /*
- * fsmc_nand_probe - Probe function
- * @pdev: platform device structure
- */
- static int __init fsmc_nand_probe(struct platform_device *pdev)
- {
- struct fsmc_nand_data *host;
- struct mtd_info *mtd;
- struct nand_chip *nand;
- struct resource *res;
- dma_cap_mask_t mask;
- int ret = 0;
- u32 pid;
- int i;
- /* Allocate memory for the device structure (and zero it) */
- host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
- if (!host)
- return -ENOMEM;
- nand = &host->nand;
- ret = fsmc_nand_probe_config_dt(pdev, host, nand);
- if (ret)
- return ret;
- res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
- host->data_va = devm_ioremap_resource(&pdev->dev, res);
- if (IS_ERR(host->data_va))
- return PTR_ERR(host->data_va);
- host->data_pa = (dma_addr_t)res->start;
- res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
- host->addr_va = devm_ioremap_resource(&pdev->dev, res);
- if (IS_ERR(host->addr_va))
- return PTR_ERR(host->addr_va);
- res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
- host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
- if (IS_ERR(host->cmd_va))
- return PTR_ERR(host->cmd_va);
- res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
- host->regs_va = devm_ioremap_resource(&pdev->dev, res);
- if (IS_ERR(host->regs_va))
- return PTR_ERR(host->regs_va);
- host->clk = devm_clk_get(&pdev->dev, NULL);
- if (IS_ERR(host->clk)) {
- dev_err(&pdev->dev, "failed to fetch block clock\n");
- return PTR_ERR(host->clk);
- }
- ret = clk_prepare_enable(host->clk);
- if (ret)
- return ret;
- /*
- * This device ID is actually a common AMBA ID as used on the
- * AMBA PrimeCell bus. However it is not a PrimeCell.
- */
- for (pid = 0, i = 0; i < 4; i++)
- pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
- host->pid = pid;
- dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
- "revision %02x, config %02x\n",
- AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
- AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
- host->dev = &pdev->dev;
- if (host->mode == USE_DMA_ACCESS)
- init_completion(&host->dma_access_complete);
- /* Link all private pointers */
- mtd = nand_to_mtd(&host->nand);
- nand_set_controller_data(nand, host);
- nand_set_flash_node(nand, pdev->dev.of_node);
- mtd->dev.parent = &pdev->dev;
- nand->IO_ADDR_R = host->data_va;
- nand->IO_ADDR_W = host->data_va;
- nand->cmd_ctrl = fsmc_cmd_ctrl;
- nand->chip_delay = 30;
- /*
- * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
- * can overwrite this value if the DT provides a different value.
- */
- nand->ecc.mode = NAND_ECC_HW;
- nand->ecc.hwctl = fsmc_enable_hwecc;
- nand->ecc.size = 512;
- nand->badblockbits = 7;
- switch (host->mode) {
- case USE_DMA_ACCESS:
- dma_cap_zero(mask);
- dma_cap_set(DMA_MEMCPY, mask);
- host->read_dma_chan = dma_request_channel(mask, filter, NULL);
- if (!host->read_dma_chan) {
- dev_err(&pdev->dev, "Unable to get read dma channel\n");
- goto err_req_read_chnl;
- }
- host->write_dma_chan = dma_request_channel(mask, filter, NULL);
- if (!host->write_dma_chan) {
- dev_err(&pdev->dev, "Unable to get write dma channel\n");
- goto err_req_write_chnl;
- }
- nand->read_buf = fsmc_read_buf_dma;
- nand->write_buf = fsmc_write_buf_dma;
- break;
- default:
- case USE_WORD_ACCESS:
- nand->read_buf = fsmc_read_buf;
- nand->write_buf = fsmc_write_buf;
- break;
- }
- if (host->dev_timings)
- fsmc_nand_setup(host, host->dev_timings);
- else
- nand->setup_data_interface = fsmc_setup_data_interface;
- if (AMBA_REV_BITS(host->pid) >= 8) {
- nand->ecc.read_page = fsmc_read_page_hwecc;
- nand->ecc.calculate = fsmc_read_hwecc_ecc4;
- nand->ecc.correct = fsmc_bch8_correct_data;
- nand->ecc.bytes = 13;
- nand->ecc.strength = 8;
- }
- /*
- * Scan to find existence of the device
- */
- ret = nand_scan_ident(mtd, 1, NULL);
- if (ret) {
- dev_err(&pdev->dev, "No NAND Device found!\n");
- goto err_scan_ident;
- }
- if (AMBA_REV_BITS(host->pid) >= 8) {
- switch (mtd->oobsize) {
- case 16:
- case 64:
- case 128:
- case 224:
- case 256:
- break;
- default:
- dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
- mtd->oobsize);
- ret = -EINVAL;
- goto err_probe;
- }
- mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
- } else {
- switch (nand->ecc.mode) {
- case NAND_ECC_HW:
- dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
- nand->ecc.calculate = fsmc_read_hwecc_ecc1;
- nand->ecc.correct = nand_correct_data;
- nand->ecc.bytes = 3;
- nand->ecc.strength = 1;
- break;
- case NAND_ECC_SOFT:
- if (nand->ecc.algo == NAND_ECC_BCH) {
- dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
- break;
- }
- case NAND_ECC_ON_DIE:
- break;
- default:
- dev_err(&pdev->dev, "Unsupported ECC mode!\n");
- goto err_probe;
- }
- /*
- * Don't set layout for BCH4 SW ECC. This will be
- * generated later in nand_bch_init() later.
- */
- if (nand->ecc.mode == NAND_ECC_HW) {
- switch (mtd->oobsize) {
- case 16:
- case 64:
- case 128:
- mtd_set_ooblayout(mtd,
- &fsmc_ecc1_ooblayout_ops);
- break;
- default:
- dev_warn(&pdev->dev,
- "No oob scheme defined for oobsize %d\n",
- mtd->oobsize);
- ret = -EINVAL;
- goto err_probe;
- }
- }
- }
- /* Second stage of scan to fill MTD data-structures */
- ret = nand_scan_tail(mtd);
- if (ret)
- goto err_probe;
- mtd->name = "nand";
- ret = mtd_device_register(mtd, NULL, 0);
- if (ret)
- goto err_probe;
- platform_set_drvdata(pdev, host);
- dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
- return 0;
- err_probe:
- err_scan_ident:
- if (host->mode == USE_DMA_ACCESS)
- dma_release_channel(host->write_dma_chan);
- err_req_write_chnl:
- if (host->mode == USE_DMA_ACCESS)
- dma_release_channel(host->read_dma_chan);
- err_req_read_chnl:
- clk_disable_unprepare(host->clk);
- return ret;
- }
- /*
- * Clean up routine
- */
- static int fsmc_nand_remove(struct platform_device *pdev)
- {
- struct fsmc_nand_data *host = platform_get_drvdata(pdev);
- if (host) {
- nand_release(&host->nand);
- if (host->mode == USE_DMA_ACCESS) {
- dma_release_channel(host->write_dma_chan);
- dma_release_channel(host->read_dma_chan);
- }
- clk_disable_unprepare(host->clk);
- }
- return 0;
- }
- #ifdef CONFIG_PM_SLEEP
- static int fsmc_nand_suspend(struct device *dev)
- {
- struct fsmc_nand_data *host = dev_get_drvdata(dev);
- if (host)
- clk_disable_unprepare(host->clk);
- return 0;
- }
- static int fsmc_nand_resume(struct device *dev)
- {
- struct fsmc_nand_data *host = dev_get_drvdata(dev);
- if (host) {
- clk_prepare_enable(host->clk);
- if (host->dev_timings)
- fsmc_nand_setup(host, host->dev_timings);
- }
- return 0;
- }
- #endif
- static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
- static const struct of_device_id fsmc_nand_id_table[] = {
- { .compatible = "st,spear600-fsmc-nand" },
- { .compatible = "stericsson,fsmc-nand" },
- {}
- };
- MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
- static struct platform_driver fsmc_nand_driver = {
- .remove = fsmc_nand_remove,
- .driver = {
- .name = "fsmc-nand",
- .of_match_table = fsmc_nand_id_table,
- .pm = &fsmc_nand_pm_ops,
- },
- };
- module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
- MODULE_LICENSE("GPL");
- MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
- MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
|